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CD Grammar Systems and Trajectories* 

Alexandra Mateescu^ 

Abstract 

In this paper we consider constraints, as a new research area for cooperat-
ing distributed (CD) grammar systems. Constraints are based on the notion 
of a trajectory. The flexible approach provides a framework to study some 
interesting properties of a CD grammar system like fairness or parallelization 
of languages. The use: of teams in the derivations of words is also considered. 

1 Introduction 
The cooperating distributed (CD) grammar systems were introduced in [2] with 
motivations from Artificial Intelligence (the so-called blackboard model in problem 
solving, [22]). For more details see the monograph [3]. 

Such a system consists of several ordinary grammars working by turns on the 
same sentential form; at each moment, one component is active, the others are 
waiting. Natural variants are systems in which more components (a team) are 
active at the same time. Teams can be with prescribed number of elements, non-
deterministically chosen. The notion was introduced in [8]. 

In this paper we consider constraints that involve the general strategy to switch 
from one component (team) to another component (team). 

Usually, the operation is modelled by the shuffle operation or restrictions of this 
operation, such as literal shuffle, insertion, etc. 

Syntactic constraints, we consider here, are based on the notion of a trajectory, 
introduced in [16]. Roughly speaking, a trajectory is a segment of a line in the 
plane, starting in the origin of axes and continuing parallel with the axis Ox or Oy. 
The line can change its direction only in points of non-negative integer coordinates. 

A trajectory defines how to skip from a component (team) to another component 
(team) during the derivation operation. 

Languages consisting of trajectories are a special case of picture languages in-
troduced in [20]. 
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2 Basic definitions 
The reader is referred to [25] for basic elements of formal language theory and to 
[3] for détails about grammar systems. 

For an alphabet £ , we denote by £* the free monoid generated by £ under the 
operation of concatenation; A is the empty string and \x\ is the length of x g £*. 
If a £ £ and w € £*, then \w\a denotes the number of occurrences of the symbol a 
in w. 

The anti-catenation operation, denoted by is defined as: u°v = vu, for any 
u,v£T,*. 

•A generalized sequential machine (GSM) is a 6-tuple M = (Q, £ , A, S, qo, F), 
where Q is a finite set of states, £ is the input alphabet, A is the output alphabet, 
qo £ Q is the initial state, F C Q is the set of final states, and <5 is the transition 
function, i.e., a function from Q x £ to finite subsets of Q x A*. Let u = uiu> • • • un 

be a word from £*, where Ui € £ , 1 < i < n. The set of all output words of u by 
M, denoted M(u), is: 

M(u) = {w | w = w\w-2 ... ivn, where Wi G ¿ ( f t - i , Ui), 1 < i < n, 

and ô(qn-i,un) G F}. 

If L C £* is a language, then: 

M(L) = (J M(u). 
uEL 

For more informations about GSM, the reader is referred to [24]. 
A CD grammar system (of degree n,n > 1) is a construct 

T = (N,I:,P1,P2,...,P11,S), 

where N is a (nonterminal) alphabet, £ is a (terminal) alphabet disjoint from N, 
S £ N and Pi are finite sets of context-free rules over TV U £ , 1 < % < n. 

For a given Pi, the direct derivation is defined in the usual way; we 
denote by >=^pi\ a derivation in Pt consisting of exactly 
k steps, at most k, at least k steps, k > 1, of any number of steps and as long as 
possible, respectively (x ^^^ y means that x y and there is no z such that 
V = > p , - z ) -

For / e {*,£} U { < k,= k,> k | k > 1} we denote by Lf (T) the language 
generated by T in the / mode, that is 

Lf(T) = {x G £* | S =>fPii X! ... =>fp.m= x 

1 < ij < n, 1 < j < w, TO > 1} 

and by CD(f) the family of such languages. (Note that we do not distinguish here 
between systems with A-free and with arbitrary components.) 
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Given a grammar system T = (TV, £ , P i , . . . , Pn, w) with components N. £, Pi, 
... ,Pn as above but with a string axiom w £ (N U £)* instead of a symbol S £ N, 
and given a natural number s > 1, a subset Q = {P^,... ,Pit} of {Pi,... ,P„ } is 
called an .s-t,eam. For such an s-team Q and for x,y £ (N U £)*, we write 

x =>Q y iff x = X1A1X2 •. • ASXS+1, y = Xi2/1X2 •. • ysxs+i, 
Xj 6 (TV U £)*, l<j<s+l,Aj-> y, € Pi,, 1 < j < s. 

Then the relations A; > 1, can be defined as 
above, with the clarification that in the t case the derivation is correct when no 
more rules of any of the team components can be used. 

In the sequel we recall some operations from formal languages that simulate the 
parallel composition of words. 

The shuffle operation, denoted by LU, is defined recursively by: 

auLLibv — a(uLU?w) U b(au\JJv), 

and 
u L U A = A L L I ' u = { • « } , 

where u .v € £* and a ,b £ £ . 
The shuffle of two languages Li and L2 is: 

LiLUL-2 = (J ulllv. 

The literal shuffle, denoted by LU;, is defined as follows: 

i aibia2b2... anbnbn+i ... bm, if n < m, 
a\a,2 • • • anLU/»i(J2 • • • om = s , , , ... [ ai&ia2o2 • • • a m 6 m a m + i . . . an, if rn < n, 

where a,;, b.j £ £. 

(ïtLU(A) = (ALU iu) = {u} , 

where u £ £*. 

The balanced literal shuffle, denoted by LLÎ , is defined in the next way: 

, ( a,ibia2b2... anbn, if n = rn, at(i2 • • • anLUwi)i02 • • • om = < (ll ... , [ (/), if n ^ rn, 

where a,;, bj £ £. 
The insertion operation, see [7], denoted by <—, is defined as: 

u <— v = {u'vu" | u'u" = u,u ,u" £ £*}. 

All the above operations are extended in the usual way to operations with 
languages. 
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3 Trajectories and constraints 
In this section we introduce the notion of the trajectory and that of the shuffle 
on trajectories, and study their basic properties which are necessary in the sequel. 
The shuffle of two words has a natural geometrical interpretation related to latticial 
points in the plane (points with nonnegative integer coordinates) and with a certain • 
"walk" in the plane defined by each trajectory. 

Definition 3.1 Consider the alphabet V = {?', u}. We say that.r andu are versors 
in the plane: r stands for the right direction, whereas u stands for the up direction. 
A trajectory is an element t, t. 6 V*. 

• 
Definition 3.2 Let £ be an alphabet and let t be a trajectory, t. = t,xt-2 ... tn, where 
ti € V, 1 < i < n. Let a, 13 be two words over £, a = aia-2 • • .ap,f) = b\b2 ... b,,. 
where ai, bj € 1 < i < p and 1 < j < q. 

The shuffle of a with ¡3 on the trajectory t, denoted alUtP, is defined as follovis: 
if \a\ i1 14-- o r \P\ # 1*1«, t h e n aUJt/3 = 0, else 

a L U t p = cic-2 . . . Cp+g, where, if \txt2 ... i » - i | , - - k\ and \tit2 ... i ^ - i |« = k-2. 
then 

_ i a k l + i , if ti = 
Ct \bk2+i, if ti = u. 

a 
If T is a set of trajectories, the shuffle of a with (3 on the set T of trajectories, 
denoted aUUt(3, is: 

alUTP = (J aLUt/3. 
t£T 

The above operation is extended to languages over S, if L\,L2 C £*, then we 
define 

LI\AATL2 = ( J A\±LT(3-
a£LuP£L-2 

Example 3.1 Let a and [3 be the words a = aia2a^a4a^aeaTas, (3 = bibob^b^b^ 
and assume that t = r3u2r3ururu. The shuffle of a with (3 on the trajectory t is: 

alLitP = {aia2a36i62a4a5a6^3a7',4ii8^5}-

The result has the following geometrical interpretation (see Figure 1): the tra-
jectory t defines a line starting in the origin and continuing one unit to the right 
or up, depending of the definition of t. In our case, first there are three units right, 
then two units up, then three units right, etc. Assign a on the Ox axis and [3 
on the Oy axis of the plane. Observe that the trajectory ends in the point with 
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coordinates (8, 5) (denoted by E in Figure 1) that is exactly the upper right corner 
of the rectangle defined by a and ¡3, i.e., the rectangle OAEB in Figure 1. Hence, 
the result of the shuffle of a with ¡3 on the trajectory t is nonempty. The result 
can be read following the line defined by the trajectory t: that is, when being in a 
lattice point of the trajectory, with the trajectory going right, one should pick up 
the corresponding letter from a., otherwise, if the trajectory is going up, then one 
should add to the result the corresponding letter from /3. Hence, the trajectory t 
defines a line in the rectangle OAEB, on which one has "to walk" starting from 
the corner O, the origin, and ending in the corner E, the exit point. In each lattice 
point one has to follow one of the versors r or u, according to the definition of t. 

Assume now that t' is another trajectory, say: 

In Figure 1, the trajectory t! is depicted by a much bolder line than the trajectory 
t. Observe that: 

Consider the set of trajectories, T = {t,t'}. The shuffle of a with /3 on the set T 
of trajectories is: 

aLUx/i = {aiaiazbib-iCiiaaaebsaibiasbs, biaia,2a^a4arJ>2b^b4aQb^aja,s}. 

t! = ur5u3rur2. 

11 

E 
B 

t 

t' 

a,i a,2 «3 ß4 a5 a,ß a7 og A x 

Figure 1 
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Remark 3.1 One can easily observe that the follovring known operations for the 
parallel composition of words are particular cases of the operation of shuffle on 
trajectories. 

1. Let T be the set T = {r,u}*. Then for the shuffle operation LU, LUT = LU. 

Assume that T = (ru)*(r* Uu*). Note that in this case LUt = LLI;, the literal 
shuffle. 

3. Consider T = (ru)*. Then LUt = LUt;, where LU^ is the balanced literal 
•shuffle. 

4. Define T = r*u*r* and note that LUx =•<—, where <— refers to the the 
insertion operation. 

5. Assume that T = r*u*. It follows that LUy = where • is the catenation 
operation. 

6. Consider T = u*r* and observe that LUy =°, 'where ° denotes the anti-
catenation operation. 

• 

The following two theorems are representation results for the languages of the 
form LILUTL-2- We omit their rather straightforward proofs. 

Theorem 3.1 For all languages L\ and L2, L\,L2 C E*; and for all sets T of 
trajectories, there exist a gsm M and two letter-to-letter morphisms g and h such 
that 

LILUTL-2 = M(/i(L1 )LU.g(L2 )L±JT). 

Our next theorem is a variant of Theorem 3.1. 

Theorem 3.2 For all languages Li and L2, L\,L> C £* ; and for all sets T of 
trajectories, there exist a morphism ip and two letter-to-letter morphisms g and li; 

g : E —> EJ" and h : E — E j where £ i and £2 are two copies of E, and a regular 
language B.: such that 

L ! L U T L 2 = < / > ( ( / i ( L i ) L U < 7 ( Z , 2 ) L ± J T ) n B.). 
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4 Constraints and CD grammar systems 
Now we consider only CD grammar systems with two components. Moreover, we 
assume that the rules of each component have distinct labels. The case of CD 
grammar systems with more than two components can be easily obtained as a 
generalization. 

Let T = (N, £, S, Pi, P2) be a CD grammar system with two components and 
let T C {r, u}* be a set of trajectories. The constraint language generated by V is 
the set of all words w € E* such that w can be generated by T following a trajectory 
from T, i.e. the components Pi and P2 are used according to a trajectory t £ T. 
Whenever r does occur in t the component P\ is used, otherwise, if u does occur 
in t, then the component P2 is used. 

Additionaly, one may consider constraint languages associated to each compo-
nent. These languages are shuffled on the set T of trajectories. 

Example 4.1 Let T = (N, H,S,Pi,P2) be the followmg CD grammar system: N = 
E = {a,&,c}, 

Pi = {Pi • S —> aS, p-2 : X —> cX, p3 :X —> A} 

P2 = {qi : 5 —• bS, q2 : S —> X}. 

The constraint language associated to the component Pi is Li = {piP2pz \ n >1} 
and the constraint language associated to the component P2 is L2 = {q]lq2 | n >1}. 
The set of trajectories is T = {rnun+1rn+1 | n > 1}. The constraint language 
associated to the CD grammar system T is 

LlLUTL2 = {p?q?q2P$P3 I n > 1}. 

One can easily verify that the language generated by the CD grammar system T 
viith the above constraints is: 

L{r) = {anbncn | n > 1}. 

• 
. Note that the language generated is non-context-free, but also the set T of 

trajectories is a non-context-free language. However we will see in the next section 
that this language can be generated also using only context-free constraints. 

5 Regular and context-free trajectories 
It is well known that the shuffle of two regular languages is a regular language. 
Moreover, given two finite automata AI and A2 one can effectively find a finite 
automaton A such that L(A) = L(AI)\AAL(A2). 

The following theorem provides a characterization of those sets of trajectories 
T for which LI\JJTL2 is a regular language, whenever L\, L2 are regular languages. 
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Theorem 5.1 LetT be a set of trajectories, T C {r, u\*. The following assertions 
are equivalent: 

(i) for all regular languages L\. Lo, L\\JJTL2 is a regular language. 

(ii) T is a regular language. 

Proof. (i) => (ii) Assume that L\ = r* and L2 = u* and note that L\UJTL2 = 
T. It follows that T is a regular language. 

(ii) => (i) Assume that T is a regular language. Consider two regular languages 
LY, L>. Without loss of generality, we may assume that L\ and L2 are over the 
same alphabet E. Let AI = (QI,E,SI,QQ,FI) be a finite deterministic automaton 
such that L(Ai) = Li, i = 1,2. Also, let AT = (QT, {?'•,"}, ST,QO >FT) be a finite 
deterministic automaton such that L(AT) = T. 

We define a finite nondeterministic automaton A = (Q, E, <5, Qo, F) such that 
L(A) = Li UATLI • Informally, A, on an input w 6 E*, simulates nondeterminis-
tically Ai or A2 and from time to time changes the simulation from Ax to A2 or 
from A2 to Ai. Each change determines a transition in AT as follows: a change 
from Ai to A2 is interpreted as u and a change from A2 to Ai is interpreted as r. 
The input w is accepted by A iff A\, A2 and AT accept. 

Formally, Q = Ch x QT x Q2, Q0 = {(q^,q^,q'i)}, F = F, x FT x F2. The 
definition of 6 is: 

S((qi,d,q2),a) = {(S1(q1,a),ST(d,r),q2), (qllST(d,u),ih(q2,a))}, 

where, qx e Qi,d£ QT, q2 G Q-2,ae E. 
One can easily verify that ¿(^4) = LIUJTL2 and hence L\UJTL2 is a regular 

language. 
• 

Next theorem gives a similar result as Theorem 5.1, but for context-free sets of 
trajectories. 

Theorem 5.2 LetT be a set of trajectories, T C {7', u}*. The following assertions 
are equivalent: 

(i) for all regular languages L\ , L2, LX\1ATL2 is a context-free language. 

(ii) T is a context-free language. 

Proof, (i) (ii) Assume that L\ = r* and L> = u* and note that L\UJtL->. 
/ Therefore T is a context-free language. 

(ii) => (-¿) Assume that T is a context-free language. Consider two regular lan-
guages L]. L2. Without loss of generality, we may assume that L\ and L> are over 
the same alphabet E. Let Ai = (Qi, £ , Si, q^, Fi) be a finite deterministic automa-
ton such that L(Ai) - Lui = 1,2. Also, let PT = (QT, T t , {r, -1/,}, &r, , Zr, FT) 
be a pushdown automaton such that L(PT) = T. 
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We define a pushdown automaton P = (Q, T, £, <5, Qo, Z, F) such that L(P) — 
L\\JJtL-2• Informally, P, behaves as the automaton A from the proof of The-
orem 5.1, except that on the second component of the states, P simulates the 
pushdown automaton Pp. That is, on an input w G £*, P simulates nondetermin-
istically Ai or A-2 and from time to time changes the simulation from Ai to A2 or 
from A-2 to Ai. Each change determines a transition in Pt as follows: a change 
from Ai to A2 is interpreted as u and a change from A2 to Ai is interpreted as r. 
The input w is accepted by P iff Ai, A2 and Pt accept. 

Formally, Q = Qx x QT x Q2, Q0 = {(q^, , <$)}, F = x FT x F2, T = r T , 
Z = Zr. The definition of <5 is: 

<5((9i > d, q2), a, X ) = U ( S ] a ) 6 5 T ( r f i I v Y ) ( ( < 5 i (qi, a),s, q2), a ) U 

,a>)e5Tld,u,x)((qi,s',82{q2,a),a')} 

where, qi G Qi, d € QT, 9a € Q2, a e E, X e T, a G F*. 
Additionally, 

fi((qi,d,q2),k,X) = U(Sta)efiT(d,\,X)((qi,-'>,<l2),a!.) 

.where, qy G Qi, d G QT, q2 € Q2, X G T, a G T*. 
One can verify that L(P) = ZaLUrZ^ a n d hence L\IL\tL2 is a context-free 

language. • 

Theorem 5.3 Let T be a set of trajectories, T C {r,ti,}* such that T is a regular 
language. 

(i) If Li is a context-free language and if L2 is a regular language, then L^\AJtL2 
is a context-free language. 

(ii) If L\ is a regular language arid if L2 is a context-free language, then LiUJj'L2 
is a context-free language. 

Proof. The proof is similar with the proof of Theorem 5.2. For the case (i) the 
pushdown automaton is simulated 011 the first component of the states, whereas for 
the case (ii) the pushdown automaton is simulated 011 the third component of the 
states. • 
Alternative proofs for Theorems 5.1 - 5.3 can be obtained using Theorem 3.1 or 
Theorem. 3.2. 

From Theorems 5.1 - 5.3 we obtain the following corollary: 

Corollary 5.1 Let L\, X2 and T, T C {r, it}* be three languages. 
(i) if all three languages are regular languages, then Lil_Ux£2 is a regular lan-

guage. 

(ii) if two languages are regular languages and the third one is a context-free, 
language, then LiLUtZ/2 is a context-free language. 
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6 Fairness 
Fairness is a property of the parallel composition of processes that, roughly speak-
ing, says that each action of a process is performed with not too much delay with 
respect to performing actions from another process. That is, the parallel composi-
tion is "fair" with both processes that are performed. 

Definition 6.1 Let T C {r,u}* be a set of trajectories and let n be an integer, 
n >1. T has the n-faimess property iff for all t E T and for all t! such that • 
t = t't." for• some t" £ {r, u}*, it follows that: 

\\t'\r-\t'\u\<n. 

• 

This means that all trajectories from T are contained in the region of the plane 
bounded by the line y = x — n and the line y = x + n, see Figure 2, for n = 4. 

Example 6.1 The balanced literal shuffle (tlJ¡,) has the n-fairness property for- all 
n, n > 1. 

The follovnng operations: shuffle (UJ), catenation (•), insertion (<—) do not 
have the n-fairness property for any n, n > 1. 

For instance, note that the catenation means shuffle on the set, T of trajectories, 
•where (sec also Remark 3.1, 5.): 

T = r*u* = { r V | i,j > 0}. 

Therefore, 

{| It'\r - |i'U II t't" e T for some t"} = {| » - j || i,j > 0}. 

Because the values | i — j |, where i,j > 0, cannot be bounded by any fixed, constant 
n, n > 1, it follows that the catenation is not n-fair for any n > 1. 

A similar argument is valid to prove that shuffle and insertion operations do 
not have the n-fairness property for any n, n > 1. 

Definition 6.2 Let n be a fixed number, n > 1. Define the language Fn by: 

Fn = {te V*\ | |£'|,. - |i'|u |< n, for all t' such that, t. = t't", t," £ V*\. 

• 

Remark 6.1 Note that a set T of trajectories has the n-fairness property if and 
only if T C Fn. 

• 
We omit the straightforward proof of the following statement. 
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Proposition 6.1 For every n, n > 1, the language Fn is a regular language. 

Corollary 6.1 Let T be a set of trajectories. If T is a context-free or a simple 
matrix language and n is a fixed number, n > 1, then it is decidable whether or not 
T has the n-fairness property. 

Proof. It is easy to observe that for the above families of languages the problem 
if a language from a family is contained in a regular language is a decidable problem. 
Hence, from Proposition 6.1, this corollary follows. • 

/ - r / 
/ / / 

/ / / / 
/ / 

/ / 
/ 

/ 
/ 

1 / 
01 4 

Figure 2 

Comment. For a context-free language T C V* it is decidable whether or not 
there exists a non-negative integer n, such that T has the n-fairness property, see 
[19]. However, in general it is an open problem for what families C of languages it 
is decidable this problem. 

Now we use the fairness concept in connection with CD grammar systems. Let 
r be a CD grammar system, 

r = {N,X,P1,P2,...,Pm,S). 

Assume that the components of T are labelled, such that Pt has the label e,;, 
1 < i < m. Let E be the set of labels, E = {ex, e2, • • •, e,uj. 

In order to extend the notion of fairness for the general case of CD grammar 
systems with m components, m > 2, firstly we define the notion of a m-trajectory. 
A m-trajectory is an element t £ E*, i.e., a word over the m letters alphabet 
{ei,e-2,.. - ,em}. 
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Definition 6.3 Let T C E* be a set of m-trajectories and let n be an integer, 
n > 1. T has the n-fairness property iff for all t £ T and for all t! such that 
t = ft." for some t." £ E*, it follows that: 

l l f 'k - l t ' l e , \<n, 

for all 1 < i, j < m. 
A CD grammar T has the n-fairness property iff for all terminal derivations 

S = > e i , Wi =>ei2 W-2 = > e i 3 • • • = > e i f c U>k 

the corresponding trajectory e^e^ .. .eik has the n-fairness property. 
A language L is n-fair, n > 1, iff there exists a CD grammar system F with the 

n-fairness property such that L(T) = L. 

• 
Theorem 6.1 If a language L can be generated by a CD grammar system F such 
that r has the n-fairness property for some n > 1, then L can be generated by a 
CD grammar system T' in the < k mode of derivation. 

The converse is not true. 

Proof. Observe that for k = n the CD grammar system T has the property that 
L<k{r) = L. Hence, one can simply define the CD grammar system T' as being T. 

The converse is not true since a CD grammar system F can generate terminal 
strings in the < k mode, just by alternating two of its components and without, 
using the other components. Thus, such a derivation is not n-fair for any n. q 

Theorem 6.2 There exists a non-context-free and semilinear language L such that: 
(i) L can be generated by a CD grammar systern in the t mode of derivation. 
(ii) L cannot be generated by any n-fair CD grammar system for any n > 1. 

Proof. (i) Let L be the following non-context-free and semilinear language: 

L = {aibic> | 1 < i < j}. 

Let r be the following CD grammar system: 

r = (N,Z,Pl,P2,P3,P4,S), 

where: N = \S, X, X', Y, Y',Y",Z), S = {a ,6 ,c } , and the components: 

Pi = { 5 -—> XY, S —> X'Y',S —> X'Y"}, 

P, = {X —» aX'b,Y —> cY',Y —> cY"}, 

p., = { X ' — a X b , Y' —> cY, Y" —^ cZ}, 

P4 = {X' —> ab,Y" —> c, Y" —> cY"}. 
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One can easily verify that Lt{T) = L. 
(?//) In order to prove this statement, assume by contrary that L can be generated 

by a CD grammar system F that has the n-fairness property for some n > 1. 
Clearly, T must have a component, say a, that increases the number of occur-

rences of the symbol a at least by one. Similarly, F should have a component, say 
7, that increase the number of occurrences of the symbol c by.s. Assume that s is 
the maximum of the number of c symbols that can be produced by a component 
when it is applied only once. 

Since the CD grammar system T is n-fair for some fixed n > 1, it follows that 
after each v, consecutive steps in a derivation the number of occurrences of the 
symbol a is increased with at least 1 and the number of occurrences of the symbol 
c with at most, (n — l)s. 

Therefore, if a terminal derivation has length p, where p = nq + r, such that 
0 < r < n, then the derived word has at least q occurrences of the symbol a and at, 
most q(n — l).s + rs occurrences of the symbol c. 

Assume that this derivation produces the terminal word w = alblc?. Note that, 
q < i and that j < q(n — l )s + rs < q(n — l )s + ns. Therefore j < i(n — l).s + v,s. 
Note that n and s are fixed constants. 

It follows that the CD grammar system F cannot generate words cftfc1 with 
j > i(n — 1)« + ns. This contradicts our assumption that L(F) = L. j-j 

C o m m e n t . The above theorem is similar with another, well-known result from 
the theory of CD grammar-systems, see [3]. The derivation mode = k gives also 
some idea of fairness. However, it is known that, the language 

L = {a2" | n > 1} 

can be generated by a CD grammar system in the t mode, but L cannot be generated 
by any CD grammar system in the mode = k. 

Theorem 6.2 provides an example of a language that can be generated by a CD 
grammar system in mode t, but it cannot be generated by any 7),-fair CD grammar 
system for any n > 1. 

7 Parallelization of CD grammar systems 
In the following we shall deal with parallelization of languages using shuffle on 
trajectories. 

The parallelization of a problem consists in decomposing the problem in subprob-
lems, such that, each subproblem can be solved by a processor, i.e., the subproblems 
are solved in parallel and, finally, the partial results are collected and assembled 
in the answer of the initial problem by a processor. Solving problems in this way 
increases the time efficiency. It is known that not every problem can be parallelized. 
Also, no general methods are known for the parallelization of problems. 

Here we formulate the problem in terms of languages and shuffle on trajectories, 
and present some examples. 
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The parallelization of a. language L consists in finding languages L\, L> and T, 
T C V*. such that L = L\[AJyL2 and moreover, the complexity of L\, L> and T 
is in some sense smaller than the complexity of L. In the sequel the complexity 
of a language L refers to the Chomsky class of L, i.e., regular languages are less 
complex than context-free languages that are less complex than context-sensitive 
languages. 

One can easily see that every language L, L C {a, b}* can be written as L = 
a*\JJrb* for some set T of trajectories. However, this is not a parallelization of L 
since the complexity of T is the same with the complexity of L. 

In view of Corollary 5.1 there are non-context-free languages L such that L = 
L 1 LU T i 2 for some context-free languages L\, L2 and T. Moreover, one of those 
three languages can be even a regular language. Note that this is a parallelization 
of L. 

As a first example we consider the non-context-free language L C {a,,b.c}*, 
L = {w || w |„=| w |b=| w |c}. 

Consider the languages: Li .C {a, b}*, L\ — {u || u |n=| u L2 = <•* and 
T = {t || t | r= 2 | t |„}. 

One can easily verify that L = Li\JJtL2. Moreover, note that Ll and T are 
context-free languages, whereas L2 is a regular language. Hence this is a paral-
lelization of L. As a consequence of Corollary 5.1 one cannot expect a significant 
improvement of this result, for instance to have only one context-free language and 
two regular languages in the decomposition of L. 

Now we consider the case of CD grammar systems. Next example shows how 
one can define context-free constraints to generate a non-context-free language. 

Example 7.1 Let F = (N,11, S, Pi, P2) be the following CD grammar system,: 
N={S},Z = {a,b,c}, 

Pl = { p i : S —)• aS, p2 : S —> bS} 

P2 = {<7i : S —> cS, q2 : S — ) A}. 

The constraint language associated to the component Pi is Li = {p'ip2 \ n > 1} 
and. the constraint language associated to the component P2 is L2 = {q[lq2 \ n >1}. 
The set of trajectories is T = {7-2™u,!'+1 | n > ij.. The constraint language associ-
ated to the CD grammar system r is 

LillJTL2 = {pllp?q?q2 \n > 1}. 

One can easily verify that the language generated by the CD grammar system T 
with the above constraints is: 

L(T) = {anbnc11 | 7), > 1}. 

• 

Each set, T of trajectories from the above examples concerning CD grammar 
systems does not have the fairness property. However it is not known if the language 
L = \anbncn | n > 1} can be generated by a CD grammar system using constraints 
with the fairness property. 
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8 Conclusions 
We considered the notion of trajectory in connection with CD grammar systems. 
The use of trajectories in the theory of CD grammar systems offers some new pos-
sibilities to investigate this area. The concept of fairness can be introduced at the 
level of the components of a CD grammar system, at the level of the productions 
of a CD grammar system or at the level of the teams used in the derivations of a 
CD grammar system. For the case of teams, one should put, labels to all possible 
teams and consider as valid only those derivations that follow trajectories from a 
certain, fixed set of trajectories. Mixed fairness constraints are also possible. For 
a given CD grammar system, the valid derivations can be defined as being those 
derivations that satisfy a certain fairness constraint at the level of components and 
another fairness constraint at the level of productions, etc. Therefore, this frame-
work offers a great flexibility in modelling the fairness phenomenon with respect to 
CD grammar systems. 

Fairness is a natural property of a CD grammar system and it leads to new 
interesting properties. For instance, it is not known the generative power of the 
CD grammar systems that use constraints with the fairness property. 

There are different natural variants of the fairness property. The fairness prop-
erty can be considered also with respect to only a part (a fixed subset) of the 
components (or of productions or teams) of a CD grammar system. 

The fairness property can be relaxed or modified in other, different, ways. For 
instance one can consider the restriction that there exists a fixed u > 1 such that 
in any terminal derivation, in any n consecutive steps of it, each component does 
occur at, least, once, but it does not occur more than k times, where k is a fixed 
number. 

The interrelations between the fairness property and the generative modes t, 
= k, < k and * are subjected for further research. 

A more general approach, based on geometric considerations, can be considered. 
Assume that we fix two regions A and B in a many dimensional space (the number 
of dimensions is equal with the number of versors that encode the trajectories). 
The regions A and B are not necessarily disjoint. A derivation is considered valid 
iff the associated trajectory is contained in the region A but it, avoids the region B. 
Note that this approach is an extensions of the notion of fairness depicted in Figure 
2. There the region A is the band of the plane bounded by the lines y = x 4- 4 and 
y = x — 4 whereas the region B is empty or any region outside of A. 

The idea behind this considerations is also the existence of non-critical sections 
(devices) described by the region A and of critical sections (devices) described by 
the region B. 

Another important problem is the problem of parallelization of languages, i.e., to 
express a language as the shuffle of two (or more) other languages over a certain set 
(or sets) of trajectories. The possibility of decomposing a language as the parallel 
composition of other, less complex, languages is of theoretical but, especially of 
practical interest. This problem leads to the possibility to perform the parsing 
operation or other operations, by a parallel machine. 
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It is an open problem to decide for a given language L (L defined using a CD 
grammar system) whether or not there exist two languages L\ and L> and a set T 
of trajectories, such that L = L i U J t ^ -

The problem of parallelization of languages opens new connections between CD 
grammar systems and the theory of parallel computation. 

References 
[1] A. Atanasiu and V. Mitrana, "The modular grammars", Intern. J. Computer 

Math., 30 (1989), 101-122. 

[2] E. Csuhaj-Varju and J. Dassow, "On cooperating distributed grammar sys-
tems", J. Inform. Proc. Cybern. EIK, 26 (1990), 49-63. 

[3] E. Csuhaj-Varju, J. Dassow, J. Kelemen and Gh. Paun, Grammar Systems, 
Gordon and Breach, 1993. 

[4] J. S. Golan, A. Mateescu and D. Vaida, "Semirings and Parallel Composition 
of Processes ", Journal of Automata, Languages and Combinatorics, 1 (1996) 
3, 199 - 217. 

[5] L. Guo, K. Salomaa and S. Yu, Synchronization Expressions and Languages, 
The University of Western Ontario London, Dept. of Comp. Sci., Technical 
Report 368, 1993. 

[6] T. Harju, M. Lipponen and A. Mateescu, "Flatwords and Post Correspon-
dence Problem", Theoretical Computer Science, TCS, 161 (1996) 93 - 108. 

[7] L. Kari, On insertion and deletion in formal languages, PhD Thesis, Univer-
sity of Turku, Turku, Finland, 1991. 

[8] L. Kari, A. Mateescu, G. Paun and A. Salomaa, "Teams in cooperating gram-
mar systems", J. Expt. Theor. Artif. Intell, 7(1995) 347-359. 

[9] J. Kelemen and A. Kelemenova, "A subsumption arhitecture for generative 
symbol systems", Cybernetics and Systems Research '92, Proc. 11th Euro-
pean Meeting Cybern. Syst. Res. (R. Trappl, ed.), World Scientific, 1992, 
1529-1536. 

[10] A. Kelemenova and E. Csuhaj-Varju, "Languages of colonies", 2nd Intern. 
Coll. Words, Languages, Combinatorics, Kyoto, 1992. 

[11] H. C. M. Kleijn and G. Rozenberg, "A study in parallel rewriting systems", 
Inform. Control, 44 (1980), 134-163. 

[12] M. Kudlek and A. Mateescu, "Distributed Catenation and Chomsky Hier-
archy", FCT'95, Dresden, 1995, Lecture Notes in Computer Science, LNCS 
965, Springer-Verlag, 1995, 313-322. 



CD Grammal• Systems and Trajectories 157 

[13] M. Kudlek and A. Mateescu, "Rational and Algebraic Languages with Dis-
tributed Catenation", DLT'95, Magdeburg, 1995, in Developments in Lan-
guage Theory II, eds. J. Dassow, G. Rozenberg and A. Salomaa, World Sci-
entific, Singapore, 1996, 129-138. 

[14] W. Kuich and A. Salomaa, Semirings, Automata, Languages, EATCS Mono-
graphs on Theoretical Computer Science, Springer-Verlag, Berlin, 1986. 

[15] A. Mateescu, "On ( Left ) Partial Shuffle", Results and Trends in Theoretical 
Computer Science, LNCS 812, Springer-Verlag, (1994) 264-278. 

[16] A. Mateescu, G. Rozenberg and A. Salomaa, "Shuffle on Trajectories: Syn-
tactic Constraints", TUCS Technical Report, 41, "1996. 

[17] A. Mateescu and A. Salomaa, "Formal Languages: an Introduction and a 
Synopsis", Chapter 1, in Handbook of Formal Languages, eds. G. Rozenberg 
and A. Salomaa, Springer-Verlag, 1997, 1-40. 

[18] A. Mateescu and A. Salomaa, "Parallel Composition of Words with Re-
entrant Symbols", TUCS Technical Report, 15, 1996. 

[19] A. Mateescu, K. Salomaa and S. Yu, "Decidability of Fairness for Context-
Free Languages", to appear in Proc. of DLT'97, Thessaloniki, July, 1997. 

[20] H. A. Maurer, G. Rozenberg and E. Welzl, "Using String Languages to De-
scribe Picture Languages", Information and Control, 3, 54, (1982) 155-185. 

[21] R.. Meersman and G. R.ozenberg, "Cooperating grammar systems", Proc. 
MFCS '78 Symp., LNCS 64, Springer-Verlag, 1978, 364-376. ' • 

[22] P. H. Nii, "Blackboard systems", in The Handbook of AI, vol. 4 (A."Barr, P. 
R. Cohen, E. A. Feigenbaum, eds.), Addison-Wesley, 1989. 

[23] Gh. Päun and L. Säntean, "Parallel communicating grammar systems: the 
regular case", Ann. Univ. Buc., Series Mat.em.-Inform. 38 (1989), 55-63. 

[24] G. R.ozenberg and A. Salomaa,(Eds.), Handbook of Formal Languages, 
Springer, 1997. ' 

[25] A. Salomaa, Formal Languages, Academic Press, New York, 1973. 


