Acta Cybernetica 13 (1997) 173-196.

Various Communications in PC Grammar Systems *

Gyorgy Vaszil 1

Abstract
A slightly modified communication protocol called immediate communica-
tion is introduced for PC grammar systems and the generative power of these
systems is shown to be equal to what we call homogeneous systems, systems
with queries of a special form. To acquire this result we also introduce a
generalization of returning systems, called systems with returning languages.

1 :Introductic')n :

Parallel communicating grammar systems (PC grammar systems) were introduced
in 6] as a grammatical description of the so-called classroom model of problem
solving. The agents of the classroom are generative grammars, which all operate
on their own sentential form, these represent the subsolutions of the overall solution
which is the language generated by the whole system. During their operation the
agents may communicate, they may exchange their strings with each other. The
language generated by the system is the language generated by the classroom leader
which is one of the component grammars, usually called the master grammar of
the system.

Parallel communicating grammar systems have been the subject of detailed
study over the past.few years. See [3], [4], [5] for results on their generative power,
and [2] on their size parameters. A summary of their properties can be found in
the monograph [1].

The power of PC grammar systems is measured by their generative capacity,
which may depend on a number of factors. The type of the component gramiars
and the number of the components are obviously very important among these
factors, but there are many others to be considered.

In their paper [6], Gh. Paun and L. Santean considered variants with a universal
clock and two basic methods for communication. The presence of the universal clock
means that all components use their rules synchronized in time, one derivatiou step
is taken by the system with all components using one of their rewriting rules.

*Presented at the workshop Grammar Systems: Recent Results and Perspectives, July 26-27,
1996, Budapest.

fResearch supported by the Hungarian Scientific Research Fund, OTKA no. T017105.

$Computer and Automation Institute Hungarian Academy of Sciences Kende utca 13-17, 1111
Budapest, Hungary, email: vaszil@luna.aszi.sztaki.hu

173

174 Gyorgy Vaszil

Communication in this construction is realized with the aid of special nonter-
minals, the so-called query symbols. Each of these symbols points to one of the
component grammars of the system, and when one of them appears in a sentential
form, it has to be replaced with the current sentential form of the component it
refers to.

This is communication by request, which has two basic variants. One is called
returning communication: after a component sends its string to an other compo-
nent, it must return to its start symbol (or axiom) and begin to generate a new
string. The other is called non-returning communication: the component which
sends its string keeps a copy for itself and continues to process it after communi-
cation.

In the following we keep the basic features of the original model. We will
consider synchronized systems with communication by request, but propose a slight
change in the communication protocol introducing immediate communications, and
investigate the impact of this modification on the generative power. To do this,
we also generalize the notion of a returning communication by introducing systems
with returning languages.

The results we obtain will show that the languages generated with immediate
communication can be generated with a very much simplified form of query rules
using the original protocol. This simple form of queries is what we call homogeneous.

2 Preliminaries

The reader is assumed to be familiar with the basics of formal language theory;
further details can be found in [7].)

The set of all words over an alphabet V' and the empty word are denoted by
V* and € respectively, the family of regular, linear and context-free grammars by
REG, LIN and CF, respectively. | w | and | w |x denotes the length of a word w
and the number of occurences of symbols from set X in w, respectively.

Now we recall the notion of parallel communicating grammar systems frow [6},
for more material see the monograph [1].

Definition 2.1 A parallel communicating grammar system with n components,
where n > 1, (a PC grammar system, for short), is an (n + 3)-tuple I' =
(N, K, T, Gy,..., Gn), where N is a nonterminal alphabet, T is a terminal alpha-
bet and K = {Q1, Q2,...,Q,} is an-alphabet of query symbols. N, T, and K are
pairwise disjoint sets, G; = (NUK, T, F;, S;), 1 <1 < n, called a component of T,
is a usual Chomsky grammar with nonterminal alphabet N U K, terminal alphabet
T, a set of rewriting rules P; and an axiom or (a start symbol) S;. G 1s said to be
the master (grammar) of T'.

Definition 2.2 Let I' = (N, K, T,G4,...,Gyp), n > 1, be a PC grammar system
as above. An n-tuple (z),...,z,), where z; € (NUT U K)*, 1 <4< n,is called
a configuration of T'. (S1,...,S,) is said to be the initial configuration.

Various Communications in PC Grammar Systems 175

PC grammar systems change their configurations by performing direct derivation
steps. g

Definition 2.3 Let I' = (N, K, T,G1,...,G,), n > 1, be a PC grammar sys-
tem and let (z1,...,2,) and (Jl, .. .,Yn) be two configurations of T'. We say that
(1, ..., %n) directly derives (31,...,yn), denoted by (x1,...,2n) = (y1,---,yn), if
one of the next two cases hold:

1. There is no z; which contains any query symbol, that is, z; € (N U T)* for
1 <4 < n. In this case z; =¢, v;. For z; € T* we have z; = y;. The system is
blocked, if there is an z; with | z; |x¥# 0 and none of the rules of P; can be applied
to ;. : :

2. There is some z;, 1 <1 < n, which contains at least one occurrence of query
symbols. Let z; be of the form z; = 21Qi,22Q4,, .. ., 2¢Q4, z141, where z; € (N U
T, 1<j<t+land @y € K, 1 <1<t Inthiscase y; = 2124, 22%4; - . - 2605, Z41,
where z;,, 1 <1 <t does not contain any query symbol. In returning systems y,, =
Si, 1 <1 <t,in non-returning systems y;, = z;,, 1 <1 <t. If some z;, contains
at least one occurrence of query symbols, then y; = 2; and also y;, = z;,, 1 <1 < t.

If for all z; with | z; |k# 0,2, = 21Qi, 22Q4,, - . ., 2¢Qi, Ze41 there is at least one
Qi;, 1 < j <t that z;; also contains a query symbol, then the system is blocked
due to a circular query.

For all 4, 1 <1 < n, for which y; is not spemﬁed above, y; = x;.

The first case is the description of a rewriting step: If no query symbols are present
in any of the sentential forms, then each component grammar uses one of its rewrit-
ing rules except those which have already produced a terminal string. The deriva-
tion is blocked if a sentential form is not a terminal string, but no rule can be
applied to it.

The second case describes a communication: If some query symbol, say @Q;,
appears in a sentential form, then the rewriting stops and a communication step
must be performed. The symbol @J; must be replaced by the current sentential form
of component G;, say x;, supposing that z; does not contain any query symbol.
If this sentential form also contains some query symbols, then first these symbols
must be replaced with the requested sentential forms. If this condition cannot be
fulfilled (a circular query appeared), then the derivation is blocked.

Let = e and = .om a denote a rewriting and a communication step respectively.

If the sentential form of a component was communicated to another, this com-
ponent can continue its own work in two ways: In so-called returning systems, the
component must return to its axiom and begin to generate a new string. In non-
returning systems the components do not return to their axiom, but continue to
process the current string.

A system is centralized if only the component G is allowed to introduce query
symbols, otherwise it is non-centralized.

By the word query we refer to a sentential form containing at least one query
symbol. A query is satisfied by a communication replacing the query symbols with
the requested sentential forms. This may be done in one or more communication

176 Gyorgy Vaszil

steps. The phrase communication step is used to denote the process of satisfying
the query symbols, which can be satisfied in ”parallel”. For example the returning
communication prescribed by (@2, Q3, a, Q3) takes two communication steps to
realise: first we get (@2, a, S3,), and then (o, S2, S3, a). The two consecutive
steps together will be referred to as a communication sequence.

Let =% and =* denote the transitive, and the reflexive, transitive closure of
= respectively.

Definition 2.4 Let k be a natural number, & > 1 and let the k step derivations of
a PC grammar system be denoted by (S1,...,S,) = (af,...,a%) =% (af,. .., o®
where (o,...,ak) is the configuration reached by the system in k steps. Tlu.z

language generated by a PC grammar system I is
LD) ={c¥ e T* | (S1,...,Sn) =F (aF,...,ab),0d ¢ T* 1 <j <k}

Thus, the generated language consists of the terminal strings first appearing as
sentential forms of the master grammar, Gp.

Let the classes of returning and non-returning PC grammar systems with at
most . components of type X, X € {REG, LIN, CF} and n > 1 and the
corresponding language classes be denoted by PC,X, NPC,X and L(PC,X), -
L(NPC,X) for non-centralized systems and CPC, X, NCPC,X, L(CPC,X),
L(NCPC,X) for centralized systems, respectively . When an arbitrary number of -
components is considered we use * instead of n '

3 PC grammar systems with immediate commu-
nications

In the communication protocol of [6] the query symbols occurring in one string can
only be replaced in one communication step. If it is not possible, the system has to
wait until all the query symbols of a sentential form can be replaced. For examnple
the queries {((02Q3, @3, a) are satisfied in the returning mode with the following fwo
steps:

(Q Q3,03) = com (Q Qs,aq, S3) = com (0.53,52;53). Observe that Q4 of the
query @2@3 did not get replaced in the first step.

In the immediate communication mode we allow the replacement of all qumy
symbols that request sentential forms not containing other query symbols. The
query above will be satisfied with:

(Q?Qli; QB: (") =com (Qza, a, 53) = com (aa, SZ; SS)

Definition 3.1 Let I' = (N, K, T,G4,...,G,), n > 1, be a usual PC grammar
system and let (#1,...,z,) and (31, - .., yn) be two configurations of I'. We say that
(x1,...,m) directly derives (y1,...,yn), with immediate communications if one of
the next two cases holds:

Various Communications in PC Grammar Systems 177

1. There is no z; which contains query symbols, z; € (NUT)* for 1 <4 <
n. In this case the system performs a rewriting step denoted by (zq,...,%,) =
(y1,--.,Yn), where z; = y; in G;. For z; € T* we have z; = y; and the system is
blocked if there is an z; with | z; |y# 0 and no rule of P; can be applied to ;.

2. There is some z;, 1 < 7 < n, which contains at least one occurrence of
query symbols. In this case, the system performs an immediate communication
step denoted by (z1,...,%n) = (Y1,---,¥n), in the following way:

Let z; be of the form z; = 21Q4, 22Q,, - - -, 2eQ, 2241, Where z; € (NUT)*, 1 <
j<t+1land Q; € K, 1 <1 <t Now y; = 204,200, ... 20;, 2041, where
d;,, 1 <1 < tiszy if z; does not contain any query symbol, or §;, is Q;, if =,
contains at least one query symbol. If §;, = z;,, then in refurning systems y;, = S,,,
in non-returning systems y;, = z;,, 1 <1<t If §;, = @), theny;, =z, 1 <1 <t
in both type of systems. The derivation is blocked by a circular query if for all 4
with | Ty IK# 0, z; = n Qz’l ZQQiz, ce ,ZtQi,,ZH—l and y; = 316,;] Z-_gtsiz . Zt(s.i' Zi41,
there is a §;, = @4, for some [, 1 <1 <t

The first case is the description of a usual rewriting step, the second case describes
an immediate communication: if more query symbols, say Q;, ();, appear in a sen-
tential form and xz;, the current sentential form of component G;, does not, contain
query symbols, then Q; must be replaced by =;, even if ; can not be replaced
by w;, the current sentential form of G; in the same step, because it contains
further queries. In short, strings without query symbols must be communicated
immediately.

Let the class of PC grammar systems of type X with immediate communi-
cations and n components of type Y and the corresponding language classes be
denoted by fX,Y and L{fX,Y) respectively, X € {PC, NPC,CPC,CNPC},
Y € {REG,LIN,CF}. If an arbitrary number of components is considered we put
x instead of n.

In a communication sequence with immediate communication, the strings requested
by other components are always sent to their destination without any delay if they
do not contain further queries. Using the usual communication protocol, if is
possible that a sentential form is requested by two other components, but sent to
only one of them. For example, if 2; is requested by z; = Q;@; and z; = Q;, but,
#; = @ also contains a query symbol, then z; can not be sent to zj, until the
query symbol of z;, the other requested sentential form is replaced. This makes it
possible in returning systems, that a query symbol is replaced by the axiom of the
queried component instead of the string present at the appearance of the query.
In the example above the result of the communication sequence is the following:
yr = Sitm, Y1 = %;, while using immediate communication it would be vy = x;,,,
Y = 2.

In a number of cases this difference can not influence the results of a commu-
nication sequence. For example, nonreturning systems do not return to their ax-
iom during the communication sequence, centralized systems never request strings
containing query symbols and regular or linear components have sentential forms
containing at most one query symbol. In these cases the generative capacity of

178 Gyérgy Vaszil

immediate communications coincides with the usual communication modes.

Observation 1
1. L(/NPC,X) = L(NPC,X), X € {REG, LIN,CF}
9. L(fPC,X) = L(PC,X), X € {REG,LIN}
3. L(fCPC,X) = L(CPC,X), X € {REG,LIN,CF}

In the next section we will investigate the generative power of the remaining case,
the case of non-centralized context-free returning systems.

4 The power of returning systems with immediate
communications

In this section we study the generative capacity of contezt-free non-centralized re-
turning systems with itmmeditae communications, but first we introduce the notion
of PC grammar systems with returning languages which will be of help in our
investigations. '

A PC grammar system with returning languages is a natural extension of a
returniing system. Each component has an associated language, the so-called re-
turning language. After communication they are allowed to start a new derivation
with any word of this language instead of starting with their axiom again.

Definition 4.1 A PC grammar system with returning la,ﬁy'u.ages is a (2n+ 3)-tuple
I'=(N,K;T,Ry,...,R.,G1,...,Gy), where N, K, T and G, ..., G, are the same
as usual, and Ry, ..., R, are non-empty sets of words over (N UT), the so-called
returning languages. (R C(NUT)*, R; # {e},B; # 8,1 <i < n). ‘

The system works like a usual returning system, but after communication com-
ponents may start a new derivation with any word of their returning language.

Let the class of context-free PC grammar systems with returning languages of
n components of type X, X € {PC, fPC} and the corresponding language classes
be denoted by »X,,CF and L(rX,,CF), respectively.

With the aid of systems with returning languages we will be able to prove our
theorem about the power of immediately communicating systems, which will turn
ont to be the same as that of usual returning systems with a certain form of queries,
which we will call homogeneous queries.

Definition 4.2 Let us call a query homogeneous, if all query symbols contained in
the corresponding sentential form request the same string, that is, the sentential
form is of type oy Q;a2Q; ... i1 Qicxy, where 1 < i < m, 2 <t and a;j € (N U
T)*, 1<j<t.

A component with homogeneous queries is a component grammar G, 1 < i < n,
which is allowed to introduce only homogeneous queries, it has no rule of the form
X = aQiBQjvy, withi #j, a,,y€ (NUTUK)*.

Various Communications in PC Grammar Systems 179

A PC grammar system is called homogeneous, if it has components with homo-
geneous queries only.

Let the class of homogeneous PC grammar systems of type X with n context-
free components and the corresponding language classes be denoted by hX,CF
and L(hX, CF) respectively, where X € {PC,NPC}.

The following inclusion is obvious because communication sequences with homoge-
neous queries produce the same result in the usual and in the immediate comm-
nication modes.

Observation 2 L(hPC,CF) C L(fPC,CF)

Qur aim is to prove also the converse inclusion. First we present a lemma about
systems with returning languages.

Lemma 4.1 Let T be a returning PC grammar system with tmmediate communico-
tions, having n context-free components and finite returning languages R; consisting
of only nonterminal symbols, R; C N, 1 <1< n,

If these conditions hold, then there exists I'', a returning system with immediate
communications and 4n components which generates the same language as T

Proof: Let I' = (N, K, T, Gl,Rl,..A.,Gﬂ,R.,,,) € rfPC,CF with nonterminal
alphabet N, set of query symbols K, terminal alphabet T', n context-free compo-
nents Gy, ..., G,, and returning languages Ry,..., R,, R; T N, 1 <i <un. Now
let T € fPCy,,CF be the following:)
I'=(N',K\T,Gi,..,G,GY,..,G5,GY, ., GELGE L GE)

n?

where
N' = {8}, 82, 5¢,8v 8¢ 8 " |1<i<m}u
{X, [X]| X € N},
Pl = {S] - Q? S 5 Qi tU{X =5 [X]| X s a€P),
P2 = {S25QMU{X]=alX saeP,ac(NUT)}U
{[X] - cyl();:lag .. Q;zat_H | X = anQj 00 ... Qj,c441 € P,
aq e (NUT),1<I<t+1},
P o= {S¢o[Si],5% > S¢S - [Y]|Y € R;} and
Pl = (St S S - 8IS 5 Qi u{lY] - YL Y] = QF | Y € Ry}

for 1 <i<n.

The systern has four n-tuples of component grammars, and the rules X — « €
P;, 1 <4 <mnof I are broken into two parts X — [X] and [X] = «. G},...,G),
contain the first parts X — [X] and G3,..., G2 the second parts [X] — o.

180 Gyorgy Vaszil

They work in the following way: all G} use the first part of some rules while
G7 introduce the queries Q!. Now the sentential forms of G} replace the query
symbols in G3, where the application of the rules is finished using their second
parts. Next the sentential forms are communicated to G} and the process starts all
over again. The assistant components G and G% are used to simulate the return
of a component to some symbol of the returning language, 1 <4 < n.

First we show how the initial derivation step of I is simulated by V. We start
from a configuration

(s},...,8L S3,...,82, S¢,...,8¢%, St,...,Sh)
and get

(', .. .,8L, QL,...,QL, 6,88, SH, ... 5L,

where 6! is either Q? or Qf If some 6} = Q3 then the derivation is blocked by a
circular query. 62 is either [S;] or S&'. If some §¢ = S’ then the derivation is also
blocked since 8¢ is passed to G7 and P? does not contain rules to rewrite S*'. So
we must have

(@QF, Q% Q1. QL [S1],. . [Sal, ST, S8,

After one communication step we get

(S1,..., 8L, 1S, [Suls .88 8t S,
1 . i n
and then

(8L,...,8%, o2,..., a2, 6¢,...,6%, St ... St").

Here of differ only in the indices of the query symbols from the strings pro-
duced by G; of ', 1 < i < n, through the first rewriting step. More precisely if -
(81,.:80) Srew (1, ., an), then of = oy if | a; [k= 0, of = @, Q} vy, ...Q, n,,
if o; = Q4 iy...Qj,cvi,. The 8! are either QF or Q7 and §¢ are either S’ «
[Si], 1 <5< n If 5} = @f for some j, 1 < j < n, then the system is going to be
blocked after the next rewriting step, when G§ introduces Qf}, because Pf does not
contain rules to rewrite [S;] or SJ‘-”. If 6} = Q? for all i, 1 <4 < m, then §¢ = S¢'
for all 4, 1 <4 < n, because [S;] can not be rewritten with the rules of P*. So we
must have

2 2 2 al a’ i 2y
(Q];"‘*Qn) a]a"'7an7 S]: S S "'>S7:,))
and then after a number of communication steps we get

(ﬁl:"'wﬁln ‘13’_“’5;.3'7 Sn’)“ Snl St” "'7511‘1.”):

mn

where the 3; = v, if (71, ...,) are the sentential forms of I' produced by the initial
rewriting step and the possibly following communication sequence and ~; & R;. 1
v € Ry for some j, 1 < j < n, then g; = SJI-. If no o contains query symbols
(there are no communication steps following the initial rewriting step in I"), then
fi = ai. If By is terminal then the system can stop here, if it is not, then the
simulation must go on. We start with

Various Communications in PC Grammar Systems 181

2 2 ! 1 L !
(o, y@n, ST, S5, SP, ..., 8%, SE, ..., SE),

nd I n J
where cv; € (NUT)*U {S-l} and get
((SJ]‘-,"' m Ql n: [Yl] ‘7[Yn]7 .chlu'“: (zﬁ)

with §} = [c;] where [a.L-] is o; with one of its nonterminals X rewritten to [X] or
if a; € T* then [e;] = ;. If some communication occured in the previous step and
the j-th sentential form was sent to an other component, then o; = Sj and 4] i
either QF or Q]. If (5'1 = Q for some 7, 1 < j < n, then the system is blod\(‘(l l)y
a circular query, so if a; = S1 for some 7, then we must have

([a}]:7 (7‘7;[an]7 Q% n,) [lf] a[l{n]; QT?:QZ)v
with ¥; € R;, 1 <14 < n. After a communication step we get
(St,.... 8L laal, - 5] o [am], ST,..., 88,], -, [Ya))-

Now the system continues the derivation as if G} has have returned to Y; instead
of its start symbol. We get

((5111’ n’ /61 ":/3,17 n.i [)/] '1[),;1]I)7

where 0} and 6¢ are the same as above and 7 differ only in the indices of the query
symbols from the strings produced by G; of T',; 1 <4 <, as described above. The
d} are either Qf or QF and 6f are either S¢' or [S;], 1 < j < n. If §f = Q4 for
some j, 1 < j < n, then p1ev1ously descubed situation arises, the syqtom is going
to be blocked” aftel the next rewriting step, when G% introduces @4, because Pj
does not contain rules to rewrite [S;] or S¢'. If §} = Q,L for all i, 1< i < n, thul
8¢ = S¢' for all 4, 1 <4 < n again, because [S;] can not be rewritten with the rules
of P#. So we must have

(Q%F,...,Q3% Bi,....0%, StS%, i),...,[Va]).
After the communication sequence we get
Vs, ST 82, SE LSy T, L D,

where «y; are the results of the communication sequence prescribed by the f3; sen-
tential forms with v; = S} if the sentential form of G} has been sent to an other
component during the cofnmumcahon sequence. If v, € T* the system stops or
else it can continue to simulate I in the same manner. O

Let the systems satisfying the conditions of the lemma and the corresponding lan-
guage classes be denoted by 7X,,CF and L(TX,CF), X € {PC, fPC}, respec-
tively. Note that this proof is based on the fact that using immediate commuuica-
tions each component sends its string only once during a communication sequence,
in other words the strings a component, has returned to after a commuuication
step are never communicated in the same communication sequence. Since hoinoge-
neous systems also have this property and since the simulating system constructed
according to the previous theorem is homogeneous if we simulate a homogencous
systetn, we have the following:

182 Gyorgy Vaszil

Corollary 4.2 L(FThPC.CF) = L(hPC.CF).

Before we proceed, we need some further observations about the nature of deriva-
tions in PC grammar systems. In the proof of our main theorem we would like to
treat the communication sequences of a derivation as “units” together. This means
that we will assume that terminal words of the master appear only as a result of
a rewriting step or as a result of a whole communication sequence, so we need to
prove that all languages of PC grammar systems can also be generated this way,
where the details of communication sequences are “hidden”.

Definition 4.3 Let I" be a PC grammar system. The language generated by I’
with hidden communications is

L/L(F) = {Ld € T | (51)52)"'1‘8”) =>* (wya‘.la s aan)})

where | @; k=0, 2 <i<mor ay,...,a, contain a circular query. In other words,
the generated language consists of terminal strings present as sentential forms of
the first component either after a rewriting step which does not introduce queries,
or at the end of a communication sequence, or in a final blocking configuration.

Let. the class of languages generated with hidden communications by X type
PC grammar systems with n context-free components be denoted by £, (X,,CF),
X e {fPC,7fPC}.

Lemma 4.3 If L is a language generated by a context-free PC grammar system.
Te X,CF, X e {PC, fPC}, L =L(T), then L can also be generated by o system
with returning languages T € TXo,,+2CF with hidden communications, L = I, (T").
Proof: Let T'= (N, K, T,G4,...,Gy) with N, K, T and G, 1 <4 < n as usual and
let T = (N',K',T,Go,Ro,G}, R} ... ,GL,RL G2, R? ..., G2, R?,G,,, R,), where
Gy is the master grammar and

N' = {X,[X]] X € NYU{Ao, 50,50, SasSh: S0, Si, S | 1< i <y
{‘40}:

fgq
I

Py = {X > X|XeNIU{S =S, = Qitu{d = Qi},
Ri = {A}}, :

Pl = {S] = [Si], 4] » Qi}u{X = [X]| X e N},

R} = {S},

P} = {SI-QI}u{X]=a|X>ach,|a|xk=0}U

{[X] = alQi .. .atQi a1 | X =2 o1Qi a0 Q004 € F,
a; € (NUT)", 1< <t+1},
R, =, {Sn}a
P, = {S.—8.,S, = 8,8 QS,}

for 1 <4< m.

Various Communications in PC Grammar Systems 183

This TV system starts with the initial configuration
(SO:S]lu" 511125127755,:5(1)

After a rewriting step we get
(S(I),[Sl],...,[Sn],Q}_,... mS)

and after a communication
(S{):AJI:" m[Sl] $[S11]7Srl1)'

Now a rewriting step follows producing

(Q.f7Q.{7"'7Q$),’all"" ’Il’S”)

where of = o; i S; = a; € Py and | o k= Oorif | o |xk# 0, o, =
i, @, iy Qi then of = oy, QF ay,..QF i, After the communication we
have
2 "
(607,[}1;-4 ﬂn, 7"':Sn7Sn,),
where [3; are the results of the communication sequence prescribed by «f, ...,),

with 8; = S1 if the j-th component has returned to its axiom and dq is either (3
or if By = S} then &y is the string which was sent by G} during the communication
before it has returned to its axiom. If g is terminal T¥ stops here, otherwise its
work continues. After a rewriting step we get

(507[ﬂl]7-i'u[ﬂ?l]aQ%a"' naQOSI)

where [3;] is f; with one of its nonterminals X in brackets X138 =[S it B = S})
or if it does not contain any nonterminals then [£;] = f; and Jp is the same as above.
Now we get,

(A()a A{) . ns [ﬂl] 3 [ﬁn]) (50‘5':1)

and then

(Qf)a szw N Q,Zp’}’i; e 7’)/7’17505(111)7
where v, = v if §; =, 1 with one rewriting step and | v |x= 0, or if | v; | #
0, ¥ = Vi Qj, Vin---Qj. Y, » then v} = i, Q) i, --QJ, i, - After the communication
sequence we get

(6075] yroee 76”’5‘.12) . ,Si,éSﬁ,’),

where d;, 1 <4 < n are the results of the communication sequence prescribed by
Vi, With §; = S} if the j-th component has returned to its axiom and dy
is either &; or if 4; = S§ then & is the string which was sent by G} during the
communication before it has returned to its axiom. If dp 1s t(,unmal IV stops here,
otherwise its work continues in the same manner. O

Now we need to define a notion we will use in the proof of the next lemma.

184 Gydorgy Vaszil

Definition 4.4 Let ' = (N, K, T,G,,. .., G,) a context-free PC grammar systemn
with K = {Q1,...,Qn}andletabea query, o= Q;0Q,. .. Qi ppy, fog] i =
0, 1<k<t+1,1<4;<n, 1<;5<H.

We define the j-th portion 1 < § < t+1 of this query in the following way: If
7 <t —1 then the j-th portion is a;@Q;;. Moreover, if j = #, then it is a,Qrcvry.

Now we are ready to prove the following:

Lemma 4.4 L,,(FfPC.CF) C LFhPC.CF)

Proof: LetT'= (N, K, T, Ry,...,Rn, G1,...,G,) € 7fPC,CF be a PC gramimar
system with immediate communications, nonterminal alphabet N, set of query
symbols K, terminal alphabet T, returning languages R,..., R, and n context-
free components Gy, ..., G,,.

Now we construct [V € FhPC,,,CF, which generates the same language as T™.
Here . = (t + 2)n + 2u + 3, where ¢t and u are the following: ¢ is the number of
possible rule combinations that we can try to apply to the sentential forms of T,
w is the sum of u*, 1 < k < t, where u* is the sum of w¥, 1 < i < m and u¥
is the number of query symbol occurrences on the right- hancl side of the i-th rule
of the k-th rule combination. Formally ¢ = |P1| [T, (P +1). If we denote the
rules of the k-th rule combination with Xf — of, ..., X¥ — of | then u = Z;:,,:l T
ub = Z“ " u’” I,i” = IaHK.

i sunulates the application of each rule combination of I' in a different -
tuple of simulating components with the aid of assistants assigned to each of the
simulating n-tuples. First an integer k, 1 < k& < t is selected and the application
of the k-th rule combination is simulated in the k-th n-tuple and in the k-th set of
assistant components in p steps, with rules using only homogeneous queries. The
integer p must be twice the number of necessary communication steps, which is at
most p = 2n — 2. The simulating system contains the following components:

FI = (NI,I(,,T,RI, ;Rb;
Giy..,Gn, Gl oy G}l,G"T..,Gﬁ‘,....C"'
G]l: Gl 1,G)],.

lug Cnl » o Ml

GaysGays G, . G;,,Gl,,. Gt .Gy)

IHL

’u

where the n-tuples simulating the k-th rule combination are denoted by G¥, 1 <
i < m with their assistant components G¥,,...,G¥ .. G,, and G, are involved in
selecting the number of the rule combination to be sillnulated, Gl,...,G,, are needed
to help in sending back the sentential forms to Gi,..., G, after the simulation
of a rule combination, G};, - G,f:“:‘ are used to force a restart of the components
1, Cfm, by querying them when necessary and G, makes sure the system blocks
if it, sunulatcs a rule combination which produces a circular query.

Let C C {1,...,t} be the set of those integers which number rule combinations

that introduce urcul(u queries and let the start symbol of the component G? 4 be

Various Communications in PC Grammar Systems 185

A8
N' = {Z B, FYU{(l)y,(1),(S)? |1<I<t,1<j<p+21<i< vuf}u
{Sf]',S{;'" [1<k<t,1<m<p+21<i<nl<j<uf}u
{557 | Gh ., is a component of T'}U{X,[X]| X € N} and
I?fi., = {8}, where wa is a component of I",
P, = {A; - SYU{X o [X]|X 2 a€P}U{S, = [X]| X e R;}uU
{Si = (S)1 (S = (Si)7, (S = Q111 <5 <p},
Pl = LU U{S! = Qur 4 = QaysSar = Sar, () = Qi} U
{(k) = (k)" (k) = (B)FY, (k)PP = Qu, | L <k <tk # 4,
1<i<p+1}
foralll1<i<n, 1<j<tand
Pt = L2§,U{Sf = Qa,, A}, = Qay, Say = Say, (k) = (k)'} U
{(l) H11<I<t1#k}
foralll<k<t 1<i<n, 1<j<ub
P, = {Aa > (k),8q, = (k),Sa = Sa, |1 <k <t}
P, = {Ada, = Qu;, S, = Qays Say = iy (k) = (k) |1 < & < 8},
P = (X5 X|XeWNU{S,DIU{k) = QF|1<k<t}U
{Aj = S5, 81— 1,81 = SPPYSY 5 Quy |1 <1< p—1},
for 1 <4<,
PE = (AN o Sk Sk o sE' KT o sETTT SETT L gk,

[1<m <p+1}U

{(1) = SE' S0y = SE" |1 £k, 1< 1< 1)
forall1 < k<t 1<i<n, 1<j<ufand
P, = {A,— 8,8 = S, S = ST SP = Qu,

{j)» B,B=>F|jeC}U

{() =G =S¢ C)

We construct the sets Llf and LQi-”'j 1<i<n, 1<j <l in the following way:
Let us fix a k& and observe the n rules of the k-th rule combination.

The right sides of the rules determine the communication sequence that would
follow after rewriting with our certain rule combination.

We say that a sentential form contains e query at a certain point. of the commu-
nication sequence if it contains query symbols which are not yet leplaced at that
point, of the communication sequence.

If our k-th rule combination produces a circular query, we modify the rules. We
replace those query symbols which participate in the circle with a new nonterminal
Z and execute the following algorithm on this modified rule combination. (See the

1<i<p-1}U

186 Gyorgy Vaszil

example at the end of this section.)

For each m, 1 < m < p/2, we repeat the following steps. (Note that p/2
is the maximal number of communication steps in I'.) If the j-th rule of our
rule combination is the empty rule, then Ll;?' is empty since u;“ = 0, no assistant
components G;”?i are present, so we do not need to construct LQ;?',, During the
following algorithm we consider the j-th sentential form only if the j-th rule of the
combination is not empty.

1.a. If the i-th sentential form does not contain a query at the beginning of the
m-th communication step and it is not communicated in the m-th communication
step then we put the rule {X;] = a;[X;]! in L1¥ where X; — «; is the i-th rule of
the k-th rule combination if n = 1 and the rule [X;}*"~% — [X;]*™~! for all other
m. .
1.b. If the i-th sentential form does not contain a query and it is communicated
in the m-th step, then we put [X;] = a; in L¥ if m = 1 and [X;*"2 — ¢ for all
other m.

2. If the i-th sentential form contains a query which is not yet satisfied i fho
beginning of the m-th communication step, then we put [/\L] = [X])" in L1k if
m =1 and [X;]*"~2 = [X,]*™! for all other m.

2.a. If the j-th query symbol of this query is replaced in the m-th communi-
cation step then we put (k)*"~' — aQfB(k)*™ in L2};, where aQ,f is the j-th
portion of the right side of the i-th rule of the k-th combination.

2.b. If the j-th query symbol was or will be replaced in a step different from
the m-th, then we put (k)*™~! — (k)™ in L2},

3. There must be queries that are complctely satisfied during the m-th com-
munication step. If the i-th sentential form contains a query which is satisfied
completely during the m-th communication step, we put, (X2t = QF in L1k
and we put (k)2 — Ql(1) i L2} for alt 1 <j <wf —1and (k)™ — [X;]* in

L2k,

IIL

4. For all i we did not deal with in point 3, we put [X;)*" ! — [X;)*™ in L1¥. If
the 4-th sentential form contains a query which is not yet satisfied completely during
the m-th communication step, we put (k)" — (k)*"*! in all L')U, 1< <uk

After repeating these steps for all 1 < m < p/2, finally add [X};]? — e to L1¥,
1<2<n.

Now we turn to the proof of our lemma. First we concentrate on the overall
architecture of the simulating system and show how it works. We will see how it
provides p steps for simulating each rule combination with the rules of the sets L1¥
and LQQ‘,I- 1<hk<t, 1<i<n, 1<y <ub IV starts with the initial conhgumtwn

1 1 t
(A1, ., A, AL, AL At At
1 1
AlJ_:" 41u - Anl:~7 nula
' ' i
A(llaAﬂz: Alﬂ' An.J 11? 41111‘ ’Ab)'

After one rewriting step we get

(Sl PR] S'!L: Qan'-; in PR} Qala a3 Qala

Various Communications in PC Grammar Systems 187

Q(L] 3 Q(ll 3. :Qa17"> Q(h:

k), Qa,, Si,., 80, SLT .8 8,),

nut,’

where the component G, introduced the nonterminal (k) 1 < k < n. This selection
of k means that the system will try to apply the k-th rule combination. Now a
communication follows

(St, s Sy (K), ey (), ooy (B), -, (K),
0,000,
Sars (k), Styes Sy SH oy SEne L S1),

7

where k, 1 < k <t is the number of the rule combination to be applied to the start
symbols. Next we get

(01, ey 00y (B (B)Y sy Q1yoy Qs ey (K)o (R),
(k‘)m(/ﬁ) v ()Y ()Y (R), ey (B),
Sy, (k), SY, . SY SLP S 5t SH,

70 nul I

where §; is either (Si)1 or [S;], 1 <i<mnandd,, is either So, or (I), 1 <1<t If
8; is (S;)* or 8., is (I) then the system will get blocked, since G¥ do not have rules
with (S;)* and G,, does not have rules with (I) on the left side. So we must have

(1L s [Suls () (B sy Qusy @y (B) s (R)Y,
(k), .., (k) ,..., (k)L (k)l . (k) ,(k),
Sy (), SV, SY, S,y 812 5.

nut ?

The assistant grammars G%,...,G% for the k-th rule combination introduced
@1, ..., Qn, they will receive the sentential forms of G;, 1 <4 <n and G, preserves
the value of k for later use. After the communication we have

(St Sy (k;)l,..,l(k:)J ooy [S1] o [Sn] s ooes ()Y ()Y,
(B, s () 5oy (B)Ys s (B (B, s (),
Suys (B), S]J;’,.. s},’, SL 8¢ 5h.

If the k-th rule combination is not applicable to the start symbols, then the 1les
of P} are not applicable to [S;], 1 <4 < n. In this case the system is blocked, so
let us assume that the k-th rule combination is applicable.

In the next rewriting step the system starts to simulate the effect of the k-th
rule combination in p rewriting steps. We are going to show that if the k-th vule
combination is applicable to the current sentential forms, then the system provides
time for the simulation, takes the resulting sentential forms back to the first n-tuple
and starts the process all over again with an other rule combination. The details of
the simulation of the rule combinations will be discussed later, for now we denote
the sentential forms of the active simulating components G¥ and their assistants
G, 1<m<uk bya'z and,(i'li, 1<i<n, 1<I<uk 1<j<yp.

We are only interested in the effect the active simulating components and their
assistants can have on the rest of the system and this is the following: After com-
munication they return to their axioms and then introduce the query symbol Q,,
querying the “outside world”, the component G, .

t
nu;’

188 Gyorgy Vaszil

If they receive S,, then they use the rule S,, — S,, and at the end of the p
steps this nonterminal will be sent back to G;, 1 <4 < n with the other simulation
result, where it behaves exactly as the original start symbol. We show that the
system is blocked if they receive an other symbol. After one rewriting step we get

(61, -, On, (k)" , (k) " e a},..,a,ll (k)Q,..,(k;)z,
(K), (k) ﬂl,.,ﬂuk ey (K)y s (),
Suss (k), S, 82, 81, .., ke, 1 SP),

nu‘ ’

where d; is either [S;] or (S;)!, 1 <4 < m and d,, iseither S,, or (I), 1 <1 <+t Ifd;
is [S;] or 84, is (1), then the system is blocked since P; and P,, does not contain rules
with [S;] or (I) on the left side, respectively and no other component (not even the
active simulating components G’" and their assistants G”, 1<i<m, 1<j<ub)
could introduce queries requesting one of these d; or J,, sentential fome. So we
continue from

((S1), - (Sn)Ys (B, (R)? 5oy gy ey 5o (B)2, s (R,
(’\1):--:(’») s Bl ﬂik (/") , (k)
SM:U"): SiZ’ . S;L’a Sll y e St t 752)’

i,

and get

((S))2, ., (,,) (R)3, (k)3 .., 02, a2, (k)P ., (k)
(k‘) (k) f ::Buk L] (k) (k)
Say, (k), S3',., 83" su' . st S3).

"o nu‘)

where §,, is the same as above. We claim that rewriting steps follow in this manner
providing the time for the simulation of the rule combination:

((51)2,..,(5'”)2, k)3, (k) ..., a%,..,ai sy (B)3, (B3,
(k:),..,(k-) o B B (k) o (k),
Buy, (), S, 83, SH', .., St SH = .. =
(S, ., (S)P T, (k)” ._,(k)v sy 0T e (R)P, (R,
(k-) (k) BTN LB (R, (R),

(L) S,)l] Sp/ Sl’p+1’ St'w}-l S,,)

(I n.u

To verify our claim we show that the active simulating components and their assis-
tants can not, interfere with the work of the other components. To do this we have
to observe their rule sets.

If one of the simulating components G¥, 1 < i < n returns to its axiom during
this series of rewriting steps, it introduces Q,, and receives §,, from G,,. If 4,
is S,, then it uses the rule S, — S,,. If dq, is (1), I # k, then it uses its rules
(1) = (DY and ()* = (1), 1 <4 < p+1. If &, is (k), then it introduces @; in
the next rewriting step and receive (S;)™, 1 <m < p—2 from G;. In this case the
system is blocked since the simmulating components do not have rules with (.S;)™ on
the left side.

Various Communications in PC Grammar Systems 189

Now let us look at the assistants of the simulating components ij, 1< <
n, 1 < j < uf. If one of them returns to its axiom it also introduces Q., and
receives d,, from G,,. U d,, is So, or (1), | # k then the same things happen
as we explained above. If §,, is (k) then it is rewritten to (k)' and then rules of
L2f7. must be used. These rules can only query the active simulating components
or their assistants, so they do not interfere with the rest of the system.

From these considerations we see that the system is either blocked, or it reaches
the following configuration:

<(sl>v-1,..,<s P KPR o el (R (R)P,
(k) oy (K) 5oy BYTH, ﬁui, (%), ..,(),
bur, (), SV, S,’i’, sli’”‘, ,Shet ,SP),

nu.

where o ™" and /3;)_1, 1 <i<n,1<j <uf can be sentential forms of components
that either returned to their axioms or not. If they did not, then we assume the
sentential forms to be correct, if they did, then o?~' and A" can be either S,
@), " or @i, 1<I<t, 1<i<n, 1<m<p-—1 If any of them is Q; then a
communication step follows and the system is blocked. In the other cases rewriting
is possible, so we get

((S1)7, ., (Sn)?, (k)”+1 L (RPTE L ool

(B), - (k) ooy B, BEn oy (K)o (K),

tp+2 ' 42
(Snl) (]") Q!u: . 7an7 Sllp 3o n::,,t Qa2)

apd then after a communication
((S1)75 -, (Sn)?, (R)PHL, L (R)PYE L, o, ol
(k), ., (k) ..., BY,.. ::k ,2..., (k),..,(k’),
. Suar (K), - (), S St (k)),

3 (k:)1)+1 FEEH (k")p.*.'l)

ey (RPN (R,

where o and] are correct by our assumption (if their component, grammars never
returned to their axioms), or af and 87 can be either S,,, (1), ()™ or Q;, 1 <i <

, 1 <m < p. If any of them is @; then after the replacement of this symbol the
system is blocked. In the other cases rewriting is possible again, so we get

S| 71+17._7(S” p+17 k 1)+2’_.’ L)p+2 o a”‘*—l,..,(..kﬁ"lﬂ' oy (K 7)+2’“,(]‘.;)]!+3’
1 n

(), .. (k) ;- ﬂ"“ B (R), - (R),
5“17) Q]"'a 71’ Qll?' 'anm;)(sb):

and then after communication

(ST, oy (Su)PF, (R)PF2, . (k)2 oy SE, . SE oy (B2, ()2,

t
Sl]"" Snu’ ?
' p+1 p+1 R p+1 41 R
anS(L27 (11) '7a£1 b (k)w":ﬁl 3 3711 J"':(l"):(sh);

where J;, is either B if the system should block after the simulation of the k-th rule
combination or (k)! if it should not. Now if any of the o™, 1 < i < n whose
component grammar has returned to its axiom is not S,, or some ,B{"H was not,
Sa, before the communication, then the system is blocked. Otherwise we get

190 Gyérgy Vaszil

(QI], n) Qﬂl 303 Qﬂl 3
Qﬂl S Q(l]:

p+1 +1 t”
day; Qay, @, .08 Su,..)

nul >’

and then

p+1 1
((1 3 ':ag)z_*- } 6“1)'"a6ﬂ1>

Bays s 0nys
C ' ' 1'l ¢’ /
Sa”bun Sl:' Sn7 11 >~ S‘n'u.‘ 4)

where 4, is either S,, or (), 1 < <t Ifitis S, then the system is blocked,
since G, does not have a rule with S,, on the left. So we have

(@t ot), .., (1),
(1), (1), o
Saw(l)7 i:":S;za S%l 3 St)

nul,?

where a”“, 1 <7 < nis the result of the k-th rule combination with S, insteal

of S; if the i-th' component has returned to its axiom after a communication ancd
g, is either F or Sp. If oy is terminal the system stops here, if it is not, then it
can continue in the same manner with the simulation of the {-th rule combination
if §; is not. F. &} is F only if the k-th rule combination introduces a circular query
in I' in which case I should be blocked. If a?“ = S, ‘for some j, then the j-th
component should return to an element of R;. This is simulated by using a rule
Se; — [X], X € R in the next step.

Now we show how the p step simulation of the rule combinations is done. We
have two cases. If the rule combination to be simulated does not introduce a query,
then no assistant components are present. At the beginning of the simulation we

get,
(. [S1]; -5 [Sa),) = (oSt o anlSalts),
in G¥ using the rules of LE 1 <4 < n, where o; are the right sides of the .rules of
the k-th rule combination. Now p rewriting step follows, we get
Cosar[Si o an[Sult,) = o= (L an[Sh)P, -, an[Sh]?,

and in the next step

(00,0,)

using the rules [S;}? — €, 1 < i < n. Here o, is the result of the application
of the i-th rule of the simulated rule combination, the systent deals with it as we
previously described.

If the k-th rule combination introduces queries, the situation is more compli-
cated. At the beginning the sentential forms of the simulating n-tuple and the
assistants are

Cons[Si]s s [Sals ooy ()L oy ()Y,).

Various Comumunications in PC Grammnar Systeius 191

The sentential forms of the components G¥ and ij after the [-th rewriting step
will be denoted by o' and i, 1 <i<mn, 1<j<ub, 1<i<p+1.

After the first rewriting step, the sentential forms of the simulating n-tuple and
their assistants are the following:

If the #-th sentential form in ' is communicated in the first step then the sen-
tential form of G¥, o;! is w;, the right side of the i-th rule of the rule combination:

(o0, o Wiy s ey 0y (B) 2, (R)2, 200D,

If the i-th sentential form in I’ does not contain a query and it is not, communicated
in the first step then a;' is w;[Si]!, w; is as above:

(08, Wiy s, Wiy [Si?]l, ok (k)R (R L.

In these two cases uik = (0, so there are no corresponding assistant components.

If the 4-th sentential form of I' contains a query and the j-th query symbol of
this query is replaced in the first step, then ;! = [S;]!, and the sentential forin of
the assistant component corresponding to this query symbol, a,j s oy QF s (k)?,
where « Q vy 1s the j-th portion of righthand side of the i-th rule:

(..,of, ., wi, ,.,wh[Si.z]l), s [Sishy el
2 : p 2
ceey (]i:)", ey Cl’,lQ{”ag(k)“, iy (l\",)“,)
If the j-th query symbol of the 2-th sentential form is not replaced in the first step,

then ;' = (k)*:

(oo wiyy o win [Siu]t o [Sis] -

o () s Q ey (B2 oy (R)2, o, ()2).

Now a communication follows in TV. If the I-th sentential form replaces the j-th
query symbol of the i-th sentential form in the first communication step of T'; then
in ' ;' becomes SF, a;! remains [S;]' and ;' becomes agaytans (k)

(..., (111,) S‘i1 R A.,w,iz[si,‘,_]l‘), . [Si"‘»ll’ s a}!‘,
o (B)2 L caws o (k)2 (k)2 -, (K)2).

Now a rewriting step follows in I". If the -th sentential form was communicatel
in the first step then a? = Q,,.

If the 4-th sentential form was not communicated in the first step and it does
not contain a query, then af = w;[S;]>.

If the 4-th sentential form contains a query but it is not completely satisfied in
the first step, then o? = [S;]?. If the j-th sentential form of this query was replaced
in the first step then oy;* = aratas (k)

("’) (-Y.Iza ".Q!'Ll y ey Wiy [S'iz]gj sy [Sialza ")al;)u
(B2 oaws an(B)3, ., (R)3, ., (K)3, L),

If the i-th sentential form contains a query which is completely satisfied in the first
1<j<uf—1and ol , = w,[Si

step, then o = Qu"* and o, = wi Q¥ 11y

where wy, 1 <1 < u¥ is the satisfied I-th portion of the righthand side of the query

192 Gyérgy Vaszil

of the i-th rule. In this case a communication step follows in which the resulis of
the query are collected and passed back from the assistants to G¥:

(...,a'i’,...,Qal,. wiy [Sip]?, ., QF 0, .
.,(k)‘g,,.,le“_,wg[SH] s (k)3,..,(k)3,...),

(...,a%,..‘,éil,. w12[f,2]‘) u;lw-z[Si%]Z,..,a;"l,...
'1(}‘:)37“1 14175142 () 7’(k) 7"')’

where d;, 1s either S,,, (!) with | # k or (k).

Now the simulation of the first communication step of ' is complete, the system
begins to simulate the second one in the same manner. A rewriting step follows. If
the i-th sentential form in T' is communicated in the second step then [S;]? is erased
from the sentential form of G¥. If the i-th sentential form in ' does not contain a
query after the first communication step and it is not communicated in the second
step then either [S;)? is changed to [S;]? or if the i-th component has returned to its
axiom after the first communication step of I' then there are three possibilities. If
@., was replaced by S,,, then it is not changed. If Q,, was replaced by (1), I # k,
then it is rewritten to (I)'. If Q,, was replaced by (k), then it is rewritten to QL
and after this communication no further rewriting will be possible:

(..., (_‘Y%, ..,6}1 yory Wigy ey [Sis] y ..,w1w2[5i4]3, oy Oéfl,),

where 6], is either S,,, (I) with I # kor Q;,. If), = (4, then the system is blocked
after the communication.

Now let us look at the assistant components. If u¥ # 0 (the i-th sentential form
containcd a query which was completely satisfied in the first step), then G"’ ;1<
4 < uk, the assistant components of G¥ have also returned to their axiom au(l now
have Qul as their sentential form. If Qa1 is replaced by S,, or by (1), | # &, then
it will not be changed later. It @, is replaced by (k), then it will be rewritten to
(k)! and the assistant will begin to repeat what it previously had done. This will
not interfere with the rest of the simulation process, since the i-th sentential form
was already communicated.

If the i-th sentential form of ' contains a query and the j-th query symbol of
this query is replaced in the second step, then a;® = [S;]?, and the sentential form of
the assistant component corresponding to this query symbol, a;;? is oy QF s (k)*,
where a1Q e is the j-th portion of righthand side of the 4-th rule. If the j-th
query symbol of the i-th sentential form is not replaced in the second step, then
aij:j — (.1{:)4

3

(...,ai’, . (51 cy Winy ooy [Si3]3, ..,w1WQ[Si4]3, sy Oy e

> Yy

S (B4, Qays Qars - 01 QF an(k)4, ., (K)%,.0).

Now a communication follows in T'. If the [-th sentential form replaces the j-th
query symbol of the i-th sentential form in the second communication step of T,
then in I «y;® becomes S}, a;® remains [S;]® and «;;* becomes ay s (k)7

(... a'l,. ,6111,.., Ha o [Sis), o wiwa[Si, 2, 0,

oy (B 80,1, 0002, - cwi, ca (B)4 L (R)4, L),

Various Communications in PC Grammar Systems 193

Now a rewriting step follows in I'V. If the i-th sentential form was communicated in
the second step then af = Q,,. If the i-th sentential form was not communicated
in the second step and it does not contain a query, then [S;]® is changed to [S;]* in
ol

If the i-th sentential form contains a query but it is not completely satisfied
in the second step, then af = [S;]*. If the j-th sentential form of this query was
replaced in the second step then a;;* = ajo3as(k)®.

If the i-th senten‘ridl form contains a query which is compl@tely sa‘risﬁed in the
first step, then af = Qi1* and o ;= ijf(jH), 1<j<ub-1and aw = Wy (S
where wy, 1 <1 < ui' is the satlsﬁed l-th portion of the righthand 31de of the 4-th
rule:

(.. a]‘,‘ , L1 . Qm, ..,lel, eywiwa[Si)4, e,

(k) . 1417 “2,< ,alwlzag[Sis]“,..,(k)5,...).

In this case a communication step follows in which the results of the query are
collected and passed back from the assistants to G¥:

((11,. (5) . Lz,.,alwizm[Sis] w1w>[514] 71”

711:

(k‘) 141’ 14 : 12]" (k)‘3)

Now the simulation of the second communication step of I is complete, the system
begins to simulate the third one in the same manner, and so on.

If the simulation of all communication step is complete, then the systemn uses
the rules [S;]" = [SiJ™*!, 1 <4< n, 1 <m < p-—1, and finally when G/, get
ready. to receive the result, it erases [S;]P, 1 <4 <.

It is clear that all our arguments about the simulation of the first rewriting
step and the following communication sequence of I' by I also hold for all other
rewriting steps and communication sequences, where all of the sentential forms
contain at least one non-terminal.

Now let, us consider the case when one or more of the sentential founs QU ey (X,
of Gy, ...,G, is terminal and the system chose to simulate the application ot a rule
combination to these sentential forms.

If a; is terminal for some j and the j-th rule of the chosen combination is
empty, the simulation is'correct. Now we show that the simulation is also correct,
if a; is terminal and the j-th rule of the chosen combination is not empty, but it is
Xj — Wy
il = 0, the j-th rule does not introduce queries, then the simulation
would consist of rewriting [X;] to w;[X;]!, w;[X;]? and so on, until the bracketed
nonterminal [X;]! is finally erased. Using these rules on ¢; € T* has the same etfect,
as if the chosen combination contained the empty rule instead of X; — w;.

If |w. ,| i # 0, the j-th rule introduces queries, then the assistant components
©» begin to collect the result of the query. The system will get blocked
.l

1

Gk
when they are ready to send the result to G;‘f‘, because Gf;'l can not rewrite the
bracketed nonterminals [X;]', 1 <1< p.]

419 ..,

194 Gyérgy Vaszil

We demonstrate this construction on a simple example.

Example Consider the following PC grammar system I' € 7fPC4CF generating
the language {aa}.
r'= (IV) I(:T)Rlu"';R‘l;Gl; "'7G4): N= {Sz I 1 S { S 4}, T= {("‘: b}:

P = {S] — Q;;Qg}, P = {S_) — Q3}, P = {Sf; — (L}, Py = {54 — 1)}

Since we have only one rule in each rule set, our rule combinations contain the rule
of P, and we are free to choose the empty rule instead of one or more rules of the
other components. This gives us a total number of 8 combinations, of which only
that, one is applicable which contains the four rules of the four components. Let
this one be the 8-th one and let us concentrate only on this combination.

Now t =8, u=20, u§ =2, «§ =1, u§ =0, v} =0, the simulating system
I € ThPCg3CF contains the following components:

I =(N',K'T,Ri,.,R,
Gi,.,G4, G}, ..,GL,.....GY, .., GS,
Gi]"":G;l’ G?I:G%.ZaGﬁl)
Ga,,Gay, Gy Gl GYL LGS Gy).

mn?

The longest communication sequence of the original system contains 2 counnumni-
cations steps so the choise of p = 4 is appropriate. The rest of the system I'
is: '

N = {5, [Si]|1<i<4}u {Sij,Agw | vavls a component of T'} U
k ! k m . p y) &]
{S5;,5; 11<k<8,1<i<4,1<j<wy, 1<m<6HU
{O,(1)7,(S)) 11<1<8,1<j <6, 1<i<4}U
{Z’B,F},
RS (S8 +h G#_ is a component of I,

P, = {A; > SYu{S;— [Si]}U{Se, =[S}V
{S; —» S!,8! —» 87,82 =582 8 — S}, S — 87,57 - @i},
P} = LUEUU{S! = Qus A = Qay, () = Qiy Say = Say U
{(k) —» (B)Y, (W)Y = (K)2, (k) = (K)3, (k) = (), (k) = (k)",
(k) = ()%, (£)° = Qa, | 1< k <8,k #4},
forall1<i<4, 1 <j<8and
Pt = L2%U{Sf = Qa,, Al = Qa,, (k) = (£)',Su, = Sa, }U
{) > W18 1 # kY,
forall1<k<8,1<i<4,1<j<ub.
P,, = {Aq, = (k),Sa, = (k),Sa, = Sa, |1 <k <8},
P, = {A4a, 2 Qa;, S, = QaysSay = Sgy, (k) = () |1 <k <8},
Pl = {Si— 5,8, = Sa, JU{A; = S, (k) = Q¥ | 1<k <8}U

Various Communications in PC Grammar Systems 195

f ! / (Y] 3! 43! ' '
{Si—8},SH = 87,88 - 8¥,87 - 85,8 = Qa,}
for 1 <4 <4 and
¥ w Il ! WL
Pt = {Ay - S5 Sk - S5 SE
j1<m<5}uU
gt k!t
{Q) =S S, =S5 [1#k1<1L 8},
forall 1< k<8 1<i<4,1<j<ub
P, = {4 - Sb,Sb — S}, S8 = 82,82 = 82,88 = Sp, St = Qast U
{() = WLG)' =S |1<j <8}

Now if we construct the sets L1% and L2§j according to the algorithm given above,
we get the following result:

m ym+1

, 6
= 55 SSED =

LJ

LY = {[S1] = [Si]' [Si]* = [Su)%, [=[S (S = QF1, (S1)* = e},
L§ = {[Se] = [S2]', [Se]' = @5, [S2]? — €},
L§ = {[Ss] = a,(Ss]" = [S3]?, [Ss]? = [S5]*, [Ss]® = [S5]", [Ss]" — €},
L§ = {[Sa] = V[Sa]", [Sa]' — [Sa]?, [Sa]® = [Sa]®, [Sa]® — [Sa]", [Ss]" — €},
L2%) = {(8)' = Q}(8)%,(8)* = (8)°,(8)* = (&), (8)" = Q%,},
= {(8)! = (8)%,(8)* = (8)*(8)° — Q3(8)", (8)" — [S1]'},
L2%, = {(8)' = Q5(8)%,(8)> = [S:]*}- =

By corollary 4.2, lemma 4.3 | lemma 4.4 and by observation 2 we have the following
theoreni:

Theorem 4.5 L(fPC.CF) = L(hPC,CF)

Proof: The inclusion L(hPC.CF) C L(fPC.CF) holds by observation 2. To
show the converse inclusion, we have L{f PC.CF) C £;,(TfPC.CF) by lemma 4.3,
L,(FfPC.CF) C L(ThPC.CF) by lemma 4.4 and L(ThPC., CF) = L(WPC.CF)
by corollary 4.2. O

5 Conclusion

In this paper we have introduced immediate communication in parallel comninu-
nicating grammar systems. Since it differs only slightly from previously existing
communications, the generative power of these systems do not change in most cases.
To study the generative power of non-centralized, returning systems, we general-
ized the idea of “returning to the axiom after communication” and we have shown
. that the use of immediate communications in non-centralized returning PC gram-
mar systems results in the same generative power as if we only used homeogencous
queries with the usual communication protocol.

196

Gyérgy Vaszil

References

(1)

(2]

(3}

4

(5]

- [6)

[7]

E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. Paun, Grammar Systems. A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach,
London, 1994.

J. Kari, L. Santean, The impact of the number of cooperating grammars on
the generative power, Theor. Computer Sci. 98 (1992), 249-263.

V. Mihalache, On parallel communicating grammar systems with context-free
components, in Mathematical Linguistics and Related Topics (Gh. Paun, ed.),
The Publ. House of the Romanian Academy, Bucharest, 1995, 258-270.

Gh. Paun, Parallel communicating grammar systems; the context-free case,
Found. Control Engineering, 14, 1, (1989), 39-50.

Gh. Paun, A. Salomaa, S. Vicolov, On the generative capacity of parallel
communicating grammar systems, Intern. J. Computer Math. 45 (1992), 49-
59. '

Gh. Paun, L. Santean, Parallel communicating.grammar systems: the regular
case, Ann. Univ. Bucharest, Ser. Matem.-Inform. 38, 2 (1989), 55-63.

A. Salomaa, Formal Languages, Academic Press, New York, 1973.

