
Acta Cybernetica 13 (1997) 159-172.

On Hybrid Connectionist-Symbolic Models *

Petr Sosik tt

Abstract
There are many similarities between grammar systems and artificial neural

networks: parallelism, independently working elements (grammars/neurons),
communication of the elements, absence of centralized control. On the other
hand, there are crucial differences between symbolic and quantitative data
processing.

We will try to give a brief overview of the methods of "building bridges"
between symbolic and connectionist paradigm and to propose some recent
results. After that, we will touch some essential problems, concerning in-
corporation of accepting/generating grammar systems and neural network
models.

Keywords: grammar system, artificial neural network, Unite automaton,
grammatical inference.

1 Introduction
First let's recall some characteristics of the constructions we intend to deal with,
emphasizing their aspects important for the following discussion. This is not to
replace broad and exact descriptions in the basic literature referred to.

Moreover, we restrict our attention to rather theoretical aspects of interactions
of neural nets and grammars/grammar systems in hybrid models. For a broader
discussion of linking symbolic and subsymbolic systems we refer e.g. to [38].

Speaking about some types of distributed systems, we will use the term "agent"
for some simple, but subsystem, interacting with the environment (including other
agents) [14]. In terms of grammar systems the agent represents usually a grammar
(Chomsky, Lindenmayer or other type [27]), in terms of neural network it represents
one neuron or a small group of them.

Let's keep in mind that the artificial neural networks are (not only) biologically
motivated, so that each model is looked at as a mathematical machine, possibly
physically implementable. That's why this "implementing" point of view will be
emphasized in the following paragraphs.

'Presented at workshop Grammar Systems: Recent Results and Perspectives, July 26-21, 1996,
Budapest.

^Institute of Mathematics and Computer Science, Silesian University at Opava, Bezruv covo
nam. 13, 74601 Opava, Czecli Republic, email: Petr.Sosik@fpf.slu.cz

t Research supported by the Grant Agency of Czech Republic, grant No. 201/95/0134.

159

mailto:Petr.Sosik@fpf.slu.cz

160 Pet,i Sosík

1.1 Automata

A formal automaton is an accepting device, which is primarily intended to classify
strings as accepted, or rejected. Its input string (over a finite alphabet) is accessed
sequentially. At each step the automaton reads one symbol of the string (and
eventually performs some other actions), at the next step it can read the neighboring
symbol only. Generally it needs a read/write memory of an unlimited size, but in
the most cases of interest in this paper (languages within the context-sensitive
class), the amount of memory actually needed can be limited to the length of the
processed string. For basic description of formal automata and grammars we refer-
to [19], [39].

1.2 Grammars

A formal grammar is a form of syntactical description of some formal language.
The most important component is a set of rewriting r ules (over some finite alpha-
bet). We can interpret it as a generating device, at each step applying some of its
rules to a processed sentential form. Due to the fact, that such a device must be
eventually able to produce any string of its (often infinite) language, it is mostly
nondeterministic (which concern the selection of a rule and a position within the
processed string where it is applied). An implementation of a grammar would re-
quire an unlimited size memory for reading/writing the string just generated. The
memory must allow in principle random access, i.e. at each step any symbol(s) of
the string generated can be processed. Some types of grammars can be transformed
to a normal form suffering with sequential access. Moreover, the memory must be
able to insert new symbols into a processed string.

1.3 Neural networks
An artificial neural network (ANN) is a finite set of interconnected autonomous
agents - neurons. There exist also models of infinite size, but they are rather
special [37]. Typically all neurons in the network compute the same function (1),
where Xj are the inputs, the yi is the output of i-th neuron in the network, 0i is the
threshold function, see Fig.l. Constants w^ are called weights of the inputs. For a
more detailed description we refer to [18], [34].

The input of ANN is some ?i-tuple and the output some m-tuple of real-valued
signals. There is no relation between n and m. The neurons are often grouped to
layers, each layer being connected by its inputs to its lower and by its outputs to its
upper neighbor. Then the topmost layer is called the output layer, connecting its
outputs to the outer environment, the most bottom one with its inputs incoming
from the environmen is the input layer and the others are the Indde-n. ones. Within

N

(1)
3 = 1

On Hybrid Connectioiiist,-Symbolic Models 161

Figure 1: The basic model of neuron and the common types of threshold function.

one-layer networks, the same categorization can be applied to single neurons. There
are also intra-layer or bidirectional connections in some models.

The topology of the network (with respect to the paths of passing signals) can
be feedforward or feedback. In the later case, the existence of the feedback loops
can lead to the complex dynamical behavior of the network.

There is a pre-defined communication graph of the neurons. It can evolve during
a training process (some new connections can appear, some old ones can vanish,
existing ones can change their strength), but generally these changes are much
slower than the normal flow of information (signal levels) through the network.

Thus we distinguish between the learning mode of the network when the weights
(and sometimes other parameters or even topology) change, and the recall mode,
when only signal level changes. There is a lot of learning (training) algorithms,
various heuristics, which we will not discuss here in general, although it is just, the
training algorithm, what mostly influences the network behavior.

From another point of view, it is possible to use ANNs with a certain set, of
threshold functions for approximating any real function with arbitrary small error
[23], [30], but this approach is far from symbolic information processing we intend
to deal with.

In the most of the known models all the neurons operate in parallel (except,
for instance, Hopfield network with asynchronous mode) and there is no centralized
control of the network activity; the neuron's behavior is influenced by its neighbours
only. Neurons can operate in both continuous and discrete time, in the latter case
often with a common clock.

162 Pet,i Sosík

1.4 Grammar systems
A grammar system usually consists of some set of (relatively autonomous) com-
ponents (grammars, agents), performing some operations with a processed string.
The notion, originally, was introduced for modelling syntactic properties of multi-
agent, systems (for details see [6] and [9]), but many variants of grammars (rewriting
systems) with regulation and/or modularization can be considered as grammar sys-
tems, too (confer to [31], [8]). Here we only emphasize some special capabilities of
grammar systems, different from those of single grammars.

• Parallelism: while grammars with parallel derivation are rather special, some
of basic grammar system models are inherently parallel, e.g. Lindenmayer
systems (although they are rather a kind of parallel grammar than a grammar
system [27]), parallel communicating grammar systems (PCGS),

• In the case of these parallel grammar systems, a memory for storing the
processed string must allow multiple agents to access different parts of the
string at the same time.

• In some models (Lindenmayer systems [31], colonies with terminal mode of
rewriting [21], . . .) there is a virtually unlimited potential of rewriting rules
(each rule must be simultaneously at arbitrary number of symbols in gener-
ated string).

• There are various forms of communication between agents; the simplest form
is probably synchronization. A communication graph of agents can be prede-
fined (e.g. colonies, eco-grammar systems [5]) or dynamically defined during
the work of the system (e.g. PCGS).

Especially the requirements for the dynamic communication graph, the unlim-
ited potential of rules, but also for the parallel memory capable of inserting symbols
can be a source of implementational difficulties [24]. Among physically existing sys-
tems, most close to these requirements seem to be those with a great number of
elements moving freely (immune system [29], splicing systems [12], . . .) .

Accepting grammar systems have also been defined [10], [11], relaxing some
of these requirements (from the implementation point of view) of the generating
systems: the degree of nondeterminism (however its definition could be problematic
[10]) is often lower, there is no necessity of inserting new symbols into the processed
string if we do not admit A-rules.

2 A motivation for hybrid models

2.1 Goals and expectations
Both grammar and neural systems, representing symbolic and quantitative data,
manipulation, are inspired (partially) from the areas of AI and AL. Indeed in bio-
logical systems we can find connection of both approaches. For example: specific

On Hybrid Connectioiiist,-Symbolic Models 163

immunity could well be viewed as a competition between grammars, generating
polysaccharide strings covering the antigen; and lymphocyte automata attempting
to recognize them. And this competition causes adaptation of both of these systems
[29]. ' • .

Among the advantages of ANNs the most important are adaptability, generali-
zability, massive parallelism, noise tolerance and graceful degradation (robustness).
Main disadvantages are difficult understanding and explanation of the results and
time-consuming learning. The symbol processing systems have their strength in
easy manipulation with symbolic and rule knowledge and wide base of theoretical
results, their weaknesses dwell in sensitivity to noise and difficult, often almost
impossible adaptation to a novel data. As the disadvantages of one type systems
are balanced by the advantages of second type ones, the hybrid architectures seem
to be a very promising way [4]. Another advantage of hybrid architectures can
be their scalability. Finally, some authors find them crucial to understanding and
constructing cognitive models [17].

2.2 Some basic ideas
The first, step of a neural symbolic processing is to find a. proper coding of symbols.
In animal nerves all signals are of the same amplitude and stimuli intensity is
expressed by their frequency [25]. Moreover, coding via the signal intensity leads
to loss of robustness due to the necessity of distinguishing between close signal
levels. Symbols are coded most often by a group of parallel stimuli, each with
clearly distinguishable intensity levels (typically binary). Very often a "one-hot"
coding is used (each symbol is assigned a separate input of the ANN).

With a piece of abstraction we can think about symbol-processing structures
within the brain, with their abilities having been obtained by training. Training is .
mostly much more effective with a teacher: a neural network obtains some stimuli
and after processing them gives output. Then the teacher produces a training
signal, expressing the difference between desired output and output, given by net,.
This signal is. utilized by the to change its internal structure slightly, so that, after
many such cycles, resulting changes converge to correct (desired) outputs. From
this point of view it seems that, the trainable neural network should be closer to an
accepting symbolic system than a generating one, because it is easier to obtain a,
training signal in the accepting case. This is indeed the approach of [1], [2], [16],
[36] and many others.

Now, how complex languages can biological neural nets "recognize"? Strictly-
speaking, all the languages we can ever recognize should be regular, because at some
moment we are able to keep in mind only a limited amount of information. Really
most of the languages we recognize (for example languages of syntactical description
of visual images, which we know the brain uses [13]) are finite or without the need
of recurrent, application of the same rule(s) many times, which is typical for formal
languages. This, on the one hand, could in an extreme case lead to an impression
of the brain as a system of finite state automata (FSA). On the other hand, the
effectiveness of neural processing of such languages clearly couldn't be by using FSA

164 Pet,i Sosík

machinery. To give a rather expressive example, we know how long the transfer of
one stimulus through the neuron and the following relaxation takes - something
like "neural step" [3]. A.simple reflex reaction, of a child who suddenly runs into
the roach takes only about 40-60 such time steps [20], done of course massively
parallel!

We often perform tasks that are clearly non-regular. Hardly anybody is capable
of multiplying two arbitrary ten digit numbers in his mind, even after long .training
- this seems to be a rather "nonneural" task. The most primitive tool we can use
is paper and pencil - external memory for symbol manipulation. Imagine, how we
would recognize e.g. strings of language {0nln|n e A'}- Moreover, the brain also
contains some very specialized structures, created not by training of an individual,
but by evolution [25].

To conclude, we use specialized tools for accepting non-regular language, that
were not created by a simple training within our brains. This again leads us to the
necessity of hybrid architectures, already expressed in the previous section.

2.3 Theoretical computational power of the neural nets

Now, let's briefly characterize ANN models, with enough computational power to
accept four basic classes of formal languages. The models are size-independent on
the length of the processed string. In the later text a recurrent neural 'net/work
(R.NN) is referred to. It.is one-layer fully interconnected ANN with N neurons
and n inputs, with a dynamics characterized by the equation (2). In addition
to (1), v,j are the inputs of the network with weights u.¡7- for i-th neuron, c¿ is the
threshold value. In the following four cases of equivalence the bottom-left, threshold
functions of the Fig.l has The. network operates in discrete'time and the input string
is presented sequentially, i.e. one symbol at each step. The precise definition of
language acceptance can be found in [32], [33]. Here we only note, that the used
RNN has two binary outputs,, the "data" one with accepted/rejected signal and the
"validation" one, stating whén the data are valid.

N N

.7 = 1 J 1

1. Acceptance of regular languages: RNN with discrete outputs of all neurons,
i.e. output of each neuron is 0 or 1. A result (output of the network: ac-
cepted/rejected) is provided in the next step after the last input symbol has
been presented. This well-known result can be found in [22].

2. Context-free languages: RNN with rational-valued outputs and weights of the
neurons. As above, a result is provided immediately after the input, string has
been presented. The precision óf computations needed is dependent, on (and
limited by) the length of the input string. This is rather trivial consequence
of the proof of the main result in [32], the principle of which is given in section

On Hybrid Connectionist-Symbolic Models 1G5

3.1. It is clear, that the stack of a pushdown automaton could be implemented
by the same way as the tape of a Turing machine (TM) in [32].

3. Context-sensitive languages: RNN with rational-valued outputs and weights
of the neurons, providing a result after some delay after the input string has
been presented. Again the precision of computations needed is by the length
of the input string. For deriving this result from [32], it is enough to note the
difference between TM and the linear-bounded automaton [39].

4. Recursively enumerable languages: recurrent ANN with rational-valued out-
puts and weights of the neurons, providing a result after a delay, which can
grow over any limit. The necessary precision of computation is also un-
bounded. This is proven in [32].

3 An overview of hybrid architectures
Architectures coupling symbolic and "neural" methods contain mostly separate
neural and symbolic modules. The input of neural net has usually a form of sym-
bolic knowledge (a string or a set of them, properly coded), its output is again
interpreted in terms of symbolic knowledge (rules, semantic knowledge...) [38].
Rarely we can meet direct incorporating of symbolic and neural computation prin-
ciples in one module [22], [35],

3.1 Computational power studies
The aim of these studies is mostly to give a proof of computational power of partic-
ular type of ANN. The proofs are constructive, i.e. the result is an ANN modelling
the behavior of the the original system (usually some formal automaton), with-
out care of computational complexity and/or model size. Some models are even
of infinite size, although the original system is finite [37]. As an example of this
approach we present results in [32]. The authors proved that RNN restricted to
rational-valued weights and signals has the universal computational power, by con-
structing a neural model of any TM. The principle of the model (highly simplified)
is as follows: First, the tape alphabet is coded by a set of natural numbers less
than some b, the empty symbol being coded as 0. Then any string rir2 . . . '/ ;„ over
the tape alphabet can be coded as

k
C ' (r 1 r 2 . . . r t) = ^ g e (0 , l) . (3)

¿=1
(In fact the coding is more complicated to avoid the necessity of distinguishing

between two very close numbers.) Now let p be the position of the head on the
tape of TM. Let output value of neuron a code the portion 7,;)+i7'),+2 . . . of the tape
by the coding (3). Let code portion r\r2 • • - rp of the tape in reverse order. Then
we can extract the representation of the symbol read by the head as _bop\, where

166 Pet,i Sosík

op is the output value of neuron /3. Movement head to the right is represented by
setting

00 •= {op + [boa\)/b, oa := boa - [boa\; (4)

and analogously to the left. Here [-'-'J is the integer part of x. Rules of TM are
then represented by groups of neurons realizing proper logic function. The whole
model consists of a fixed number (some hundreds) of neurons. The neurons a, ft
play the role of wheels rewinding the TM tape, the head being placed between
them. Thus the unbounded length of tape is replaced by the unbounded precision
of rational number.

If we extend domain of computation to real numbers, we obtain even more
powerful (from the computational complexity point of view) devices than TMs
(the power equals to TM consulting sparse oracle) [33].

There are (from the implementational point of view) two major drawbacks of
this approach: Firstly, there is the necessity of unbounded precise rational number
computation. Secondly, the architecture is "hardwired" and practically involves no
adaptation. Moreover, it would be very difficult to extend this approach towards
parallel working grammar system due to sequential access to the processed string.

3.2 Topology preserving models

These models are topologically similar to the original system, including both num-
ber of elements (neurons, states, rules) and the connections between thern. Typi-
cally each element of one system is modelled by one or a group of the model. The
advantage of this approach is often the possibility of and giving a proof of functional
equivalence of the systems in both directions, with respect to the computational
complexity. Also direct manipulation with a symbolic knowledge within the ANN
is then possible.

As an example the classical paper [22] can be presented, establishing equivalence
between finite automata and RNNs with discrete-valued outputs. In [15]. neural
structures equivalent to the state transitions of FSA are used for inserting symbolic
knowledge into a RNN. Also some of the models referred to in [38] have this prop-
erty, what can lead to using a-priori training (see end of this section). In [35] (see
Fig. 2) we deal with computational equivalence of eco-grammar systems and ANNs
in both directions. Here parallel data processing is fully preserved, which allows to
construct model of computational complexity very close to original system.

Again, the disadvantage of this approach is the fact that neural structures topo-
logically similar to the original system are often heterogeneous, what can cause
problems with learning, because the most of learning algorithms require a (compu-
tationally) homogeneous network for propagating a learning signal through it and
making gradient-directed steps towards the solution.

On Hybrid Connectionist-Symbolic Models

Agent Ai

o o o o ••• o

Figure 2: The neural model of an eco-grammar system.

168 Pet,i Sosík

3.3 Adaptive models
These models are clearly the most promising ones and are often applied to the
grammatical inference problems, natural language understanding or as a part of
knowledge and reasoning systems [38], [4].

A lot of recent works deal with a grammatical inference of some accepting device,
as FSA [1], [15], or deterministic pushdown automaton (PDA) [36]. This approach
seems to be most suitable for studying interactions of neural and symbolic parts of
the systems, for instance methods for extracting FSA or PDA from trained RNN
of various orders. It seems that if one step of the modelled accepting device is
governed by n factors (for PDA n = 3 : a state, a tape symbol, a stack symbol),
n-tii order neurons suit best [16], [36]. More complex languages (context-sensitive)
accepting devices can be also inferred using RNNs, but in these cases extending
"nonneural" inferring algorithms are used [2].

As an example we present the results in [1], using the extraction of unbiased
FSA from the trained homogeneous first order RNN:

First, RNN (with one output unit giving value in (0,1), which corresponds to
rejecting/accepting of input string) is trained using positive and negative examples.
Then a prefix tree of these strings is built and its nodes are identified with the states
of an unbiased FSA (UFSA - its definition is given in [1]). Each state is assigned a.
set of corresponding hidden layer neuron output values, forming a cluster (initially
consisting of a single point) in the state space of the hidden layer neuron outputs.
Then, a hierarchical clustering in this space is performed. Whenever two clusters
are merged, parallel merging of their associated'states is performed in the UFSA
representation. After each step the consistency of the UFSA with the training set is
tested. Whenever an inconsistency occurs, the process is stopped. The advantage
of this approach is that there is no estimation of the number of the UFSA states,
minimal cluster distance and so on: only the metric for cluster distance must, be
defined.

A lot, of similar results cited above lead us to the opinion that, (from the adapt-
ability point, of view) there is no need for topological equivalence of the original
system and the model. The most natural representation of one state of the UFSA
in RNN is a cluster of neuron states, which has nothing to do with the net topology.
Generally, even if we haven't any prior knowledge of the complexity of the grammar
inferred, the RNN can create a model of this grammar in the space of its internal
states. Then we apply some heuristic algorithm for extracting this grammar mak-
ing it as simple as possible to be consistent with the set of training strings. The
drawback of this approach is again the problematic interpretation of the results of
ANN and its transformation to a symbolic knowledge.

4 Hybrid models with grammar systems
One possible way of constructing such models could be incorporating some sym-
bol manipulating principles into the neural nets, what's in opposite to usual ap-
proaches, integrating neural nets as a part of rather complex symbolic knowledge

On Hybrid Connectioiiist,-Symbolic Models 169

manipulating architectures. Some problems of this intention are discussed here.
First., a communication between agents in distributed systems (including various

kinds of systems from multicomputers to neural nets) could in general be charac-
terized as by request (when the agents are passive until any external stimulus) or
by command (when the agents activelly offers their free cappacity and/or results).
The terminology is inspired by [7], [28], where PCGSs are studied. It seems, that
the communication by request is closer to the nature of ANNs, when every agent
(neuron), through the weights of its connection, can decide which other agents it
gets information from.

As it was mentioned in section 1, dynamically defined and parallel communi-
cation between agents and parallel access of the agents to different parts of the
processed string is typical for some types of grammar systems. This is contrasted
to the nature of ANNs with fixed communication graphs. To introduce a "commu-
nication dynamics" into ANNs, one have to create highly interconnected structures
(including all possible communication branches) equipped with a mechanism of
dynamic activation of the connections needed. (This can be directed e.g. by an
occurance of some patterns in the string(s) processed by the system) Due to the con-
clusions in section 2, pre-defined specialized structures allowing this dynamics need
to be used as a part of NN. See [36] where a "neural PDA" is presented, equipped
with external continuous stack. Unfortunately, the existence of such structures is
often in contradiction with the request for homogenity of network dynamics, be-
cause many training algorithms require differentiability of the transfer function of
the neurons and groups of neurons.

Another problem can be caused by the fact that the recurrent application of the
same rule (group of rules) to the generated or accepted string is typical for grammars
(and thus also agents of grammar systems). ANNs, in contrast, obviously reach a
stable state in a few steps, due to their nature as an asymptotically stable dynamical
system. In the models described in section 3.3 this problem has been overcome by
the sequential reading of the input string, providing stimuli not allowing the system
dynamics to stabilize. This solution leads nevertheless to the lack of parallelism.

Also a memory for storing the processed string, capable of replacing some, sub-
strings by ones of different length, is a very "nonneural" device. Both these prob-
lems seem to be best solved by adding another special structure integrating the
one-step actions of agents into the processed string and re-loading the result into
net inputs. During the phase of learning, such a network could be "unfolded in
time", just, as in the Backpropagation algorithm [18], [36] and similar ones, giving
promising results.

5 Conclusion
Although there have been many successfully working hybrid neural-symbolic ar-
chitectures referred to in the last, two sections, it still seems to be possible to find
a closer connection of grammar systems and ANNs, particularly exploiting mas-
sive parallelism and no need of centralized control in both system types. A highly

170 Pet,i Sosík

interconnected RNN looks as a promising way of constructing trainable "neural"
accepting symbol-processing system, eventually, with a lot of autonomous modules,
equipped with some special structures for symbol storing, transfer and some other
tasks which are inherently "nonneural". It would be capable of parallel string
processing and inter-agent communication.

There are many open problems, including the definition of training hybrid sys-
tems and proofs of their stability and convergence. Some of them have been par-
tially solved already, as the training of ANNs is only now beginning to be deeper
understood task [4]. Anyway, parallelism and decentralized processing are the main
features of present computer architecture trends.

References
[1] R. Alquezar, A. Sanfeliu: A hybrid connectionist-syrnbolic approach to regular

grammatical inference based on neural learning and hierarchical clustering. In:
Grammatical Inference and Applications, proc. of ICGI-94, R. Carrasco. .T.
Oncina (eds.), Springer-Verlag 1994, pp.203-211.

[2] R. Alquezar, A. Sanfeliu, J. Cueva: Learning of context-sensitive language ac-
ceptors through regular inference and constraint induction. In: Proc. ICGI'06,
L.Miclet, and C.de la Higuera (eds.), Springer-Verlag, Lecture Notes in Artifi-
cial Intelligence 1147, pp.134-145, 1996.

[3] P. Arhem: On artificial intelligence and neurophysiology: two necessary ques-
tions. In: .J.L. Casti, A. Karlqvist (eds.): Real Brains, Artificial Minds. North
Holland, Elsevier Science Publishing Co., Inc., N.Y. 1987.

[4] L.A. Bookman, R. Sun: Editorial: Integrating neural and symbolic processes.
Connection Science, vol. 5, No. 3-4, p.203, 1993.

[5] E. Csuhaj-Varjii, A. Kelemenova, J. Kelemen, Gh. Paun: Eco-grammar sys-
tems: A gramatical framework for life-like interactions. Silesian University
CSR-TR-95/2, Opava, 1995.

[6] E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. Paun: Grammar Systems: a
Grammatical Approach to Distribution and, Cooperation. Gordon and Breach
Science Publishers, London, 1994.

[7] E. Csuhaj-Varju, J. Kelemen, Gh. Paun: Grammar systems with WAVE-like
communication. Computers and Artificial Intelligence, 15 (1996), 419-436.

[8] .T. Dassow, Gh. Paun: Regulated Rewriting in Formal Language Theory.
Springer-Verlag, Berlin, Heidelberg, 1989.

[9] J. Dassow, Gh. Paun, G. Rozenberg: Grammar Systems. In: Handbook of
Formal Languages, Vol. 2, G. Rozenberg and A. Salomaa (eds.), Springer,
Heidelberg, 1997, 155-213.

On Hybrid Connectioiiist,-Symbolic Models 171

101 H. Fernau, H. Bordihn: Remarks on accepting parallel systems. Intern. J.
Computer Math., vol. 56. 51-67.

11] H. Fernau, M. Holzer, H. Bordihn: Accepting multi-agent systems: the case
of cooperating distributed grammar systems. Computers and Artificial Intel-
ligence, vol. 15 (1996), No. 2-3, 123-139.

121 R- Freund, L. Kari, Gh. Päun: DNA computing based on splicing: the exis-
tence of universal computers. Technische Universität Wien TR 185-2/FR-2/95,
Wien 1995.

131 K.S. Fu: Syntactic Pattern Recognition and Applications. Englewood Cliffs,
NJ, Prentice-Hall, 1982.

141 M.R. Genesereth, N. J. Nilsson: Logical Foundations of Artificial Intelligence.
Morgan Kaufman, Los Altos, Cal., 1987.

151 C. Giles, C. Omlin: Extraction, insertion and refinement of symbolic rules in
dynamically-driven recurrent neural networks. Connection Science, vol. 5, No.
3-4, p.307, 1993.

161 M. Goudreau, C. Giles, S. Chakradhar, D. Chen: First-order vs. second-order
single layer recurrent neural networks. In: IEEE Trans, on Neural Networks,
vol. 5, No. 3, p. 511, 1994.

17] J. Hendler: On the need for hybrid systems. • Connection Science, vol. 1, No.
1, p.0, 1989.

18] J. Hertz et,.al.-.Introduction to the Theory of Neural Computation. Addison-
Wesley, 1991.

191 JE . Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, 1979.

201 Hofejs: A view on neural network paradigms development. Neural Net/work
World, IDG Prague, 1991,1992.

211 A. Kelemenovä, E. Csuhaj-Varjü: Languages of colonies. Theoretical Computer
Science 134, Elsevier, 1994, 119-130.

221 S.C. Kleene: Representation of events in nerve nets and finite automata.. In:
C.E. Shannon, J. McCarthy (eds.): Automata Studies, 3-41, Princeton Univ.
Press 1956.

23] V. Kürkovä: Universal approximation using feedforward neural Gaussian bar
units. Proceedings of ECAI'92, Vienna, 1992, 193-197.

241 M. Malita, Gh. Stefan: The eco-chip: A physical support for artificial life
systems. In: [26], 260-275.

172 Pet,i Sosík

[25] J.G. Nicholls, A.R. Martin. B.G. Wallace: From Neuron to Brain. Third edi-
tion, Sinauer Ass., Sunderland, Ma, 1992.

[26] Gh. Päun (ed.): Artificial Life: Grammatical Models. The Black Sea. University
Press, Bucharest, 1995.

[27] Gh. Päun: Foreword. In: [26], v-ix.

[28] Gh. Päun, L. Säntean: Parallel communicating grammar systems: the regular
case, Aim. Univ. Buc., Math.-Informatics Series 38 (1989) 55-63.

[29] A.S. Perelson: Immune network theory. Immunological Reviews, Santa. Fe In-
stitute, No. 110 (1989), 5-36.

[30] T. Poggio, F. Girosi: Networks and the best approximation property. Biological
Cybernetics, 63, 1990, 169-176.

[31] G. Rozenberg, A. Salomaa: The Mathematical Theory of L Systems. Academic
Press, New York 1980.

[32] H. Siegelmann, E. D. Sontag: On the computational power of neural nets.
In: Proc. Fifth ACM Workshop on Computational Learning Theory, 440-449,
Pittsburgh 1992.

[33] H.T. Siegelmann, E. D. Sontag: Analog computation via neural networks.
Theoretical Computer Science, 1994.

[34] K.P. Simpson: Artificial neural systems. Pergamon Press, N.Y., 1990.

[35] P. Sosik: Eco-grammar systems and artificial neural networks. Computers and.
Artificial Intelligence, No. 2-3 (1996), 247-264.

[36] G. Sun, C. Giles, H. Chen, Y. Lee: The neural network pushdown automa-
ton: model, stack and learning simulations. University of Maryland T R Nos.
UMIACS-TR-93-77 & CS-TR-3118, 1995.

[37] D. Wolpert: A computationally universal field computer which is purely linear.
Los Alamos National Laboratory report LA-UR.-91-2937.

[38] A. Wilson, J. Hendler: Linking symbolic and subsymbolic computing. Con-
nection Science, vol. 5, No. 3-4, p.395, 1993.

[39] D. Wood: Theory of Computation. John Wiley & Sons, 1987.

