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Evaluation Strategies of Fuzzy Datalog 

Ágnes Achs* 

Abstract 

A fuzzy Datalog program is a set of Horn-formulae with uncertainty de-
grees. The meaning of a program is the fixpoints of deterministic or nonde-
terministic consecutive transformations. In this paper we are going to deal 
with the evaluation strategies of fuzzy Datalog programs. We will determine 
the bottom-up and top-down strategies and show their equivalence. 

1 Introduction 
A logical data model consists of facts and rules. The facts represent certain knowl-
edge from which other knowledge can be deduced by the rules. . In classical deduc-
tive database theory ([CGT], [U]) the Datalog-like data model is widely spread. A 
Datalog program is a set of Horn-clauses, that is a set of the formulae 

A B i , . . . ,B n 

where A, Bi(i — 1,..., n) are positive literals. 
The meaning of a Datalog-like program is the least (if any) or a minimal model 

which contains the facts and satisfies the rules. This model is generally computed 
by a fixpoint algorithm. 

In [AK2] there was given a possible extension of Datalog-like languages to fuzzy 
relational databases using lower bounds of degrees of uncertainty in facts and rules. 
This language is called fuzzy Datalog (/DATALOG). In this language the rules 
are completed with an implication operator and a level. We can infer the level 
of a rule-head from the level of the body, the level of the rule and the implication 
operator of the rule. We defined the deterministic and nondeterministic semantics of 
/DATALOG as the fixpoints of certain transformations, gave a method for fixpoint 
queries, and showed that this fixpoint is minimal under certain conditions. 

The aim of this paper is to give some evaluation strategies of /DATALOG 
programs. 

First we are going to summarize the concept of /DATALOG. 
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2 Basic Concepts 
A term is a variable, constant or complex term of the form / ( i j , . . . , tn), where / 
is a function symbol and t\,..., tn are terms. An atom is a formula of the form 
p(t), where p is an n-arity predicate symbol and t is a sequence of terms of length 
n (arguments). A literal is either an atom (a positive literal) or the negation of an 
atom (a negative literal). 

A term, atom, literal is ground if it is free of variables. 
Let D be a set. The fuzzy set F over D is a function F : D —» [0,1]. Let T(D) 

denote the set of all fuzzy sets over D. So F € T{D). 

F U G(d) = m a x ( F ( d ) , G { d ) ) 

F n G(d) d= min(F(d),G(d)) 

An ordering relation can be defined: F < G iff F(d) < G(d) Vd 6 D. As every 
subset of T(D) has least upper bound and greatest lower bound, so (J~(D), <) is a 
complete lattice. The top element of the lattice is U : D —» [0,1] : U(d) = 1 Vd £ D. 
The bottom element is: 0 : D [0,1] : 0(d) = 0 Vd € I>. 

Fuzzy sets are frequently denoted in the following way: 

F= ( J ( d , a d ) 
deD 

where (d,ad) e D x [0,1]. 
To make any deduction we need the concept of implication operator. 
The features of implication operators are summarized in [DP]. In the next table 

we give the most frequent operators: 

symbol name formula 
h(x,y) Gödel 1 if X < y 

y otherwise 
h(x,y) Lukasiewicz 1 if x < y 

1 — x + y otherwise 
h(x,y) Goguen 1 if x < y 

y/x otherwise 
Kleene-Dienes max(l — x, y) 

h(x,y) Reichenbach 1 — x + xy 

h(x,y) Gaines-Rescher 1 if x < y 
0 otherwise 
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3 The Concept of /DATALOG 
Definition 1 An /DATALOG rule is a triplet (r; 7; (i), where r is a formula of the 
form 

Q<-Qo,---,Qn (n> 0) 

where Q is an atom (the head of the rule), Qi,..., Qn are literals (the body of the 
rule); I is an implication operator and (3 £ (0,1] (the level of the rule). 

An /DATALOG rule is safe if 

• All variables which occur in the head also occur in the body; 

• All variables occurring in a negative literal also occur in a positive literal. 

An /DATALOG program is a finite set of safe /DATALOG rules. Let A be a 
ground atom. The rules of the form (A ; J; /3) are called facts. 

The Herbrand universe of a program P (denoted by Hp) is the set of all possible 
ground terms constructed by using constants and function symbols occurring in P. 
The Herbrand base of P (Bp) is the set of all possible ground atoms whose predicate 
symbols occur in P and whose arguments are elements of Hp. A ground instance 
of a rule (r; I; ¡3) in P is a rule obtained from r by replacing every variable x in r by 
<&(.x) where $ is a mapping from all variables occurring in r to Hp. The set of all 
ground instances of (r; / ; /3) are denoted by (ground(r)\ / ; (i). The ground instance 
of P is 

ground (P) = U ( r ; / ; /} ) ep(ground (r) ;I ; (3 ) . 

Definition 2 An interpretation of a program P, denoted by Np, is a fuzzy set of 
BP: 

Np £ T(Bp), that is Np = |J (A,aA). 
AeBp 

Let for ground atoms Ai,..., An aA1/\...AA„ and a~,A be defined in the following 
way: 

ctAiA...A^„ = m i n ^ ! , . . . 

def ! a-, A = I —a A-

Definition 3 An interpretation is a model of P if for each (ground(r) \ I; (3) £ 
ground(P), ground(r) = A A\,..., An 

I(aAif,...AAn,ocA) > (3 

A model M is the least model if for any model N,M < N. A model M is minimal 
if there is no model N ^ M such that N < M. 
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To be short, we sometimes denote OLA1A.../\A„ by abody and o^by ahead-
The semantics of /DATALOG is defined as the fixpoints of consequence trans-

formations. Depending on these transformations we can define two semantics for 
/DATALOG. The deterministic semantics is the least fixpoint of deterministic 
transformation, the nondeterminic semantics is the least fixpoint of nondetermin-
istic transformation. With the aid of the deterministic transformation the rules 
of a program are evaluated parallely, while in nondeterministic case the rules are 
considered independently one after another. 

These transformations are the following: 

Definition 4 The consequence transformations DTp : T(Bp) —> T{Bp) and 
NTP : T{BP) T{BP) are defined as 

DTP(X) = { U { ( A , C * A ) } | ( ^ < - Au...,AN-I-p) e ground(P), 

(|\Ai\,otAi) £ X for each 1 < i < n, 

a A = max(0, min{7|/(abody , 7) > /3})} U X 

and 

; NTP(X) = {(A,aA)}uX 

where (A <- Ai,...,An\I\{3) 6 ground(P),(\Ai\,aAi) £ X, 1 < i < n, 

aA = max(0,min{7|/(abody,7) > P] 

denotes p(c) if either A = p(c) or A = ->p(c) where p is a predicate symbol 
with arity k and c is a list of k ground terms. 

We can define the powers of the transformations: 
For any T : T(Bp) -> J7(Bp) transformation let 

T0 = {U{(A,a,i)}|(yl £ gr<mnd{P), 

a A = max(0,min{7|/(l,7) > /3})} 
U{(A, 0)|3(B i- ... -,A...,;/; P) € graund(P)} 

and let 
Ti = T(T0) 

Tn = T ( T „ _ I ) 

In [AK2] it was proved, that starting from the set of facts (To), both DTp and 
NTp have a fixpoint, which is the least fixpoint in the case of positive P. These 
fixpoints are denoted by lfp(DTp) and Up(NTp). 

It was also proved, that lip(DTp) and lfp(ATp) are models of P. These propo-
sitions are the background of the following definition: 
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Definition 5 We define lfp(DTp) to be the deterministic semantics and lfp(yVTp) 
to be the nondeterministic semantics of /DATALOG programs. 

For function- and negation-free /DATALOG, the two semantics are the same, but 
they are different if the program has any negation. 

The set lfp(DTp) is not always a minimal model. In nondeterministic case, 
however, it is minimal under certain conditions. This condition is stratification. 
Stratification gives an evaluating sequence in which the negative literals are evalu-
ated first. 

To stratify a program, it is necessary to define the concept of dependency graph. 
This is a directed graph, whose nodes are the predicates of P. There is an arc from 
predicate p to predicate q if there is a rule whose body contains p or -ip and whose 
head predicate is q. 

A program is recursive, if its dependency graph has one or more cycles. 
A program is stratified if whenever there is a rule with head predicate p and a 

negated body literal ->q, there is no path in the dependency graph from p to q. 
The stratification of a program P is a partition of the predicate symbols of P 

into subsets Pi,..., Pn such that the following conditions are satisfied: 

a) if p £ Pi and q £ Pj and there is an edge from q to p then i > j 

b) if p £ Pi and q £ Pj and there is a rule with the head p whose body contains 
-iq, then i > j. 

A stratification specifies an order of evaluation. First we evaluate the rules whose 
head-predicates are in Pi then those ones whose head-predicates are in P2 and so 
on. The sets Pi,... ,Pn are called the strata of the stratification. 

A program P is called stratified if and only if it admits a stratification. There 
is a very simple method for finding a stratification for a stratified program P in 
[CGT],[U]. 

[AK2] proves that for stratified /DATALOG program P, there is an evaluation 
sequence, - this is the order of strata - in which lip(NTp) is a minimal model of P. 

More detailed: 
Let P be a stratified /DATALOG program with stratification P±,... ,P„. Let 

Pj* denote the set of all rules of P corresponding to stratum Pj, that is the set of 
all rules whose head-predicate is in Pi. 

Let 
Li = lfp (NTP. ) 

where the starting point of the computation is the set of facts. 

L-2 = lfp (NTp-) 

where the starting point of the computing is L\, 

Ln = lfp (NTp.) 



90 Agnes Achs 

where the starting point is L„_i . 
In other words: at first we compute the least fixpoint L\, corresponding to the 

first stratum of P. Then one can take a step to the next stratum, and so on. 
It can be seen that Ln is a minimal fixpoint of P, that is Ln = lfp (NTp) 

([AK2]). 

4 Evaluation Strategies 
An /DATALOG program can be evaluated with the aid of different strategies. 
Starting from the facts, applying the rules, all of the computable facts can be 
inferred, that is lfp (DTp ) or lfp (NTp) can be determined. In this case, we speak 
about bottom-up evaluation. 

In many cases however, the whole evaluation is not necessary, because we only 
want to get an answer to a concrete question. If a goal is specified together with 
an /DATALOG program, it is enough to consider only the rules and facts which 
are necessary to reach the goal. In the case of starting from the goal, and applying 
the suitable rules we infer to the facts, we speak about top-down evaluation. 

5 Bottom-up Evaluation 
For simplicity, we denote consequence transformation with Tp. This doesn't cause 
any trouble, because in the case of negation-free programs the fixpoints of the two 
tranformations are the same, and if the program contains any negation, we will 
consider only the nondeterministic transformation. 

The fixpoint computation is a simple iteration with the following algorithm: 

Algorithm 1 

Procedure bottom-up 
old := T0 

new := Tp(To) 
while old new do 

old := new 
new := TP (old) 

endwhile 
endprocedure 

Note: In nondeterministic case, the halt condition means that none of the rules 
results in any new facts. 

The disadvantage of the algorithm is the great number of superflouos evalua-
tions. There are rules which are evaluated again and again in spite of the fact, 
that they don't result any new facts. Therefore, it is practical to omit these rules. 
Whether a rule can be omitted or not, depends on the path leading to the head 
predicate of the rule in the dependency graph. If this path contains any circle -
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that is the rule is recursive - one can not omit the rule before obtaining the fix-
point. But if the path does not contain any circle, then probably it can be omitted 
before terminating. A rule can be omitted, if the steps of the algorithm exceed the 
length of the maximal path leading to the head predicate of the rule. Using this 
observation a modified bottom-up evaluation strategy can be acquired. 

6 Modified Bottom-up Evaluation 
Let P = U{(r; / ; /3)}. Let h : P N be defined in the following way: 

( n where n is the length of the longest loopfree path leading to 

the headpredicate in dependency graph 
oo if the path leading to the headpredicate contains any circle 

Let T'n = TPii(Tn-i) where 

i* =P-{(r;J;»,)!*(»•;/ ; /?) < n } 

The sequence T^ has a limit, that is: 

Proposition 1 For function- and negation-free program P 3 m € N : T'm = rpl rpt x m+1 ~ • • ' ~ ±oo 
Proof: Let k be the number of predicates in P, n be the arguments' number of 
predicate with maximum argument's number and c be the number of constants in 
P. Then the proposition is true for m = kc11. 

• 

For this m let T^ be denoted with T'(P). 

Proposition 2 For negation- and function-free /DATALOG program P 
lfp(Tp) = T"(P). 

Proof: 

a) From the construction of T'(P), T ' (P) Ç lfp(TP). 

b) Let (A,aA) <Elfp{TP). 

Then there is (r; 15 /2) € J5, for which (.A 4— Ai,... 3 A.n; /5 (3) € grounder}. Let 
%;/;/?) = k. Then (r;/; /3) £ P^, so (A,aA) € T'k Ç T'(P). ' 

• 
The algorithm of modified bottom-up evaluation is the following: 
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Algorithm 2 

Procedure bottomrup 2 
k := 1 
old := T0 

new := Tp(To) 
while old ^ new do 

old new 
P : = P - { ( r ; J ; / 3 ) | / i ( r ; / ; / ? ) < fc} 
new := TP (old) 

endwhile 
endprocedure 

7 Modified Bottom-up Evaluation in the Case of 
Stratified /DATALOG 

The modified bottom-up evaluation can be applied in the case of stratified 
/DATALOG. Then we can evaluate by strata. In details: 

Let P be a stratified /DATALOG program with stratification P\,... , P„. Let 
P* denote the set of all rules of P corresponding to stratum Pi, that is the set of 
all rules whose head-predicates are in Pi. 

Let 
Li = lfp(NTPT) 

where the starting point of the computation is Lj_ i, and Tp> = NTp- = DTp-. 
Because, due to the stratification of P, all negative literals of stratum i cor-

respond to predicates of lower strata, the evaluation of P* is the same as the 
evaluation of a negation-free program. 

From this the following proposition can be made: 

Proposition 3 Li can be evaluated by the modified bottom-up evaluation, that 
is Li = T ' (Pi ) . 

8 Top-down Evaluation 
In many cases we only want to get an answer to a concrete question. In such 
cases a goal is specified together with an /DATALOG program. Then during the 
evaluation it is enough to consider only the rules and facts which are necessary to 
reach the goal. 

A goal is a pair (Qa), where <5 is an atom, a is the level of the atom. It is 
possible, that Q contains variables, and a can be either a constant or a variable. 
An /DATALOG program enlarged with a goal is a query. 
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A goal can be evaluated with the aid of sub-queries. This means, that all of 
the rules, whose head-predicate can be unificated with the given goal-predicate are 
selected, and the predicates of the body are considered as new sub- goals. This 
procedure continues until obtaining the facts. This kind of evaluation is the top-
down evaluation. 

To deal with this strategy, we need some basic concepts. 

Definition 6 A substitution 9 is a finite set of the form {xi|ii , . . . ,xn\tn], where 
Xi(i = 1 , . . . ,n) is a distinct variable and ti ^ Xi (i = 1,... ,n) is a term. The set of 
variable {.x'i,..., xn} is called the domain of 0. If all terms ti,..., tn are constants, 
then 9 is called a ground substitution. The empty substitution is denoted by e. If 
9 is a substitution and t is a term, then td denotes the term which is defined as 
follows: 

If L is a literal then L9 denotes the literal which is obtained from L by simultane-
ously replacing each variable Xi that occurs in L by the corresponding term ti, iff 
Xi\ti is an element of 6. 

For example, let L = -<p{a,x,y,b) and 6 = {x\c, y\x), then L9 — ~^p(a,c,x,b). 
If ( r ; I ; p ) is a /DATALOG rule, then [r9\I\ (3) denotes the rule, which is ob-

tained simultaneously applying the substitution 9 for all literals of r. In the body 
of rO the atoms are considered with single multiplicity. 

Definition 7 Let 9 = {xi|ti, • • •,xn\tn} and <r = {yi\ui,... ,yn\un} be two sub-
stitutions. The composition 9a of 9 and a is obtained from the set 

{a;i|fia,.. ,,xn\tna,yi\ui,... ,ym\um} 

by eliminating each component of the form z\z and by eliminating each component 
for which 'tji = Xj for some j . 

If (r;/ ; /3) is a rule then applying 9a to the rule has the same effect as first 
applying 9 to r, yielding (r9\I-,(3), and then applying a to r9. 

Definition 8 If for a pair of literals L and M a substitution 9 exists, such that 
L9 = M9, then we say that L and M are unifiable and the substitution 9 is called 
a unifier. Let 6 and A be substitutions. We say that 9 is more general than A iff a 
substitution a such that 9a = A exists. 

Let L and M be two literals. A most general unifier of L and M (mgu(L,M)) < 
is a unifier which is more general than any other unifier. 

The concept of mgu has been introduced in much more general contexts, where 
terms may contain function symbols. There are different algorithms for determining 
mgu ([P], [U]). As now we deal with function-free /DATALOG, therefore it is 
practical to give a simple algorithm, which generates a mgu for each pair of literals 
L and M if they are unifiable, or tells if they are not. 

Let L — p(ti,... ,tn) and M = p'(t[,..., t'm) be two literals. The function 
mgu(L, M) can be generated in the following way: 

t otherwise. 
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Algorithm 3 

Function mgu(L, M) 
if p ^ p' or n^m then L and M are not unifiable 
else 

9 :=e 
k := 1 
unifiable := true 
while k <n and unifiable do 

if ue ± t\e 
then if t\9 is a variable 

then 9 := 0 (^0^0 } 
else if tiO is a variable 

then 0 := 9{ti9\t'i9} 
else unifiable := false endif 

endif 
endif 
k~k+ 1 

endwhile 
if unifiable then mgu(L, M) = 9 else L and M are not unifiable 

endif 
endfunction 

From the algorithm one can see, that mgu(L,M) ^ rngu(M,L). Because of 
this asymmetry we have to be very careful during the top-down evaluation. 

We also need the concept of projection and join of substitutions. 

Definition 9 Let 8 = {a;i |ii , . . . , xn\tn} be substitution and let H = {x^,..., xjk } 
be a set. The projection of 8 to H is the substitution 9h = {x^ \ti1,..., Xik\tik}. 

Definition 10 Let 9 = {xi\ti,... ,xn\tn} and a = {y\\u\,... ,yn\un} be substitu-
tions. Let us suppose that for each pair Xi\ti, yj\uj for which xi = y3 is true, i» = Uj 
also comes true. Then the join of 9 and a is the set 9 <8> a = {a:i|ii,... ,xn\tn, 
yi\ui,... ,ym\um}, from which the repeated components are omitted. 

If for any pair Xi\ti,yj\uj,Xi = yj is true, but tn ^ u } . then the join of 9 and a 
is not defined. 

From this definition one can see, that the join is a partial operation. If we want 
to apply the join and the composition together, the concept of partial composition 
has to be defined. 

Definition 11 The partial composition of substitutions 9 and a is 9a, if both of 
them are defined and is not defined if any of substitutions is not defined. 

First we deal with the evaluation of negtion-free /DATALOG programs. We 
will search the solution with the aid of evaluation graph. This is a special AND/OR 
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tree, a special hyper-graph. Every odd edge is a n-order hyper-edge with the set-
node of n elements, and every even edge is an ordinary edge with one node. More 
precisely: 

An evaluation hypergraph is a tree, whose root is the goal, the leaves are the 
symbols "good" and "bad", and the nodes are defined recursively. 

Let the level of the root be 0. On every even level of the graph there are sub-
goals, that is suitably unified heads, on every odd level there are bodies of rules. 

Let Q be a node of level k = 2i, and let us suppose, that there are m rules in 
the form 

R RI,..., R*N; I) P 

whose heads are unifiable with Q. Then this node has m children, and these children 
are in the form 

R\0,..., RN6 

where 0 = mgu(Q,R),if n > 0; if n = 0, then the child is the symbol "good". If 
there are not any unifiable rule, then the child is the symbol "bad". 

We have to pay attention to rename the variables, namely it is important, 
that the variables in the body of a unified rule let be different from the former 
unifications. To solve this problem, we will identify these variables by subscribing 
them with the level of the evaluation graph. 

Let us attach labels to the edges of the form Q —> R\6,..., Rn6 ! Let the edge's 
label be the triplet (0;I/3). 

Let the rule-body of the form Qi,.. .,Qn be a node of level k = 2i + 1! Then 
there is an n-order hyper-edge to the nodes Qi,..., Qn• The hyper-edge has no 
label. 

We can get an answer to the query from the labels of evaluating graph. 
The path ending in the symbol "bad" doesn't give solution. Let us omit these 

paths! In other words, let us omit all of the edges and nodes which lead to this 
symbol independently from the fact, that these nodes are connected to each other 
by hyper-edges or ordinary edges. (If there is a path from one node of a hyper-
edge to the symbol "bad", all of the nodes belonging to this hyper-edge and their 
descendants are cancelled.) The given graph is called searching graph. 

A solution can be achieved along the path ending in the symbol "good" in the 
searching graph. The union of these solutions is the answer to the given query. The 
level of the atoms in the answer can be computed with the aid of the uncertainty-
level function. 

Definition 12 The function 

f(I,a,0) =min( { 7 |/ (a , 7 ) > / ? } ) 

is called uncertainty-level function. 

In the case of the studied implication operators / ( / , a, ¡3) is the following: 

/ ( A , a,/?) = min(a,/3) 
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f(I2,a,0) = max(0, a +/3 - 1) 

f(I3,a,0) = a-0 

,,T „ /0 a + 0 < 1 

/ ( / 5 > a, /3) = max(0,1 + (/3 - l ) / o ) , a ± 0 

f(I6,a,0)=a. 

Let us determine the substitution 6 along the hyper-path leading to the symbol 
"good" in the following way: (As a path contains hyper-edges, therefore the path 
may end in more leaves.) 

For each hyper-node let us construct the join of the substitutions of the body's 
atoms. Let us order this joins to the nodes of even levels (that is to the nodes of 
the heads). Then let us construct the partial composition of these substitutions. 

On answer to the query 
(Q,<*) 

is: 
(Q0, Otgoai), 

where agoai can be computed recursively with the aid of uncertainty-level function 
f ( I , a , 0 ) in the following way: 

Starting at the leaves, we order to them the value a = 1, then we go backward 
to the root. If the uncertainty level of a node on the odd level of the graph is a, 
let the uncertainty level of the parent node be a = f(I,a,0), where / : (3 are the 
values in the label of the edge. If the uncertainty level of the children of a node on 
the odd level of the graph is ai,..., ak, then let the uncertainty level of the node 
be a = min(ai , . . . , ak)- The uncertainty level of the root is agoai. 

Example 1 Let us see next rules: 

p(a) Ji;/?i 

p(b) ; /2; 

r(c) < - ; J 3 ; / 3 3 

q(x,y) *- p(x),r(y)]I2-, fa 

q{x,y) <r- q{y,x);I3,05 

s(x) q(x,y);I3\.06 

Let fa = 0.8,02 = O.7,03 = 0.6,04 = 0.7, ft = 0.8, & = 0.9 
We want to determine q{x,y). 
According to the following AND/OR graph,the solution is: 
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{(ç(a,c),0.3), (q(b,c), 0.3), (q(c,a), 0.24), ; (q(c, b), 0.24)} 
q(x,y) 

£,12,0.7 

p(x),r(y) 

p(x) r(y) 

x | a , 1 1 , 0 . 7 

good good good 

q(a, c), 0.3; q(b, c), 0.3 

13,0.8 

q{y,x) 

y|c,I3,0.6 x|y,y|x 12,0.7 

p(y),r( x) 

y|a,Il,0.8 x|c,I3,0.6 

good good good 

q(c,a), 0.24; q(c,b), 0.24; 

It can be seen, that in the case of finite evaluation graph the bottom-up and 
the top-down strategy give the same result. More exactly: 

Theorem 1 For a given goal and in the case of finite evaluation graph, the top-
down evaluation gives the same result as the fixpont query. 

Proof: We prove the equivalence of the two evaluations by induction on the depth 
of the evaluation graph. 

Let us suppose that the depth of evaluation graph is one, that is all of the 
children of the root are the symbols "good" or "bad". This can occur only in the 
case if no rule's head can be unificated with the goal, or only facts can be unificated 
with that. In the first case, there is no answer to the query either in bottom-up, 
or top-down evaluations. In the second case, according to both of the evaluations, 
the answer is the same. 

Let us suppose, that the theorem is true for all evaluating graphs, containing 
paths with length at least n. 

Let us consider the evaluating graph, the maximum path-length of which is 
n+ 1. 

Let us examine the sub-goals on the second level of the graph. The depth of the 
evaluation graph of these sub-goals is at least n—1, that is the induction assumption 
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is true. In bottom-up manner the goal can be reached only from these sub-goals. 
Going up to the first level in bottom-up manner along the hyper-edges, we get the 
bodies of the rules and the uncertainty level, from which we get the wanted answer. 
Applying the suitable substitution and computing the uncertainty factor, we get 
the same answer as in top-down manner. 

Thus according to the induction hypothesis, the statement is true for all finite 
evaluation graphs. • 

We give an algorithm to evaluate the graph. This algorithm provides the answer 
in the case of a given program and a given goal. 

The algorithm consists of two procedures calling each other, one of these pro-
cedures evaluating a goal or a sub-goal, the other evaluating a rule-body. 

The "goaLevalutaion" procedure determines all of the unified bodies in the 
case of unificable rules, and evaluating these bodies gives the answer to the goal. 
The "rule-evaluation" procedure evaluating the sub-goals of the body gives the 
substitution belonging to the body and the uncertainty level of the body. 

The order of the unificable rules in the "goal-evaluation", and that of the sub-
goals in the "rule_evaluation" are determined with the aid of a selection function. 
The special symbols ("good", "bad") are not in the set of évaluable sub-goals, 
because they are not évaluable. (In the case of "bad" there is no a unificable rule, 
in the case of "good" we get an empty node after unifying, so we can determine 
the answer immediately.) 

It is practical to solve the join of the substitutions in top-down manner, that is 
not to consider the sub-goals as independent evaluations, but to narrow the size of 
the graph by a "sideways information passing". This means, that the substitution 
getting by evaluation of a sub-goal can be applied immediately to the other members 
of the body, so we can reduce the number of examinable paths. 

During the evaluation of a sub-goal, it is possible to substitute such variables 
which don't appear among the variables of the sub-goal, therefore it is enough to 
consider only the projection of the substitution to the variables of the sub-goal. 

If it is necessary, the variables can be renamed with the aid of the set of 
substituting-terms. The set of substituting-terms of substitution 
9 = {x i|i i , . . . , x„|tn} is the set { ¿ i , . . . , i „ } . 

Algorithm 4 

Evaluation: 
begin 

solution := 0 
goalanswer := 0 
goal-evaluation (goal, goalanswer) 
while not-empty (goalanswer) do 

(9, agoal) := element (goalanswer) 
goalanswer := goalanswer —{(0, agoal)} 
solution := solution U{( goal's-atom 9, agoal ) } 

endwhile 
end 
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Procedure goal-evaluation (goal, goalanswer) 
goal-variables := { the set of the variables of the goal } 
R :— {(r; I; [i)\ rule's-head (r) is unificable with the goal } 
if R = 0 then return 
while not-empty (R) do 

(r;/; /3) := rule-selection (R) 
R:=R-{(r;J;/3)} 
body rule's.body (r) 
for all variable € r do 

if variable 6 substituting-terms (6) 
then variable := newname (variable) 

endfor 
9 :— mgu(goal's-atom, rule'sJiead (r)) 
body := body 9 
abody := 1 
8 body := e 
if body = 0 then goalanswer := goalanswer U{#, / ( / , abody, /3))} 

else rule-evaluation (body, «body, 0body, goalanswer, 
goal-variables, / , /3) 

endif 
endwhile 

endprocedure 

Procedure rule-evaluation (body, abody, flbody, goalanswer, goal-variables, I, fi) 
atom := atom-selection (body) 
newbody := body - { atom } 
answer := 0 
goal-evaluation (atom, answer) 
if answer = 0 then return 
while not-empty (answer) do 

(9, aatom) := element (answer) 
answer := answer —{(0,aatom )} 
0body := 0body0 
abody := min ( abody, aatom) 
if newbody 0 then 

newbody := newbody 9 
rule-evaluation (newbody, abody, #body, goalanswer, 

goal-variables, I, /3) 
endif 
if newbody = 0 then 

9 := projection (0body, goal-variables) 
goalanswer := goalanswer U{(0 , / ( / ,abody, /3))} 

endif 
endwhile 

endprocedure 
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Note: The order of the unificable rules and sub-goals is unimportant, but it has 
an effect on the efficiency of the algorithm. 

The uncertainty level of the goal (Q\a) is either constant or variable. If it is 
variable, this variable gets value during the evaluation. If a is a constant, then the 
uncertainty level received during the execution of the algorithm is a solution only in 
that case, if this level is greater then a. In this case, however, it is unnecessary to 
consider all the rules of the program. It is enough to take those, whose uncertainty 
factors are greater then a. Thus, the size of the evaluation graph can be reduced. 

As the above example shows, the top-down evaluation may not terminate. The 
reason is the evaluation of recursive atoms, because the evaluation of nonrecursive 
atoms terminates in finite steps. (The number of steps is 2t + 1, where t is the 
longest path leading to the atom in the evaluating graph.) 

If we order a depth limit to each recursive atom, the procedure can be stopped. 
This limit can be determined in the following way: 

In a dependency graph let h be the maximum length of the loops containing the 
predicate of the atom, and let t be the maximum length of loop-free paths leading 
to this predicate. 

Let us enter the concept of recursion distance. This is the number of steps 
in which we get the fixpoint respecting this atom in bottom-up evaluation. The 
recursion distance depends on the number of constant in the program and the 
"content" of the predicate. 

For example in the case of the program 

u(x, y) e(x, z), u(z, y)-1; fix 

u{x,y) e{x,y)-r,02 

where e is a fact and c is the number of constant in the program, the recursion 
distance of atom u(x,y) is c — 1. 

Let us denote the recursion distance by r! Then the depth limit is 
k = 2h(r - 1) + 2t + 1. 

Proposition 4 Let us order the previously defined depth limit to each atom of 
program P\ Then the top-down evaluation terminates and gives all the solutions, 
which satisfies the goal. 

Proof : As the goal-evaluation is driven back to the evaluation of the sub-goals, 
therefore it is enough to show the truth of the proposition for one recursive atom. 

If there is no loop-free path to a rule's head-predicate in the dependency graph, 
the rule can not be evaluated. Thus, it is enough to look at the atoms to which 
there are loop-free paths. 

If the length of a path leading to the predicate in the dependency graph is i, 
the length of this path in the evaluating graph is 2f, because the evaluation graph 
is built from a series of two steps: determining the rule-bodies, and dividing them 
into sub-goals. There are additional edges leading to the ending symbols. 

Along the 21 step-long path we get from the sub-goal to an atom of a fact-
predicate, which can be evaluated. 
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The given atom - including other possible variables - occurs again in the evalu-
ation graph in 2h steps deeper. The new evaluation is necessary only, if it provides 
a new solution. This possibility however can not occur more than the value of the 
recursion distance. As in the case of the first recurrence, we are on the second 
recursion level, so it is enough to allow the recurrence in r — 1 times. 

As we don't get any new solution deeper then the given limit, we can leave these 
branches. 

Ordering the suitable depth limit to each atom, the algorithm terminates, and 
gives all the solutions which satisfies the goal. • 

Note: The recursion distance is not always as simple as in the example above, but 
it can not be greater then cn , where c is the number of constants, n is the number 
of atoms in the program. 

9 Top-down Evaluation in the Case of Stratified 
/DATALOG 

It is easy to apply the top-down evaluation for stratified /DATALOG. In the case 
of stratified /DATALOG, the head-predicate of a rule is at least as high stratum 
as the predicates of the body. In other words, during the top-down evaluation 
we approach from the higher strata to the lower ones, that is in the evaluation 
graph the stratum of a parent node is not lower than the stratum of the children. 
Therefore when we compute the uncertainty level, we are starting at the lowest 
stratum. This observation can be used to handle the negated predicates. If a sub-
goal is negated, let us indicate this sub-goal, and pay attention to this marking 
during the computation of the uncertainty level. If the atom is marked and the 
uncertainty level computed up to this point is a, let us continue the computation 
with value 1 — a. 

10 Conclusion 
In this article we have dealt with the evaluation of fuzzy DATALOG, given the 
algorithms of bottom-up and top-down evaluation, and showed the equivalence of 
two evaluations. 
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