
Acta Cybernetica 13 (1997) 103-140.

Framework for Generating Object-Oriented
Databases from Conceptual Specifications

György Kovács * Patrick van Bőmmel t

Abstract
When designing underlying databases of information systems, data are

first modelled on conceptual level, then the obtained conceptual data models
are transformed to database schemas. The focus of this paper is the trans-
formation of conceptual models into database systems with object-oriented
features. The transformation is captured within the framework of a two level
architecture. Conceptual models axe first mapped to abstract intermediate
specifications, which are then transformed to database schemas in a given
target environment. This enables us to treat different target systems, such as
object-oriented and object-relational systems including the standards ODMG
and SQL3, in a uniform way. To express intermediate representations of con-
ceptual models we use F-logic, a logic-based abstract specification language
for object-oriented systems. We focus on the first step of the overall trans-
formation, i.e. the mapping of conceptual models into F-logic. Several trans-
formation alternatives are discussed, and a corresponding graphical notation
for specifying transformation alternatives is provided.

Keywords: database design, data transformation, conceptual data mod-
els, 0 0 models

1 Introduction
It has been generally agreed on that conceptual data modelling is very important
when building information systems. This means that data must be modelled first
on conceptual level, and then the obtained conceptual model (conceptual schema)
must be translated to the external and internal level, according to the three level
architecture for information systems modelling ([15]). By doing so, the issues of
correctness and efficiency are well-separated, which is quite desirable. In this paper
we deal with the transformation of conceptual data models to the internal level.

'Department of Information Systems, Eötvös Loránd University, Múzeum krt. 6-8., H-1088
Budapest, Hungary, email: gykovacs@ullman.inf.elte.hu. Supported by the Hungarian Scientific
Research Fund (O T K A W-015176) and Nuffic.

^Department of Information Systems, University of Nijmegen, Toernooiveld 1, NL-6525 ED
Nijmegeni The Netherlands, email:pvb@cs.kun.nl

103

mailto:gykovacs@ullman.inf.elte.hu
mailto:pvb@cs.kun.nl

104 György Kovács, Patrick van Bommel

Internal (implementation-oriented) models are considered to be database models
that are supported by database management systems (DBMS) running on comput-
ers. It is also assumed (required) that some database language is provided for such
a model. The well-known relational model ([11], [36]) is the underlying database
model of today's RDBMSs and the related database language is typically SQL (see
e.g. [13]). However, the relational technology is not always appropriate for some
real-life applications, e.g. multimedia or geographical applications, where usually
highly structured, complex objects must be stored and manipulated. To overcome
the limitations of the relational model, advanced database models have been devel-
oped, such as the nested relational model (see e.g. [30], [1], [5]) along with proposals
for nested SQL extensions (e.g. [27], [28], [23]) as well as database models with
object-oriented features. Database systems with object facilities serve as candidates
for next generation database systems. Although a number of such models and query
languages have been proposed (see e.g. [2], [32], [4], [31], [19]), there is no object-
oriented database model and language yet, that has been commonly accepted. This
fact is known and inspired people attempting to define the requirements for next
generation DBMSs ([3], [34], [20], [12]). Basically, two main approaches, the pure
object-oriented (0 0) and the object-relational (OR), compete with each other and
seem to co-exist in the future. The same is reflected in the standardisation efforts
resulting in the ODMG-93 ([9]) de facto standard for truly object database systems
and SQL3 ([24]) for object-relational systems, though some compatibility between
them is also aimed.

For data modelling a number of semantic modelling techniques have been devel-
oped, such as (extended) ER ([10], [14]), NIAM ([26]) and PSM ([18], [16]). Seman-
tic modelling has been used in practice for long and has proved to be a powerful
technique. The mapping of resulting conceptual schemas into relational environ-
ments is well-defined (see e.g. [35], [26]) and this process is supported by many
CASE-tools. Also, a transformation mechanism to nested relational schemas has
been established ([8], [7]). Although there exist OO data modelling techniques, e.g.
OMT ([29]), for designig object-oriented databases, the use of traditional semantic
modelling will very likely not disappear from system design, but will remain as a
powerful alternative, especially in data intensive domains. Indeed, in [33], where
semantic modelling (using extended ER) and OO data modelling are compared, it is
concluded that even when OO databases are designed the recommended strategy is:
(1) creating an EER (or e.g. NIAM) schema; (2) map it to an OO schema; and (3)
augment OO schema with behavioral constructs. As a consequence, a mechanism
for transforming semantic models into modern database systems is needed.

In this paper we deal with the problem of how to transform conceptual data
models into somehow object-oriented database environments. Although valuable
previous work has been done on this topic (e.g. [25], [21], [6]), a general unify-
ing mechanism is still missing, which inspired our work. In general, a conceptual
data model (conceptual schema) consists of an information structure and a set of
integrity constraints, both of which require translation. In addition to the results
of existing proposals, advanced modelling constructs (set types, list types, general-
isation) are to be considered as part of the structure translation process. Even for

Framework for Generating Object-Oriented Databases 105

simple constructs additional tranformation alternatives can be recognized. More-
over, a more comprehensive treatment of constraints is necessary in general.

In our approach (similarly to that of [6]) the transformation is captured within
the framework of a two level architecture. Conceptual schemas are first trans-
formed to abstract intermediate specifications (design step). Then the obtained in-
termediate specifications are translated into the final implementation environment
(implementation step). This means that in case of different target environments
the same design step can be applied and only the implementation step will differ.
That is, choosing a new target system requires only the implementation step to be
adapted. Thus, as the main benefit of this approach, we gain general applicability.
The common design decisions can be factored out in the first step. Here we focus
on the design step, the second step is discussed only in very general terms.

For expressing intermediate representations F-logic ([19]), a logic-based abstract
specification language for object-oriented systems, is used (cf. [6]). Conceptual
models are defined in terms of PSM (Predicator Set Model, [18], [16]), a fully
formalized extension of NIAM. However, our approach is easily applicable to other
conceptual modelling techniques (e.g. ER) due to the usage of similar constructs.

In the present paper we set up the framework for a general transformation
mechanism consisting of two steps as discussed above. It serves as a basis towards
working out a comprehensive method for designing modern (0 0 , O R) databases
based on conceptual (semantic) data modelling. We focus on structural aspects
and outline a number of alternatives for the translation of information structures
into 0 0 systems. A corresponding graphical notation is introduced for illustration
purposes. Since the mapping of structures is influenced by simple uniqueness (key)
constraints, such constraints are also covered. However, the transformation of
complex conceptual constraints in general is beyond the scope of the present paper,
though it belongs to the whole picture and is seen as an essential part of the overall
transformation, which has to be worked out.

The rest of the paper is organized as follows. In section 2 our approach is
presented. In section 3 the conceptual data modelling technique PSM is summarized
to an extent needed for the purpose of the paper. Section 4 gives an overview of
F-logic, that is used for expressing intermediate specifications. Alternatives for the
transformation of conceptual information structures into F-logic (the design step)
are discussed in section 5. In section 6 the transformation of an example PSM
schema into F-logic is worked out in detail. The implementation step is discussed
in general terms in section 7, where also an example schema definition in ODMG-93
is provided. Section 8 contains the conclusions and topics for further work.

2 Approach

The expected end product of the transformation of a conceptual data model is some-
thing that can be run on a computer with a given target environment (DBMS) for
creating a database. That is, at the end a sequence of statements in the database
language of the assumed DBMS has to be generated to create the corresponding

106 György Kovács, Patrick van Bommel

database schema. As it was already mentioned, in our approach the transformation
is captured in the framework of a two level architecture, i.e. it is performed in two
steps as shown in figure 1. Conceptual schemas are first transformed to abstract
intermediate specifications (design step). Then the obtained intermediate specifi-
cations are translated into the final implementation environment (implementation
step). The task of the second step is the generation of statements in a concrete
database language. In [6] a similar approach is taken.

Conceptual

data model

design
step

Intermediate
specification

implementation
step

D B Language

statements

Figure 1: Two level architecture for transformation

There are several advantages of a two level architecture approach, e.g.:

• Provided that the intermediate specification, language is general enough to
cover all the final target models that are intended to be considered, the design
step, which is the more complex and essential part of the whole transforma-
tion, becomes the same single task for different target environments and is
independent of the choice of the actual target system. The different system
specific details must be dealt with in the implementation step only.

• Provided that conceptual models and intermediate specifications have under-
lying precise formalism, the transformation from the conceptual to the in-
termediate level can be given algorithmically in a formal framework. This is
very fundamental in order to have an automated transformation mechanism.

• Since a given conceptual model may have a number of correct representations
on the internal level and possibly the best candidate should be chosen, op-
timization is important. In a two level transformation optimization can be
incorporated at both levels.

We have already made it clear that to express data models on the conceptual
level, we will use the Predicator Set Model ([18], [16]), an extension of NIAM ([26]).
PSM is a fully formalized expressive modelling technique. It is briefly summarized
in section 3. As potential final target environments, truly object-oriented as well as
object-relational database systems are considered including the related standards
ODMG and SQL3, respectively. Fixing an appropriate specification language for
specifying intermediate models is a basic task. When doing so, the following re-
quirements are fundamental to be taken into account: a

• The chosen specification language should be implementation-oriented, i.e. it
should be able to deal with (important) concepts of implementation environ-
ments. At the same time it should provide a high level of abstraction to make
it possible for us not to deal with the irrelevant aspects in the design step.

Framework for Generating Object-Oriented Databases 107

• It must be general enough and support object-oriented concepts to cover
object-relational and object-oriented target systems.

• It must be provided with sufficient support for constraint specifications. On
the one hand, because the transformation of structures often imply integrity
constraints in the target database to be specified. On the other hand, because
the translation of conceptual integrity constraints typically (but not always)
results in database constraints. Although the general treatment of constraints
and their translation is outside the scope of our present paper, this is a very
essential perspectival requirement.

• It must have formal syntax and semantics. This makes it possible to define
our transformation in a formal framework.

To sum it up, we need an abstract and formal database model with object-
oriented facilities, that also allows to specify integrity constraints. After investigat-
ing a number of proposals (e.g. [2], [32], [31], [19]) we have concluded that F-logic
([19]) is the one that fulfils our needs the best. Models of other proposals are not
general enough and/or are not provided with precise formal syntax and semantics
and/or do not deal with constraints at all. Consequently, we use F-logic as an
abstract intermediate specification language. In section 4 an overview of F-logic
is given based on [19], where it was presented. We note that F-logic has a pure
object-oriented view. However, it can serve as an abstract intermediate specifica-
tion language in case of object-relational database sytems as well. The picture of
figure 1 can now be refined to show our approach more concretely, which is depicted
in figure 2.

Figure 2: The concrete architecture

3 Conceptual data models
In this section we give a brief overview of the Predicator Set Model (PSM), that
is used for expressing conceptual data models, without going into formal details
(for details see [18] or [16]). A conceptual data model E = (I ,C) consists of
an information structure 2 and a set of integrity constraints C. An information
structure I is a structure consisting of the following basic components:

108 György Kovács, Patrick van Bommel

1. A set V of predicators. A predicator is intended to specify the role played by
an object type in a fact type (see below).

2. A set O of object types. Object types are classified as follows:

(a) Entity types (£) and label types (£). The difference is that labels can, in
contrast with entities, be represented (reproduced), on a communication
medium. V is a set of concrete domains (e.g. string, natno) associated
with label types via the function Dom : £ —> V.

(b) Fact types {T). The set T is a partition of the set of predicators V. The
fact type that corresponds with a predicator is obtained by the auxiliary
function Fact : V —> T.

(c) Power types (Q) and sequence types (S). Power types are also called set
types. The intention of sequence types is to model list structures.

3. A function Base : V —> O specifying the object type associated to a predica-
tor.

4. A function Elt : Q u S - ^ O specifying the element type of-.power types and
sequence types.

5. A binary relation Spec on. object types, capturing.specialisation, a S p e c b is
interpreted'as "a is a subtype (specialisation) of b", or "b is a supertype of
a"". Specialisation of label types is prohibited, and only entity types can act
as subtypes (Spec C £ x 0\C). Specialisation networks are acyclic.

.6. A binary relation Gen on object types, capturing generalisation, a Gen b is
interpreted as "a is a generalisation of b", or "b is a specifier of a". Gener-
alisation of label types is prohibited, and only entity types can act as gen-
eralised object types (Gen C E x 0\£) . Generalisation networks are acyclic.
Furthemore, to avoid conflicting situations, generalised object types cannot
be subtypes. The difference between generalisation and specialisation lies in
their population (see below).

The connection between (abstract) entity types and (concrete) label types is
established by so-called bridge types. A fact type / is called a bridge type only if
it has the form / = {p, q} with Base (p) e C and Base(i?) £ £. A fact type is called
an objectified fact type if it is the base object type of some predicator.

Figure 3 shows an example information structure. In this figure we have a
number of entity types, e.g. Person and Project, represented by circles. Label
types, also represented by circles, appear in parentheses, examples are Date and
TeLnr. By convention, if a label type is an identifier for an entity type, then the
label type is represented within the same circle, see e.g. entity type Person and
its identifying label type PJd. Fact types consist of predicators represented by
boxes connected with circles for their base object types. For example, fact type
Employment is a binary fact type consisting of two predicators, employedjby and
employs.

Framework for Generating Object-Oriented Databases 109

Figure 3: Information structure with uniqueness constraints

Figure 3 also contains representatives of advanced modelling constructs.
We have power type Pr.group with element type Project and sequence type
Daily -activities with element type Activity. Power types and sequence types are
represented by circles and boxes, respectively, around their element type.. Entity
types Manager and Coworker are specialised object types (subtypes) represented
by solid arrows from subtypes to supertypes. Their common supertype is entity
type Person. Entity type Equipment is a generalised object type with entity
types Car and PC as its specifiers. Generalisations are represented by dashed ar-
rows from specifiers to generalised types. As distinguished fact types, for bridge
types many examples can be seen, e.g. {hasXJname,is-Cname-of } connecting
entity type Company with label type Csiame. As an example of objectified fact
types we have fact type Coworkership.

Populations and constraints

An information structure is used as a frame for some part of the (real or fictive)
world, the so-called Universe of Discourse (UoD). A state of the UoD corresponds
with a so-called instantiation or population of the information structure, and vice
versa. A population Popz of an information structure J is a value assignment to the
object types in O, conforming to the structure as prescribed in I. The population

110 György Kovács, Patrick van Bommel

of a label type comes from the corresponding concrete domain (e.g. string, natural
number), while the population of an entity type comes from an abstract domain
containing unstructured values.

These domains are part of the universe of instances fi, which is inductively de-
fined as follows. Firstly, all possible atomic instances are contained in fi. Secondly,
ft contains all possible composed instances such as (a) mappings from predicators to
instances, intended for the population of fact types, (b) sets of instances, intended
for the population of power types, (c) sequences of instances, intended for the pop-
ulation of sequence types. The basic difference between specialisation (subtyping)
and generalisation is that a subtype gets the population (and identification) from
its supertype using subtype defining rules, while the population of a generalised
object type is the union of the population of its specifiers. For a formal treatment
of populations we refer to [17].

Forbidden populations are excluded by so-called (static) integrity constraints.
Uniqueness constraints require uniqueness of values in some set of predicators.
Graphically such uniquness constraints are represented by double-headed arrows
next to the predicators they belong to. For example, in figure 3 we have
unique(employed-by) expressing that a person may belong to one department only.
There is a variety of other constraints, such as total role, occurrence frequency, set,
enumeration, power type, sequence type, and specialization constraints. These are
not relevant for the purpose of the present paper.

4 F-logic
To express intermediate specifications we use F-logic, an abstract logic-based lan-
guage for 0 0 systems. In this section we shortly summarize the parts relevant
for us. For a comprehensive description of F-logic we refer to [19], where it was
presented. In [22] an overview of F-logic from the perspective of our transformation
is given.

Basic elements in F-logic are id-terms, terms built from function symbols and
variables as usual. They denote objects, classes and methods. Ground id-terms
are variable-free id-terms playing the role of logical object identifiers (oid). By
means of id-terms F-molecules can be constructed, and from F-molecules more
complex formulas can be built. F-logic is provided with a model-theoretic semantics
defined by means of semantic structures called F-structures. F-structures and the
satisfaction of formulas are defined in such a way that the commonly known 0 0
features are incorporated. Along with the description of its syntax, below we give
an informal summary of the semantics of F-logic, for details see [19]. ' F-molecules
are defined as follows (C, D, 0, M, R, Ai-s, Ri-s, ATj-s and RTi-s below are
id-terms, k, I > 0).

Is-a assertions of the form C :: D and 0 : C stating that class C is a subclass of
class D and object 0 is a member of class C, respectively. Each class is subclass
and superclass of itself. The subclass relation is transitive, and subclass hierarchies
are acyclic. Objects belonging to a class also belong to any superclass of that class.

Framework for Generating Object-Oriented Databases 111

Structures (signature expressions, see below) are inherited from superclasses.
Object mulecules of the form 0[a '-separated list of method expressions]. A

method expression can be a scalar data expression M @ Ai,..., A/. —> R, a set-
valued data expression M @ ..., Ak —» {-Ri, -•-, Ri}, a scalar signature ex-
pression M @ ATi,..., ATk =>• (RTi,..., RTi), or a set-valued, signature expression
M @ AT\,..., ATk {RTi, ...,RTi). Here O denotes an object or a class. M cor-
responds to a method. In data expressions it denotes method invocation, while
in signature expressions it denotes the signature of some method. The syntactic
context of M indicates that the corresponding method is a scalar function (—>,=>)
or a set-valued function (— I n scalar data expressions R represents the
output of the method M when invoked on object 0 with arguments Ai, . . . , Ak- In
set-valued data expressions Ri-s represent elements of the resulting set. In signa-
ture expressions RT^~s represent the types (classes) of the result (scalar case) or the
types of the elements of the result (set-valued case) of the method M when invoked
on an object of class O with arguments of types ATi, •••, ATk- The output (or the
elements of the output, resp.) of the method must belong to all the RTi classes.
When only one result type is specified the parentheses may be omitted.

From F-molecules complex formulas (F-formulae) can be built by means of
logical connectives (A,V,-i) and quantifiers (V, 3) with their usual interpretation.
The implication connective " -f— " can also be used as usual, i.e. ip <— i)> is a
shorthand for ip V -11p.

F-logic databases (F-programs), well-typing

An F-logic database, also called an F-program, is basically an arbitrary set of F-
formulae. Since this definition is too general, restrictions on the form of the allowed
formulas are applied. An F-program P consists of a set of rules, statements of the
form head <— body, where head is an F-molecule and body is a conjunction of liter-
als (F-molecules or negated F-molecules). The semantics of F-programs is given by
Herbrand interpretation, more concretely by canonic Herbrand models (H-models).
An F-program can be structured in such a way that its schema (declaration) part
and data (object base) part are shown separately.

Example 4.1
Let's suppose that we have a simple database about persons, employees and

projects. Such a database can be defined by the following F-program:

Schema (declarations)
employee:: per son
person [no,me string-,

age =>• integer]
employee [salary integer]

works-for =£> project]
project [title => string;

112 György Kovács, Patrick van Bommel

budget integer;
is-involved @ emplayee => boolean]

Object base
smith: person
jane: employee
natlang: project
dbopt: project
smith [name —» " John Smith";

age —» 38]
jane [name —» " Eva .Jane";

age 22;

salary —> 5100;
works-for —» {dbopt, natlang},]

•natlang [title —> "Natural Language Processing";
budgets 50000]

dbopt [title —> "Database Optimization";
budget 65000;
is .involved @ jane —• true}

Note that class membership relations concerning simple objects, e.g.
38 : integer, are omitted in the ex,ample. •

In the schema part of example 4.1 we defined the classes person, employee and
project. The is-a assertion states that employee is a subclass of person. The object
molecules in the schema contain only signature expressions specifying argument and
result types of methods and attributes. For example, works-for is a set-valued
attribute in class employee returning a set of project objects for an employee.
is-involved represents a scalar method with one argument of type employee. When
it is applied to a project with a given employee it returns true or false.

The data part, of example 4.1 describes the actual content of the data.ba.se.
Objects are identified by logical object identifiers. Is-a assertions represent, class
memberships. For instance, the example shows that, Eva Jane identified by jane is
an employee. For individual objects the values of attributes, or more generally the
results of method invocations with some arguments, are given by data expressions
, e.g. name—t"Eva .Jane" for employee jane, and isJ,nvolved@smith—*true for
project dbopt.

The connection between data expressions and signature expressions is not cap-
tured by the defintion of F-structures. This link is provided at, a met,a level by means
of well-typing conditions. Informally, an F-program P is well-typed if canonic H-
models of P obey the type restrictions given by signature expressions occuring in
P. This means that (1) for any data expression on any object in P there exists a
covering signature expression (i.e. the method can be invoked on the object, with

Framework for Generating Object-Oriented Databases 113

the given arguments), and (2) the result of such a data expression is of type pre-
scribed by the covering signature expression. Note that the F-program of example
4.1 is well-typed.

Constraints

In database systems usually a set of integrity constraints is associated with a partic-
ular database to disallow invalid database states. F-logic itself does not define the
concept of integrity (semantic) constraints. In [6], however, it has been extended
for this purpose. We use the extension presented there. An integrity constraint, in
F-logic is an arbitrary F-formula. An F-program with constraints is a tuple (P, IC),
where P is an F-program and IC is a set of integrity constraints (F-formulae). As a
syntactic convention, integrity constraints are preceded by the symbol "!— The
semantics of an F-program with constraints (P,IC) is defined by some canonic
H-model of P that is also a model of IC. In order to be a well-typed F-program
with constraints (P,IC), P must be well-typed.

Example 4.2
Let's suppose that in the F-logic database of example J^.l project titles must
be unique. The corresponding F-program now is extended, to' become an F-
program with constraints containing the single constraint as follows:

!— XL = X2 <— Xi : project [title Y] A X2 • project. [title -4 V]

•

In the above example we used X\ -.project [title Y] as a shorthand for
X\ -.project, A Xi : [title->Y] (with X-2 analogously). This kind of shorthand is
often used in F-logic. The equality predicate = (defined in [19]) expresses that two
objects are identical.

In section 6.2 some macros (shorthands) will be introduced for specifying key,
mandatory and inverse constraints on F-logic level. Such constraints have to be
generated during the transformation of information structures in several situations.

Lists and sets

For the transformation of PSM sequence types we need an F-logic construct, that
is usually known as list. F-logic itself is not provided with list data types, but lists
can be modelled by defining a parametric family of classes, see [19] or [22]. We also
need to translate PSM power types. Although the concept of set-valued attributes
(methods) enable to manage sets, its applicability is limited. Defining attributes of
nested sets (sets of sets) is not easy and natural. In [22] we defined a parametric
family of classes for this purpose. From now on we assume that the aforementioned
parametric classes are defined in each F-program, and list,(t) and set(t), where t is
a ground id-term denoting a class, can be used in F-programs whenever needed.

114 György Kovács, Patrick van Bommel

5 From PSM to F-logic: the design step

5.1 Framework

In this section we outline the essence of our approach to the transformation of
conceptual models into F-logic (design step, see figure 2) by means of activity-
graphs with different, decomposition levels. States denoted by ellipses are input,
ancl/or output of activities denoted by rectangles.

Basically, since the final goal is database schema generation, we are interested
in schema (data structure + integrity constraints) transformation. However, the
semantics of conceptual structures, and more particularly,1 the constraints are de-
fined in terms of populations. This means that, we have to deal with population
transformation too. In fact, populations must be transformed anyway when our
approach is integrated in an executable transformation mechanism concerning also
operations and their transformation. Such an execution model is essential e.g. for
optimization.

PSM database

Figure 4: The design step

As depicted in figure 4, a PSM schema £ = {1,C.) together with a population
Popj (PSM database) is translated to an F-program with constraints (P , IC) . The
activity graph of this figure already shows a first, level decomposition to separate
the schema from the population and their transformations. The population is
represented in P (object base part), while the schema (structure 4- constraints)
is represented in P (declaration part) as well as in IC. For the transformation

Framework for Generating Object-Oriented Databases 115

of populations and constraints (part of the schema) the result of the structure
transformation is needed. That is the reason for the upward-directed arrows.

PSM schema

Constraints

Figure 5: Decomposition of schema transformation

To illustrate the transformation of schemas in more detail, the corresponding
part of the diagram of figure 4 is decomposed as depicted in figure 5. The in-
formation structure 1 becomes (the declaration) part of P on the one hand, and
some basic constraints (e.g. inverse constraints) are also generated. Figure 5 also
shows that the transformation of structures is influenced by uniqueness constraints.
Except simple uniqueness constraints (over single predicators), the conceptual con-
straints in C are translated to F-logic constraints in IC in general. The transforma-
tion of constraints takes both the conceptual structure and its internal counterpart
as its input. In the rest of section 5 the transformation of information structures
is discussed.

5.2 Some preliminary issues
When transforming information structures, for all possible constructs of PSM we
have to define their counterparts in F-logic. Basically, an information structure is
mapped to F-logic class definitions, i.e. a set of object molecules with signature
expressions only. For simplicity, we do not deal with assigning concrete names
to the obtained F-logic components. Instead, an abstract notational convention
is used, indicating the kind of an F-logic component and the components of the
information structure it resulted from. For example, a class is denoted by C.\,
where X contains the PSM component(s) to which the class corresponds.

116 György Kovács, Patrick van Bommel

In F-logic no difference is made between attributes and methods of classes.
An attribute is considered to be a method without arguments. This enables the
uniform treatment of (stored or derived) attributes and general methods. However,
in object-oriented database systems a clear distinction between them is often made.
This will be respected during our transformation, which is important also because,
due to the elimination of certain kinds of redundancy during information analysis, a
conceptual (PSM) schema represents data to be stored. From now on, by attributes
we mean stored attributes. The distinction between (stored) attributes and general
methods, however, is made only on syntactic (notational) level, thus preserving
their uniform treatment in F-logic. Attributes and methods will be denoted in the
form of At.trx and Metlix, respectively,

For certain kinds of PSM components the translation is quite straightforward,
but for others several alternatives are possible. The basic PSM components to be
transformed are: object types, predicators, specialisation and generalisation hierar-
chies. The notion of object types in PSM is very general, it covers a number of more
specific concepts, such as entity types, label types, fact types, set types, sequence
types. Below we -discuss the transformation of different PSM constructs separately.
Some (simple) solutions have counterparts presented in [6] and [21], where the
transformation is discussed in terms of ER and BRM schemas, respectively. Trans-
formation alternatives presented in the rest of this section is discussed by means of
abstract figures. Figure 6 shows how arrows in such figures are interpreted.

C x = Class resulting from PSM component(s) X .

O C = Object type O is represented in class C

CI C 2 = In class CI a scalar-valued attribute o f type C2 is defined

CI C2 = In class C1 a scalar- or set-valued attribute o f type C 2 is defined

: = Grouping indication

Figure 6: Graphical notation for specifying transformation alternatives

5.3 Entity types
By default, entity types are translated to F-logic classes. The corresponding class
defiiiitions are object molecules with signature expressions only. As an initial step,
an empty object molecule is defined for each entity type. The structure of the class
corresponding to an entity type depends on how the fact types in which the entity
type is involved are transformed.

Figure 7: Entity types are mapped to classes

Sometimes an entity type simply models values of a label type connected with

Framework for Generating Object-Oriented Databases 117

it (see e.g. entity type Duration in figure 3). In such cases the elimination of the
counterpart class of the entity type is reasonable. Then the corresponding class is
substituted with the concrete domain of the connected label type.

5.4 Label types and bridge types
A label type represents a set of simple values from a concrete domain. For simplicity,
we assume that each conrete domain has a counterpart class built-in F-logic. Since
the simple values represented by label types do not have independent existence and
may only occur as part of more complex objects, for a label type L, in contrast with
entity types, no separate F-logic class is created. It is mapped to the (assumed)
built-in F-logic class that corresponds to its concrete domain Dom(L).

A bridge type is a special binary fact type connecting a nou-label type with
a label type. Assuming that the involved non-label type is mapped to a class, a
bridge type is incorporated as an attribute in that class. If a uniqueness constraint
is specified on the predicator with the non-label type as its base, then the attribute
is scalar-valued. Otherwise, it is defined to be set-valued. Situations when our
assumption does not hold will be mentioned and treated places where they may
arise. The translation of bridge types and the related label types is illustrated in
figure 8.

5.5 Fact types and predicators
In this section we consider non-bridge fact types, when discussing the mapping of
fact types into F-logic. The transformation of fact types is not straightforward,
there are several possibilities how to transform them and their predicators. The
translation of a fact type has a strong effect "on thé' final F-logic counterparts of the
object types involved in the fact type via predicators. Alternatives are discussed
below.

5.5.1 Trivial mapping

The simplest, solution is generating a separate F-logic (relation) class for each fact
type. Then each predicator of a fact type results in a scalar-valued attribute in the
corresponding class. Figure 9 illustrates this trivial translation.

This transformation is valid only if the base object, type of each predicator in /
has a corresponding F-logic class. However, this is not, necessarily the case, e.g. if

Figure 8: Mapping of bridge types and label types

118 György Kovács. Patrick van BommeI

0 / -
I

-Cf-

Figure 9: Illustration of trivial mapping

a base object type is a power type. Such cases will be discussed and treated later
at the appropriate places.

Since the population of a fact type is a set of tuples, that are in turn total func-
tions, it has to be ensured that each attribute of a fact (relationship) object carries
some value. This can (has to) be forced by introducing appropriate constraints. On
the other hand, fact objects are value-based and are identified by the participating
objects. Therefore, a constraint has to be generated requiring that no two different
fact objects may correspond to the same combination of participating objects (see

Although the'trivial mapping is sufficient to store all data, in order to improve
query performance additional inverse attributes can be defined in any/all of the
classes that correspond to the participating object types. Then such an inverse
attribute stores references to relationship objects in which they participate (see
also [21]). The type of inverse attributes is influenced by uniqueness constraints.
Moreover, if inverse attributes are introduced, then also inverse constraints have to
be generated to guarantee integrity.

Introducing inverse attributes with appropriate inverse constraints is a general
option in the transformation. In principle, they can be generated in all alternatives
that will be discussed for the transformation of fact types. In the sequel we will
not explicitly mention the possibility again and again.

5.5.2 Incorporation of fact types

Fact types can be translated in such a way that they are incorporated in classes
obtained for their object types, e.g. classes for entity types (see also [21]). In
this case fact types are represented as reference attributes in such classes. More
precisely, those attributes correspond to predicators constituting fact types.

Binary fact types

First we consider binary fact types as subjects of incorporation. As shown infig-
ure 10, a binary fact type / can be incorporated in any/both of the two classes
corresponding to its two base object types. The actual kind of reference attributes
(scalar-valued or set-valued) is guided by uniqueness constraints. If / is incorpo-
rated in both classes, then an inverse constraint is needed as well.

Note that this way of transforming binary fact types looks very much like the

also [6]).

Framework for Generating Object-Oriented Databases 119

Ca CB
(C)

Figure 10: Incorporation of binary fact types

transformation of bridge types (see section 5.4), which is not surprising, since bridge
types are always incorporated in the classes for the non-label types involved.

Relational view of incorporation

For binary fact types the incorporation mechanism can be combined with the trivial
mapping as follows. A class is introduced for the fact type / similarly to the
case of trivial mapping. At the same time, however, one of the two base object,
types is chosen, around which the related objects are arranged, similarly to the
case of incorporation. Then the predicator with the "central" base object type
becomes a scalar-valued attribute in the class corresponding to the fact type. The
other predicator becomes either a set-valued or a scalar-valued attribute. This new
alternative is depicted in figure 11.

C A - Q — CB C A - Q *=- CB

(a) (b)

Figure 11: Relational incoporation of binary fact types

Note that if a uniqueness constraint is specified on the predicator with the " cen-
tral" base object type, then the result is indentical to that of the trivial mapping.
The combination of trivial mapping with incorporation can be viewed as a nest
operation performed on the result of the trivial mapping. The basic constraints
mentioned there are also needed here, but they have to be adapted according to

120 György Kovács, Patrick van Bommel

the different, structure.
We note that basically this alternative has relational nature. Since constructs

from object-orientation are involved as well (set-valued attributes) it fits in the
object-relational approach.

Fact types of higher degree

An n-ary fact, type / (n > 2) can be incorporated in a class corresponding to a
base object, type of a predicator in / , for which a uniqueness constraint is specified
(provided that each object type involved in / has a counterpart, class, for now if, is
assumed). The situation is depicted in firgure 12.

Figure 12: Incorporation of n-ary fact types

As opposed to the binary case, here the uniqueness constraint is required, be-
cause without, that the concrete relationships between objects cannot be stored
unambigously. The result of this transformation is that a class in which / is in-
corporated will have scalar-valued attributes for referencing related objects. The
basic constraints discussed for trivial mapping have to be defined conforming this
structure. If / is incorporated in more than one class, then inverse constraints are
needed as well.

For the transformation of binary fact types we considered the combination of
trivial mapping and incorporation. Since to incorporate fact types of higher de-
gree uniqueness constraints over single predicators are required, we would get back
exactly the trivial mapping when applying such a combination. Therefore, this
alternative is not considered at all.

Quasi-incorporation

Although our latest note is valid, for n-ary fact types, where n > 2, a, way to
combine incorporation with the relational view can be recognized. The mechanism
is slightly different from what we had for binary fact types. It, is shown in figure
13. Fact type / is represented in a class for one of its base object types as well
as in a subsidiary class denoted by C¡>. The class Cy\ l in which / is incorporated
has an attribute (scalar- or set-valued) for referencing objects of class C y . Those
objects represent combinations of other objects that are related to a given C/i,
object, via / . The attribute in Ga, is scalar-valued if uniqueness constraint, is on

Framework for Generating Object-Oriented Databases 121

the predieator with base Ai , otherwise set-valued. As usual, structure conforming
basic constraints are needed.

Figure 13: Illustration of quasi-incorporation

Note that, in contrast with pure incorporation of n-ary fact types, here no
uniqueness constraint has been required. That is, this kind of transformation.is
more generally applicable. Note furthermore that quasi-incorporation of binary fact
does not make sense, since it would produce a subsidiary class, as an unnecessary
extra shell, with a single attribute.

5.5.3 Grouping

Since during information analysis fact types are determined such that they represent
elementary recording types ([26]), most of them are binary or ternary in practice.
That is, applying e.g. the trivial transformation would result in small but many
object classes. Instead of transforming each fact type to a separate class, another
alternative is to perform some grouping of fact types that are joinable via common
object types before generating F-logic class definitions. Then for fact types in the
same group a single class is created.

The grouping mechanism is implemented by means of a so-called grouping pro-
file. A grouping profile is a set of groupings, where a grouping is a set of sets of
predicators satisfying certain wellformedness conditions, e.g. conditions that re-
quire the joinability (predicators in a set have the same object type as their base)
and connectivity of fact types to be grouped.

One particular grouping in the grouping profile implicitly specifies a set of fact
types to be grouped together. The result of grouping is that one class is generated
for the fact types in one group, and all those fact types are represented in that
class. The structure of the class is obtained in such a way that one (scalar-vaued)
attribute is defined for each set of predicators (corresponding to one object type)
in the grouping and one (scalar-vaued) attribute is defined for each non-grouping
predicator occuring in the grouped fact types.

The grouping meachnism is illustrated in figure 14. According to the figure, the
grouping profile consists of a single (maximal) grouping. That grouping contains
two sets of predicators (with common object types).

122 György Kovács, Patrick van Bommel

G

^ Qis.hj'

Figure 14: Illustration of the grouping mechanism

5.5.4 OR-like grouping

In section 5.5.2 we discussed the incorporation of fact types in classes corresponding
to base object types. For binary fact types the relational variant, resulting from
the combination of trivial mapping and incorporation, was also considered. In this
section we show how this combined alternative can be further integrated with a
restricted version of the grouping mechanism.

~ - : Qf.g.h'r'''

Figure 15: OR-like grouping

The situation is depicted in figure 15. The restrictions on the general grouping
(having fiat, behavior) means that a particular grouping in the grouping profile may
consist, of only a single set of predicators with common base object type. (Note the
difference with figure 14 with respect to the grouping indication.) Similarly to the
relational incorporation for binary fact types (see figure 11), a central object type
is chosen around which related data coming from several (grouped) fact, types is
arranged. This gives some 0 0 characteristic to this transformation, while keeping
also the relational view of grouping. From the alternatives discussed so far the
general idea illustrated by figure 15 can be seen.

Framework for Generating Object-Oriented Databases 123

Grouping with quasi-incorporation

In figure 13 an alternative way to incorporate fact types of higher degree (called
quasi-incorporation) with some relational characteristic was illustrated. There sub-
sidiary classes have been introduced. That mechanism can be combined with (re-
stricted) grouping analogously with the combination presented in the previous sec-
tion, as shown in figure 16. Since only alternatives discussed earlier are combined
in a way that has also been described, we do not explain this combination in more
detail.

~ ~ ; Qf.n'hl

Figure 16: Grouping with quasi-incorporation

5.5.5 Objectification

As said in section 3, a fact type is objectified if it is the base object type of some
predicator. The transformation of objectified fact types must be examined with
some special care, since it has to be ensured that data attached to facts (and not
e.g. to entities) are storable as well. Now we consider how the alternatives for the
transformation of fact types are applicable to objectified fact types.

Objectification and trivial mapping

Obviously, the trivial mapping method can be applied to an objectified fact type
as to any fact type without problems, which is the most natural solution. During
the transformation of the rest of the information structure any of the alternatives
can be chosen. Then the (objectified) fact type behaves as if it was an entity type.

Objectification and grouping

In principle, an objectified fact type can be considered for grouping, but not as it
stands. In order to be able to transform the other fact, types it is involved in, first it
has to be unnested with respect to all those fact types. In many cases, however, the
same final result can be obtained by applying different transformation alternatives.
Therefore, we do not deal with providing an unnest, operation for objectifications
and do not consider objectified fact types to be grouped in any way.

124 György Kovács, Patrick van Bommel

Incorporation of objectified fact types

In section 5.5.2 the alternative of incorporating fact types in classes for their base
object types was discussed. Binary fact types can always be incorporated, but fact
types of higher degree can be considered for incorporation at presence of uniqueness
constraints over single predicators. Incorporation of objectified fact types is a
meaningful option in even more restrictive situations only. The rationale behind
this is that beside representation of (objectified) facts, we also have to deal with
the representability of facts attached to (objectified) facts.

Figure 17: Incorporation of objectified fact type

The mechanism of incorporating objectified fact types is illustrated in figure 17.
It shows that if an objectified fact type / is incorporated in the counterpart class
of one of its base object types, then the fact types in which / participates are also
incorporated in the same class. The unambigous representability is ensured by the
required uniqueness constraint (also when / is binary).

Obviously, this transformation requires the fact types with base object type / to
fulfill the condition for incorporation. If for any of those fact types this precondition
is not satisfied, then / cannot be incorporated either. This leads to a situation that
can be captured by recursive checking and evaluation.

At some earlier points of this paper we assumed the existence of classes for base
object types when describing transformation alternatives for fact types (also bridge
types). We also promised to highlight and treat situations when it's not the case.
Now we reached such a situation, because the incorporation mechanism is applied to
fact types with base / , but no class for / exists. The special treatment here is that
we explicitly prescribed the class in which the incorporation has to be performed
instead of the class for / . Note, however, that during the incorporation of / the
existence of classes for its base object types is still an assumption (precondition).

The relational-like incorporation for binary fact types (see figure 11) is generally
not applicaple to objectified binary fact types, only when the trivial mapping is
obtained back due to the required uniqueness constraint. Otherwise the problem
of unambigous representability arises.

For similar reason, quasi-incorporation of objectified fact types is only possible
at the presence of appropriate uniqueness constraints. The illustrating figure is
obtained as a combination of figures 13 and 17 and is presented in figure 18 without
further explanation.

Framework for Generating Object-Oriented Databases 125

5.6 Power types

Power types in PSM represent sets. An instance of a power type is a (non-empty)
set of instances of its element type and is identified by its elements. Since in F-logic
we have the concept of set-valued attribute, at first sight it might seem that power
types can be represented simply by means of set-valued attributes.

However, set-valued attributes have limited applicability. Nested power types
(power types of power types) cannot be expressed in F-logic in terms of set-valued
attributes. For instance, in our example in figure 3 if budgets belong to groups
of groups of projects, then that situation cannot be represented by set-valued at-
tributes. Therefore, for the transformation of power types the parametric class
set(C) (discussed in section 4), where the parameter C can be an arbitrary class,
will be used.

Figure 19: Alternatives for power types

A power type can be transformed such that it is simply represented as a set(...)
type wherever it occurs. An alternative solution is that a separate class in defined
for the power type with one attribute containing the set elements and possibly other
attributes holding references to related objects. The choice depends on its context
and/or the designer's preference.. This consideration, however, suggests that the
transformation of power types with or without defining counterpart classes can be
both reasonable solutions, which is shown in figure 19. Our manner of transforming
a power type P covers both alternatives in a uniform way. The procedure is as
follows:

126 György Kovács, Patrick van Bommel

1. First, as an initial step, a class Cp is introduced with a single scalar-valued
attribute At.treiements of type .sei(C'E|t(pj) for containing the set elements.

2. During the transformation of the information structure consider P as if it was
an entity type (remember that entity types are always mapped to classes).

3. When the whole information structure has been translated, Cp will or will
not contain attributes other than Attrelements • If Cp contains no attribute
other than Attr elements, then optionally the class Cp can be eliminated by
substituting it with sei(Cg|t(p)) where it occurs.

As it can be seen, the translation of a power type requires its element type (not
necessarily entity type, it can be e.g. a fact type) to be mapped to a class. To
take this into account, it is required that if a fact type is the element type of a
power type, then the fact type has to result in a class, i.e. it has to be transformed
according to the trivial mapping.

Furthermore, note that although at the end power types do not necessarily
result in classes, the assumption, made at several places before, that corresponding
classes for participating object types exist when fact types are mapped (see section
5.5) is not violated, because the elimination of the counterpart class for a. power
type may be performed as a final step only.

5.7 Sequence types
The transformation of sequence types into F-logic is analogous to that of power
types, see figure 20. The only differences are that (1) instead of the parametric class
set(C) the parametric class list(C) is used, and (2) the implicit attribute is denoted
by Attr sequence instead of Attr eiements- In other aspects the procedure is identical,
therefore is not further detailed here. Moreover, similar considerations and notes
are valid for the mapping of sequence types what we had for the transformation of
power types.

Cs " - •*=- list(Ca) Ca list(CA) CA

(a) (b)

Figure 20: Alternatives for sequence types

5.8 Specialisation and generalisation
Specialisation and generalisation hierarchies of PSM models are translated to sub-
class hierarchies in F-logic. Both ASpecB and B Gen A result in CA "-CB.{CA IS

Framework for Generating Object-Oriented Databases 127

subclass of Cs) . As a consequence, participating object types have to be mapped
to classes. Taking the restrictions on Spec and Gen (see section 3) into account this
means that: (1) If B is a fact type, then it has to be translated according to trivial
mapping. (2) If B is either a power type or a sequence type, then its corresponding
class cannot be eliminated.

So far, specialisation and generalisation were treated in the same way. However,
they are different concepts, and the difference has to be reflected on F-logic level
as well. As mentioned in section 3, the difference lies in the way subtypes and
generalised object types get their identification, and in the way their population is
derived. A generalised object type inherits identification from its specifiers and its
population is the union of the populations of its specifiers. Therefore, in an F-logic
class hierarchy that corresponds to a generalisation hierarchy non-leaf level classes
may have only object instances that belong to some leaf level class. This can be
achieved by introducing appropriate constraints.

A subtype inherits identification from its supertype and its population is a
subset of the population of its subtype and is derived by means of a subtype defining
rule. When mapping a subtype relationship, the associated subtype defining rule
has be translated too, resulting in a rule in the corresponding F-program. The
body of the rule is the subtype defining rule translated into F-logic, while the head
is an is-a assertion specifying class membership.

5.9 Methodization

In general, an attribute of a class carries direct reference(s) to related object(s),
which means that by means of attributes (methods without arguments) only rela-
tionships between two objects can be captured. However, it would often be useful
to have a device to enable that objects related to a given combination of other ob-
jects can be obtained. This can be achieved by defining general methods (method
with arguments). A mechanism, called methodization, can be introduced for this
purpose as a complementary device in order to provide efficient access (querying)
of data stored in attributes of classes.

For example, provided that ¿fact type is mapped to a class, facts (relationships)
become stored objects. The attributes of a relationship object contain references
to objects that are in relationship. If now we want to know what objects of a given
class are in relationship with some combination of objects of some classes, we have
to perform an appropriate query. Clearly, it can be very useful to define access
methods to make querying (traversing relationships) easier and more efficient.

The scale of choices for methods is quite wide. The signatures of methods are
strongly influenced by uniqueness constraints. The behavior of methods can be
defined in terms of F-logic rules. In [6] a similar technique is introduced, which is
called pivoting.

128 György Kovács, Patrick van Bommel

Inverse attributes vs methodization

It was said earlier that inverse attributes can be optionally defined beside attributes
needed for sufficient storage of data. It improves query performance, but makes
update more complex. To ensure integrity, introducing inverse attributes must be
done along with generating inverse constraints.

Alternatively, stored inverse attributes can be substituted with 'methods without
arguments. In this case the inverse constraints needed for the inverse attributes
are converted to rules in the F-program. Those rules define the behavior of the
(inverse) methods.

6 Elaborated example

Until now we discussed possible ways to transform conceptual structures to 0 0
database schemas. In this section we transform the PSM schema in figure 3 into
F-logic. During this mapping ob ject molecules defining only parts of classes are
obtained often. Since, according to the semantics of F-logic, they can be unified to
get equivalent more complex object molecules, at the end we will also present the
unified result.

6.1 Declarations

Entity types are mapped to classes. As an initial step, for each entity type a, an
empty object molecule is generated, i.e. we obtain:

GEquipment [] C(Ja r [] C p c [] Cl>, ,,_.„„ I] CMana!l,r[]

Cc oworker [] Cjjept. [] CBuilding [1 CPl •oject.

Cc ompany [] CActivity [] CDuration [] CA,nonnt.of.-money []

Furthermore, in the initial step a class is created for each power type and se-
quence type with a single attribute for containing the set and list elements, respec-
tively:

CP

r-group [Att7 elements ^ Set(Cproject)]

CDaily-activit ies [Attl'sequence Ust^C'Activity)]
Specialisation and generalisation relationship result in subclass relationships:

& Manager •• CPerson

C c oworker c P erson

C c ar CEquipment Cpc • • CEquipment.

Bridge types are incorporated in classes obtained for the involved non-label
type. Suppose that with the occuring label types the following concrete domains,

Framework for Generating Object-Oriented Databases 129

that are assumed to be built-in classes in F-logic, are associated:

Dom (Date) = Date

Dom (Dollars) = Dom(iiows) = Integer
Dom (Regjnr) = Dom (PC-nr) = Dom (PJd) — Dom (P-name) = String
Dom (Prjname) — Dom (D-name) = Dom (B.code) = Dom (A.code) = String
Dom (C.code) = Dom (C .name) = Dom(TeLnr) = Dom (A-descr) = String

For identifying bridge types the predicator with non-label base object type X is
referred to as hasJX. Then the mapping of bridge types yields the following object
molecules:

CPerson [AttriLas_p_id => String] CPerson [AttrhasiPname => String}

CEquipment [AttTbought-on => Date] Ccar [AttThas-Reu.no String }

Cpc [Attrhas_pc_nr =>• String] CProject [A t t T has-Pr-name => String]

Coept. [AttT has-D-name =>• String] CBuilding [At.tr haS-B .code => String]

cArticle [A t t r ¡ i a s _ a _ c o d e =>• String] CActivity [Attrhas.A.descr =>String]
cDuration [AttThas-Hour => Integer] CAm..of.m. [Attr has-Dollars => Integer]

Ccompany [Attr has-C -code ^ String] Ccompany [Attr has. Cname ^ String]

Gcompany [Attr has- Telnr String]

Finally, we transform (non-bridge) fact types. In section 5.5 a number of al-
ternatives were discussed. We transform the fact types of figure 3 such that we
cover as many alternatives as reasonable according to the complexity of the input
schema. In order to identify chosen alternatives unambigously we always refer to
the corresponding figures. The specified uniqueness constraints, of course, are taken
into account.

The objectified fact type Coworkership is mapped according to the trivial map-
ping (figure 9), which results in:

GCow or her ship [AttrWorks-for GPersonj Attr has -as.coworker Gproject]

The binary fact type Cow.dur is incorporated (figure 10) in the class obtained
for the base object type of its predicator has .as.duration yielding:

Ccoworkership [Attr has-as-duration GDuration]

Incorporation of binary fact types in one of the two classes corresponding
to their base object types is applied to other fact types as well. Fact types
Salary, Activities and Budget are incorporated in classes Ccoworker, C Manager
and Cpr-group, respectively. The following object molecules are generated:

CCoworker [Attr earns ^ GAmount-of -money]

CManager [Att7perforTJies ^ GDaily.activities]

Gpr -group [Attl may .spend GAmount .of .money]

130 György Kovács, Patrick van Bommel

Fact, type Car .usage is incorporated in both classes corresponding to the in-
volved object types (figure 10, alternative (c)), namely in Ccar and C Manager• T w o
object molecules are obtained:

Ccav [Attl used-by CManayer]

CManager [-Attruses ^ Ccar]

In figure 11 a relational-like way of incorporating binary fact types, as the
combination of trivial mapping and incorporation (alternatively seen as nesting on
the result of trivial mapping), has been shown. Fact type Location is mapped
according to this way of transformation. Object type Dept. is chosen as the central
object type. This results in:

CLocation [Att.7 is_located-(it ^ CDept. j Attl accomodates —^ CBuilding j

To illustrate the alternative coming from the combination of incorporation (0 0
nature) with restricted grouping (relational nature), fact, types Employment and
PC-usage with common object type Person are grouped according to the 0 R -
like grouping shown in figure 15. The following single class (object molecule) is
generated:

C {Employment, PC .usage} [Attl {employed-by,works-on} C Person j

Att.Temploys => Coept.. \ Attri,cionljS_to Cpc]

The combination of OR-like grouping and quasi-incorporation has been depicted
in Figure 16. To set an example for this mechanism, fact types Management and
Supply are grouped together via ob ject type Project such that for fact type Sujrply
a subsidiary class CSuvply> is introduced. Beside this subsidiary class, a relation
class is also defined representing fact type Management, and partially fact type
Supply. The obtained object molecules are the following:

G Supply' [Attr suppiies =í> CCompany i Att.T is _Supplied C Article]

(-'{Management, Supply} [Att.7 {managed-by, receives} CProject-.

Attrman(lges —t-v CPerson] AttrVeceives ^Sujyph/']

By now, each fact type of figure 3 has been translated. We did not, exploit
every particular alternative discussed in section 5.5 coming from different kinds of
combinations. However, all the basic building blocks used in some combination,
such as trivial mapping, incorporation, quasi-incorporation, grouping, have been
covered.

Class elimination

After completing the transformation of the PSM structure of figure 3, the elimina-
tion of classes for power types and sequence types can be considered (see sections 5.6
and 5.7). Since the class Cpr_grouv contains an attribute other than Attrci,.ineni.s,

Framework for Generating Object-Oriented Databases 131

it cannot be eliminated. The elimination of class CDaily.activities, however, is rea-
sonable. The class is substituted with list(CActivity) and is removed.

As mentioned in section 5.3, classes for entity types with label type nature can
also be eliminated. In our example such classes are CDuration and CAmount.of .money
at least. They are, therefore, eliminated. Occurrences are replaced with the built-in
classes for the concrete domains of their corresponding label types.

Unified declarations

Due to the fact that in some cases above different, parts of class definitions were
obtained at different points of the transformation, some classes are defined by means
of more than one object molecule. The separate parts can now be put, together as
presented below. The class eliminations above are taken into account. Clearly,
the input schema does not cover all the details of the application domain, which
lead to simple (entity) classes in many cases. Those classes likely have additional
attributes, which is also indicated below. During the above transformation we used
denotations rather than names for classes and attributes. In order to make the
example more readable we also give names to classes and attributes now.

Person [P.id=> String-, nam.e => String;...]

Manager:: Person
Manager [dailyjactivities => list(Activity); uses-car Car;...]

Coworker :: Person
Coworker [salary => Integer; ...]

Equipment [bought.on Date]...]

Car :: Equipment
Car [reg.nr =>• String; usedJby => Manager;...]

PC :: Equipment

PC [pc.nr =>• String;...]

Project. [title =>• String;...]

Department [name String;...]

Building [B.code => String;...]

Article [A.code => String;...]

Activity [description =>- String;...]

Company [C-Code => String; name String; teljnrs =£> String;...]

Pr.group [projects => set(Project); budget => Integer;...]

Coiuorkership [employee => Person; project =>• Project; duration =>• Integer]

132 György Kovács, Patrick van Bommel

DeptJoc [dept. => Department; building Building]

Employment [employee =>• Person; dept => Department; iuorks-on =»• PC]

Supply [supplier => Company ; article => Article]

Project.rel [project => Project; managers =£> Person; receives Supply]

6.2 Constraints
The result of the transformation of the information structure in figure 3 was influ-
enced by simple conceptual uniqueness constraints. On the other hand, in addition
to class definitions, the structure transformation results in some kinds of basic con-
straints in F-logic, such as key, mandatory and inverse constraints. In this section
we provide these constraints for our example.

Uniqueness constraints

F-logic uniqueness (key) constraints are obtained in two ways. Firstly, from the
unique representation of facts (relationships) (see also [6]). Secondly, the simple
conceptual uniqueness constraints in figure 3 are translated as well. For uniqueness
constraints the macro " ! - Key(C, {Ax,..., A „ }) " is defined as follows:

The notation Ai —>(-») Ri means that if Ai is scalar-valued, then —» is used,
otherwise — I n our example the following F-logic uniqueness constraints are

Mandatory constraints

Since the population of fact types consists of total functions, it has to be en-
sured that if a class corresponds to a fact type, then each attribute of a mem-
ber of that class (fact object) carries some value. Again, a general macro

!— X = Y X:C[Ax -K-») Rl.;-; An->(-») Rn] a

generated:

!— Key (Person, {P-id})
!— Key (Car, {reg jar-})
!— Key (PC,{pc.nr})
!— Key (Department, {name})
!- Key(Art.icle,{A-code})
!— Key(Compajiy, {C-Code})
!— Key (Cow.ship, {employee, project.})
!— Key(E7nployme7it, {employee})
!— Key (Supply, {supplier, article})

Key (Manager, {usesjcar})
Key (Car, {used-by})
Key (Project, {title})
Key (Building, {B-Code})
Key(Activity, {description})
Key (Pr _group ,{pr oj ects})
Key (DeptJoc, {dept})
Key(E7iiployme7it, {works-o'n,})
Key(Project-rel, {project})

Framework for Generating Object-Oriented Databases 133

"!— Mandatory(C, {.4i,..., A „ }) " is introduced to serve as a shorthand for the fol-
lowing:

! - (3 y) j q . 4 ! - K - ») Y] X:C

!— (3Y)X [An -»(-») Y] X : C

In the case of our example the following mandatory constraints are necessary:

!— Mar\datory(Coworkership, {employee,project,})
!— Mandatory(Z)epi Joe, {dept., building})
!— Mandatory(Supply, {supplier, article.})

Inverse constraints

When two attributes are considered to be inverses of each other, inverse constraints
have to be defined. According to the possible kinds of relationship types between
two classes we introduce the following three macros:

!— l n v e r s e l - l (C i , Ai, C 2 , A2) c = f ! - Y : C 2 [A 2 - > X] A ' : C i [A , - > Y]

!- Y-.CilA^X] X-.C2[A2^Y]

!— l n v e r s e l - N (C i , A 1 , C 2 , A 2) = f ! - Y-.C2[A2^X] X -.C^A^Y]
!— Y:Ci[Ai-»X] X-.C2[A2-*Y]

!— l n V e r s e M - N (C j , . 4 i , C 2 , A 2) d = ! - Y : C 2 [A 2 - » X] X:C1[A1^»Y]
!— Y :C\ [Aj 4) 1] X:C2[A-2^»Y]

In our example fact type Car-usage has been incorporated in both classes ob-
tained for the two involved entity types, namely in classes Manager and Car,
yielding one attribute in each being inverses of each other. Therefore, an inverse
constraint is also required as follows:

!— Inversel-l (Manager, uses Mar, Car, usedJby)

Effects of specialisation and generalisation

The population of subtypes (specialisation) is defined by subtype defining rule.
This mechanism has to be translated into F-logic. In our example we have
Manager Spec Person and Coworker Spec Per.son. Let $ Manager and lI'c<,worker
denote the F-logic counterpart of the subtype defining rules for subtypes Manager
and Coworker, respectively. Then we introduce the following two constraints:

!— X : Manager <— X : Person A ^ Manager{X)
!- X -.Coworker <— X: Person A i ' c owovker (X)

134 György Kovács, Patrick van Bommel

The subtype defining rules are: A person is a manager if he/she plays the role
manages. A person is a coworker if he/she plays the role viorks.for. It has effect
on the final result of the translation of fact types Management, and Coworker ship.
In class Project.rel the result type Person is replaced with Manager:

Project.rel [project => Project.] managers Manager; receives Supply]

In class Cmuorkership the result type Person is replaced with Coworker:

Cow.ship [employee Coworker, project => Project] duration =>• Integer]

In case of generalisation it has to be ensured that every instance in the popu-
lation of a generalised type belongs to the population of one of its specifiers. This
can be expressed in terms of constraints on F-logic level. In our example we obtain:

!— (X :Car V X:PC) X : Equipment.

6.3 Inverse attributes and methods
As said in section 5.9, a wide range of introducing inverse attributes with inverse
constraints as well as methods with the definition of their behavior is possible.
To illustrate these general mechanisms, now we introduce an additional inverse
attribute and a method. Class Coworker is augmented with attribute involvedJ.n
containing references to Coworker ship objects in which a given person is involved.
The following additional object molecule, that can be unified with the existing one
for class Coworker, and inverse constraint are defined:

Coworker [involvedjin Coworker ship]
!— Inversel-N(Coiuorker, involvedjin, Coiuorkership, employee)

As an example of an access method, the method suppliers is introduced in
class Project returning the companies that supply a given article for the project
on which the method is invoked. The object molecule defining the signature of the
method is the following:

Project [suppliers @ Article =$> Company]

The semantics of the method is given by means of the following F-logic rule:

Y [suppliers @ W —» V] <— X : Project.rel [project —receives — Z } A
Z : Supply [supplier —> V; article —> W]

7 About the implementation step
The second step of the transformation (the implementation step, see figure 2) is
the translation of intermediate models defined in terms of F-logic into a 0 0 final
target, environment, e.g. SQL3 or ODMG-93. A sequence of DDL statements in the

Framework for Generating Object-Oriented Databases 135

corresponding database language has to be generated from F-logic specifications.
Unlike in the design step, in the implementation step separate translations have
to be defined for different target environments, where all the system specific de-
tails must be dealt with. This can be implemented by means of translation tables,
containing all the system specific information (e.g. supported data types, corre-
spondece between F-logic "built-in" classes and system specific data types) needed
for the generation of DDL statements.

Since in the present paper the main focus is on the design step, we do not further-
elaborate on the implementation step. However, in the section below an example
is given in terms of ODMG-93.

7.1 Example in ODMG-93
Next the F-logic schema in section 6 obtained for the PSM schema of figure 3
is translated into ODMG-93. Beside class declarations (including the additional
inverse attribute and method), uniqueness and inverse constraints are translated.
Specifying other constraints is not supported directly in ODMG-93, therefore they
are not considered here. For the syntax and semantics of ODMG-93 we refer to [9].

interface Person
(extent Persons

keys P_id) : persistent
{ attribute string PJd ;

attribute string name ; ... } ;

interface Manager : Person
(extent Managers

keys uses.car) : persistent
{ relationship List<Activity> daily .activities ;

relationship Car used_car
inverse Car:: used.by ; . . . } ;

interface Coworker : Person
(extent Coworkers) : persistent
{ attribute integer salary ;

relationship Set<Coworkership> involved i n
inverse Coworkership:: employee ; ... } ;

interface Activity
(extent Activities

keys description) : persistent

136 György Kovács, Patrick van Bommel

{ attribute string description ; ... } ;

interface Project
(extent Projects

keys title) : persistent
{ attribute string title ;

Set<Coiripany> suppliers(in Article art) ; } ;

interface Article
(extent Articles

keys A.code) : persistent
{ attribute string A_code ; ... } ;

interface Company
(extent Companies

keys C.code) : persistent
{ attribute string C.code ;

attribute string name ;
attribute Set<string> teLnrs ; ... } ;

interface Coworkership
(extent Coworkerships

keys (employee, project)) : persistent
{ attribute integer duration ;

relationship Coworker employee
inverse Coworker:: involvedJn ;

relationship Project project ; } ;

interface Supply
(extent Supplies

keys (supplier, article)) : persistent
{ relationship Company supplier ;

relationship Article article ; } ;

interface Project_rel
(extent Project-rels

Framework for Generating Object-Oriented Databases 137

keys project -) : persistent
{ relationship Project project ;

relationship Set<Manager> managers ;
relationship Set<Supply> receives ; } ;

8 Conclusions and further research

In this paper we dealt with the transformation of conceptual data models into
database environments with object-oriented features, such as ODMG-93 and SQL3.
In our approach this transformation is captured within the framework of a two
level architecture. Conceptual models are first mapped to intermediate specifica-
tions (design step). Then the obtained intermediate specifications are translated
into the database language of a given target database system (implementation
step). For expressing conceptual models we used the object-role modelling tech-
nique PSM (Predicator Set Model), a formalized extension of NIAM. Intermediate
specifications are expressed in terms of F-logic, a logic-based abstract specification
language for object-oriented systems. The advantages of a two step tranformation
mechanism have been discussed.

Here we focused on the first step of the overall transformation. A number of
alternatives for the transformation of conceptual structures have been presented, re-
sulting in a collection of design options. Such alternatives were discussed by means
of illustrating figures. The mapping of information structures is often influenced
by simple uniqueness constraints. Also, transforming structures often imply basic
(e.g. key) integrity constraints in the target model to be generated. The treatment
of these aspects has been incorporated. The transformation of a real life exam-
ple conceptual schema into F-logic has been worked out in detail. Moreover, the
obtained F-logic specification has been partially translated into ODMG-93, thus
illustrating the applicability of the transformation process in practice.

For further research the most fundamental topic is the full formalization of the
first (design) step of our transformation mechanism according to the formalisms
of PSM and F-logic. Beside the mapping of information structures, the transfor-
mation of populations in a formal framework is also essential, since the semantics
of an information structure is defined in terms of its possible populations. This is
important, in order to prove the correctness of the transformation formally. The
general treatment of conceptual constraints, that are parts of conceptual schemas,
and their translation are to be addressed. Furthermore, issues concerning the sec-
ond (implementation) step of the overall transformation have to be worked out in
more detail. Our present paper has set up the framework and provides the basis
for a general automated transformation mechanism that covers all the aspects just
desrcibed.

138 György Kovács, Patrick van Bommel

References
[1] S. Abiteboul, P.C. Fischer, and H.J. Schek. Nested Relations and Complex

Objects in Databases. Springer-Verlag, Berlin, Germany, 1987.

[2] S. Abiteboul and P.C. Kanellakis. Object Identity as a Query Language Prim-
itive. In Proceedings of the A CM SIGMOD International Conference on Man-
agement of Data, pages 159-173, 1989.

[3] M. Atkinson, D. DeWitt, D. Maier, F. Bancilhon, K. Dittrich, and S.B. Zdonik.
The object-oriented database system manifesto. In W. Kim, J -M. Nicolas,
and S. Nishio, editors, Proceedings of the First. International Conference on
Deductive and Object-Oriented Databases (DOOD-89), pages 40-57, Kyoto,
Japan, 1989. Elsevier Science Publishers.

[4] C. Beeri. A formal approach to object-oriented databases. Data & Knoviled.ge
Engineering, 5:353-382, 1990.

[5] A. Benczúr, Cs. Hajas, and Gy. Kovács. Datalog Extension for Nested Rela-
tions. Computers Math. Applic., 30(12):51-79, 1995.

[6] J. Biskup, R.. Menzel, and T. Polle. Transforming an Entity-Relationship
Schema into Object-Oriented Database Schemas. In Proceedings of the Inter-
national Workshop on Advances in Databases and Information Systems, pages
67-78, Moscow, June 1995.

[7] P. van Bőmmel, Gy. Kovács, and A. Micsik. Transformation of database pop-
ulations and operations from the conceptual to the internal level. Information
Systems, 19(2):175-191, 1994.

[8] P. van Bommel and Th.P. van der Weide. Reducing the search space for
conceptual schema transformation. Data & Knovdedge Engineering, 8:269-
292, 1992.

[9] R.G.G. Catell. The Object Database Standard: ODMG-93. Morgan Kaufmann,
San Francisco, California, 1994.

[10] P.P. Chen. The Entity-Relationship Model: Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9—36, March 1976.

[11] E.F. Codd. A Relational Model of Data for Large Shared Data Banks. Com-
munications of the ACM, 13(6):377—387, 1970.

[12] H. Darwen and C.J. Date. The Third Manifesto. SIGMOD Record, 24(1),
March 1995.

[13] C.J. Date and H. Darwen. A Guide to the SQL Standard. Addison-Wesley,
Reading, Massachusetts, 1992.

Framework for Generating Object-Oriented Databases 139

[14] G. Engels, M. Gogollá, U. Hohenstein, K. Hiilsmann, P. Löhr-Richter,
G. Saake, and H-D. Ehrich. Conceptual modelling of database applications
using an extended ER model. Data & Knowledge Engineering, 9(4):157-204,
1992.

[15] J.J. van Griethuysen, editor. Concepts and Terminology for the Conceptual
Schema and the Information Base. Publ. nr. ISO/TC97/SC5-N695, 1982.

[16] A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains. PhD
thesis, University of Nijmegen, Nijmegen, The Netherlands, 1993.

[17] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Formal definition
of a conceptual language for the description and manipulation of information
models. Information Systems, 18(.7):489-523, October 1993.

[18] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual
data modelling. Data & Knowledge Engineering, 10(1):65—100, February 1993.

[19] M. Kifér, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and
Frame-Based Languages. Journal of the ACM, 42(4):741-843, 1995.

[20] W. Kim. Object-Oriented Database Systems: Promises, Reality, and Future.
In Proceedings of the 19th VLDB Conference, pages 676-687, Dublin, Ireland,
1993.

[21] Y. Kornatzky and P. Shoval. Conceptual design of object-oriented database
schemas using the binary-relationship model. Data & Knowledge Engineering,
14:265-288, 1994.

[22] Gy. Kovács and P. van Bommel. Overview of F-logic from Database Transfor-
mation Perspective. Technical Note CSI-N9607, Computing Science Institute,
University of Nijmegen, Nijmegen, The Netherlands, 1996.

[23] Gy. Kovács, Cs. Hajas, and I. Quilio. Representations and Query Languages
of Nested Relations. In L. Varga, editor, Proceedings of the 4th Symposium on
Programming Languages and Software Tools, pages 360-373, Visegrád, Hun-
gary, June 1995.

[24] J. Melton. (ISO/ANSI Working Draft) Database Language SQL/Foundation
(SQL3). ISO DBL MCI-004 and ANSI X3H2-96-059, March 1996.

[25] J. Nachouki, M.P. Chastang, and H. Briand. From Entity-Relationship Dia-
gram to an Object-Oriented Database. In Proceedings of the 11th International
Conference on the Entity-R,elationship Approach, pages 459-481, 1992.

[26] G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database
Design: a fact oriented approach. Prentice-Hall, Sydney, Australia, 1989.

140 György Kovács, Patrick van Bommel

[27] P. Pistor and F. Andersen. Designing a Generalized NF2 Data Model with an
SQL-type Language Interface. In Proceedings of the 12th VLDB Conference,
pages 278-185, Kyoto, Japan, August 1986.

[28] M.A. Roth, H.F. Korth, and D.S. Batory. SQL/NF: a query language for
-ilNF relational databases. Information Systems, 12(1):99-114, 1987.

[29] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson. Object-
Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, New Jersey,
1991.

[30] H.J. Schek and M.H. Scholl. The relational model with relation-valued at-
tributes. Information Systems, 11(2):137—147, 1986.

[31] K.-D. Schewe and B. Thalheim. Fundamental Concepts of Object Oriented
Databases. Acta Cybernetica, l l(l-2):49-83, 1993.

[32] G.M. Shaw and S.B. Zdonik. A Query Algebra for Object-Oriented Databases.
In Proceedings of the 6th International Conference on Data Engineering, pages
154-162, 1990.

[33] P. Shoval and S. Shiran. Entity-relationship and object-oriented data modeling
- an experimental comparision of design quality. Data & Knowledge Engineer-
ing, 21(3):297-315, 1997.

[34] M. Stonebraker, L.A. Rowe, B. Lindsay, J. Gray, M. Carey, M. Brodie, P. Bern-
stein, and D. Beech. Third-Generation Database System Manifesto. SIGMOD
Record, 19(3):31-44, September 1990.

[35] T.J. Teorey, D. Yang, and J.P. Fry. A logical design methodology for relational
databases using the extended entity-relationship model. ACM Computing Sur-
veys, 18(2):197-222, 1986.

[36] J.D. Ullman. Principles of Database and Knowledge-base Systems, volume L
Computer Science Press, Rockville, Maryland, 1989.

Received, June 1997

