
Acta Cybernetica 13 (1997) 173-196.

Various Communications in PC Grammar Systems *

György Vaszil tt

Abstract
A slightly modified communication protocol called immediate communica-

tion is introduced for P C grammar systems and the generative power of these
systems is shown to be equal to what we call homogeneous systems, systems
with queries of a special form. To acquire this result we also introduce a
generalization of returning systems, called systems with returning languages.

1 Introduction
Parallel communicating grammar systems (PC grammar systems) were introduced
in [6] as a grammatical description of the so-called classroom model of problem
solving. The agents of the classroom are generative grammars, which all operate
on their own sentential form, these represent the subsolutions of the overall solution
which is the language generated by the whole system. During their operation the
agents may communicate, they may exchange their strings with each other. The
language generated by the system is the language generated by the classroom leader
which is one of the component grammars, usually called the master grammar of
the system.

Parallel communicating grammar systems have been the subject of detailed
study over the past.few years. See [3], [4], [5] for results on their generative power,
and [2] on their size parameters. A summary of their properties can be found in
the monograph [1].

The power of PC grammar systems is measured by their generative capacity,
which may depend on a number of factors. The type of the component grammars
and the number of the components are obviously very important among these
factors, but there are many others to be considered.

In their paper [6], Gh. Pàun and L. Santean considered variants with a universal
clock and two basic methods for communication. The presence of the universal clock
means that all components use their rules synchronized in time, one derivation step
is taken by the system with all components using one of their rewriting rules.

'Presented at the workshop Grammar Systems: Recent Results and Perspectives, July 26-27,
1906, Budapest.

tResearch supported by the Hungarian Scientific Research Fund, OTKA no. T017105.
•Computer and Automation Institute Hungarian Academy of Sciences Kende utca 13-17, 1111

Budapest, Hungary, email: vaszi l81una.aszi .sztaki .hu

173

174 György Viiszil

Communication in this construction is realized with the aid of special nonter-
minals, the so-called query symbols. Each of these symbols points to one of the
component grammars of the system, and when one of them appears in a sentential
form, it has to be replaced with the current sentential form of the component it
refers to.

This is communication by request, which has two basic variants. One is called
returning communication: after a component sends its string to an other compo-
nent, it must return to its start symbol (or axiom) and begin to generate a new
string. The other is called non-returning communication: the component which
sends its string keeps a copy for itself and continues to process it after communi-
cation.

In the following we keep the basic features of the original model. We will
consider synchronized systems with communication by request, but propose a slight
change in the communication protocol introducing immediate communications, and
investigate the impact of this modification on the generative power. To do this,
we also generalize the notion of a returning communication by introducing systems
with returning languages.

The results we obtain will show that the languages generated with immediate
communication can be generated with a very much simplified form of query rules
using the original protocol. This simple form of queries is what we call homogeneous.

2 Preliminaries
The reader is assumed to be familiar with the basics of formal language theory;
further details can be found in [7].

The set of all words over an alphabet V and the empty word are denoted by
V* and e respectively, the family of regular, linear and context-free grammars by
REG, LIN and CF, respectively. | w | and | UI denotes the length of a word UJ
and the number of occurences of symbols from set X in w, respectively.

Now we recall the notion of parallel communicating grammar systems from [6],
for more material see the monograph [1].

Definition 2.1 A parallel communicating grammar system with n components,
where n > 1, (a PC grammar system, for short), is an (n + 3)-tuple F =
(N, K, T, Gi,..., Gn), where N is a. nonterminal alphabet, T is a terminal alpha-
bet and K = {Qi, Q-2, • • •, Qn} is an alphabet of query symbols. N, T, and K are
pairwise disjoint sets, Gi = (N u K , T, Pi, Si), 1 < i < n, called a component of T,
is a usual Chomsky grammar with nonterminal alphabet N U K, terminal alphabet
T, a set of rewriting rules Pi and an axiom or (a start symbol) .SV Gi is said to be
the master (grammar) of T.

Definition 2.2 Let F = (N, K, T,G\,..., Gn), n > 1, be a PC grammar system
as above. An n-tuple (x'i , . . . , x n) , where i j £ (JVUTU K)*, 1 < i < n, is called
a configuration of T. (Si,..., Sn) is said to be the initial configuration.

Various Communications in PC Grammar Systems 175

PC grammar systems change their configurations by performing direct derivation
steps.

Definition 2.3 Let T = (N, K, T, Gi,. - . , G„) , n > 1, be a PC grammar sys-
tem and let (xi,..., xn) and (yi,... ,yn) b'e two configurations of F. We say that
(x i x n) directly derives (j / i , . . . , j/„), denoted by (x i x n) => (j/i, • - •, yn), if
one of the next two cases hold:

1. There is no Xi which contains any query symbol, that is, Xi E (N U T)* for
1 < i < n. In this case Hi- For Xj E T* we have x< = yi,. The system is
blocked, if there is an Xj with | Xj 0 and none of the rules of P, can be applied
to xj.

2. There is some Xi, 1 < i < n , which contains at least one occurrence of query
symbols. Let x,i be of the form x* = ziQi lz-2Q i2, • • • ,z<,Qitzt+i, where Zj E (N U
T)*, 1 < < t + 1 and Qi, E K, 1 < I < t. In this case yi = z\x^ z2x^ ... ztXi, zt+i,
where xit, 1 < I < t does not contain any query symbol. In returning systems yit =
Si,, 1 < I < t., in non-returning systems y^ = XiL, ! < / < / , . If some x^ contains
at least one occurrence of query symbols, then yi = x^ and also y^ = x^,, 1 < I < t.

If for all Xi with | Xi 0, Xi = Z\Q^ z 2 Q i 2 , . . . , ZtQitzt+\ there is at least one
Qij, 1 < J < ^ that x^ also contains a query symbol, then the system is blocked
due to a circular query.

For all i, 1 < i < n, for which yi is not specified above, yi = x,;.

The first case is the description of a rewriting step: If no query symbols are present
in any of the sentential forms, then each component grammar uses one of its rewrit-
ing rules except those which have already produced a terminal string. The deriva-
tion is blocked if a sentential form is not a terminal string, but no rule can be
applied to it.

The second case describes a communication: If some query symbol, say Qi,
appears in a sentential form, then the rewriting stops and a communication step
must be performed. The symbol Qi must be replaced by the current sentential form
of component Gi, say Xj, supposing that Xj does not contain any query symbol.
If this sentential form also contains some query symbols, then first these symbols
must be replaced with the requested sentential forms. If this condition cannot be
fulfilled (a circular query appeared), then the derivation is blocked.

Let =>rew and =>com a denote a rewriting and a communication step respectively.
If the sentential form of a component was communicated to another, this com-

ponent can continue its own work in two ways: In so-called returning systems, the
component must return to its axiom and begin to generate a new string. In non-
returning systems the components do not return to their axiom, but continue to
process the current string.

A system is centralized if only the component G\ is allowed to introduce query
symbols, otherwise it is non-centralized.

By the word query we refer to a sentential form containing at least one query
symbol. A query is satisfied by a communication replacing the query symbols with
the requested sentential forms. This may be done in one or more communication

176 György Viiszil

steps. The phrase communication step is used to denote the process of satisfying
the query symbols, which can be satisfied in "parallel". For example the returning
communication prescribed by (Q>, Q3, a, Q3) takes two communication steps to
realise: first we get (Q2, a, S3, a), and then (a, S2, S3, a). The two consecutive
steps together will be referred to as a communication sequence.

Let =>+ and =>* denote the transitive, and the reflexive, transitive closure of
=> respectively.

Definition 2.4 Let k be a natural number, k > 1 and let the k step derivations of
a PC grammar system be denoted by (S i , . . . , S„) = (a " , . . . , a ") =>fc (a'i,..., a';L)
where (a y , . . . , is the configuration reached by the system in k steps. The
language generated by a PC grammar system F is

L(T) = K e T* I (S i , . . . , Sn) k (aî,..., ÏT*, 1 < j < k}.

Thus, the generated language consists of the terminal strings first, appearing a.s
sentential forms of the master grammar, G\.

Let the classes of returning and non-returning PC grammar systems with at,
most, n components of type X, X £ {REG, LIN, CF} and v, > 1 and the
corresponding language classes be denoted by PCnX, NPCnX and C(PC,,,X),
C(NPCnX) for non-centralized systems and CPCUX, NCPCnX, C(CPC„.X),
C(NCPCnX) for centralized systems, respectively . When an arbitrary number of
components is considered we use * instead of n

3 PC grammar systems with immediate commu-
nications

In the communication protocol of [6] the query symbols occurring in one string can
only be replaced in one communication step. If it is not possible, the system lias to
wait until all the query symbols of a sentential form can be replaced. For example
the ciueries (Q2Q3, Q:J, «) are satisfied in the returning mode with the following two
steps:

(Q-iQi-.Qi^a) =>com (Q 2 Ç 3 , a , S 3) com (aS3,S2,S-3). Observe that of the
query Q2Q3 did not get replaced in the first step.

In the immediate communication mode we allow the replacement of all query-
symbols that request, sentential forms not containing other query symbols. The
query above will be satisfied with:

(Q-iQ-.i-Qiid) =>com (Q-ia-i 1, S3) =>com (aa,S2,S3).

Definition 3.1 Let T = (N, K, T,G\,... ,Gn), n > 1, be a usual PC grammar
system and let (xx,... ,xn) and (? / i , . . . ,y n) be two configurations of F. We say that
(x \ ,..., x.n) directly derives (y\,... ,yn)> with immediate commmiications if one of
the next, two cases holds:

Various Communications in PC Grammar Systems 177

1. There is no x* which contains query symbols, x,; £ (N U T)* for 1 < t <
n. In this case the system performs a rewriting step denoted by (x i , . . . , x „)
(yi,... ,yn), where x* => yi in G,. For x, £ T* we have Xj = yi and the system is
blocked if there is an Xj with | xj 0 and no rule of Pj can be applied to x-r

2. There is some x», 1 < i < n, which contains at least one occurrence of
query symbols. In this case, the system performs an immediate communication
step denoted by (x j , . . . , x n) => (yi, • • • ,yn), in the following way:

Let Xi be of the form x, = ziQ^z2Qi2,... ,ztQitzt+\, where Zj £ (NUT)*, 1 <
j < t + 1 and Qil £ K, 1 < I < t. Now yi = z16i1z2fii2 ... zt,8itzt+\, where

i 1 < ^ < i is Xj, if xit does not contain any query symbol, or Si, is Q -,, if x.j,
contains at least one query symbol. If Si, = x,,, then in returning systems ?/,;, = Si,,
in non-returning systems y^ = Xj,, 1 < I < t. If 6i, = Qi,, then yi, = x^ , 1 < I, < t
in both type of systems. The derivation is blocked by a circular query if for all i
with | xi \Kji 0, Xi = zi Qh z2Qi2,..., ZtQit zt+i and j/f = z1Shz2Si2 ... zfStl z,.+i,
there is a ¿.¿, = Qi,, for some I, 1 < I < t.

The first case is the description of a usual rewriting step, the second case describes
an immediate communication: if more query symbols, say Qi, Qj, appear in a sen-
tential form and x,;, the current sentential form of component Gi, does not contain
query symbols, then Qi must be replaced by Xj, even if Qj can not be replaced
by :r,j, the current sentential form of Gj in the same step, because it contains
further queries. In short, strings without query symbols must be communicated
immediately.

Let the class of PC grammar systems of type A" with immediate communi-
cations and n components of type Y and the corresponding language classes be
denoted by fXnY and £(fXnY) respectively, X € {PC, NPC,CPC,CNPC),
Y £ {REG, LIN, CF}. If an arbitrary number of components is considered we put
* instead of n.

In a communication sequence with immediate communication, the strings requested
by other components are always sent to their destination without any delay if they
do not contain further queries. Using the usual communication protocol, it is
possible that a sentential form is requested by two other components, but sent to
only one of them. For example, if x» is requested by Xfc = QiQj and x; = Qi, but
Xj = Q771 also contains a query symbol, then Xi can not be sent to xk, until the
query symbol of XJ, the other requested sentential form is replaced. This makes it
possible in returning systems, that a query symbol is replaced by the axiom of the
queried component instead of the string present at the appearance of the query.
In the example above the result of the communication sequence is the following:
yk - Si'xm, yi = x.i, while using immediate communication it would be yyj. = x./x.m,
yi = x-i.

In a number of cases this difference can not influence the results of a commu-
nication sequence. For example, nonreturning systems do not return to their ax-
iom during the communication sequence, centralized systems never request strings
containing query symbols and regular or linear components have sentential forms
containing at most one query symbol. In these cases the generative capacity of

178 György Viiszil

immediate communications coincides with the usual communication modes.

Observation 1

1. C(f N PCnX) = C(NPCnX), X e {REG, LIN, CF)

2. C(fPCnX) = C{PCnX), X G {REG,LIN}

3. C(fCPCnX) = £{CPCnX), X G {REG, LIN, CF]

In the next section we will investigate the generative power of the remaining case,
the case of non-centralized context-free returning systems.

4 The power of returning systems with immediate
communications

In this section we study the generative capacity of context-free non-centralized re-
turning systems with immeditae communications, but first we introduce the notion
of PC grammar systems with returning languages which will be of help in our
investigations.

A PC grammar system with returning languages is a natural extension of a.
returning system. Each component has an associated language, the so-called re-
turning language. After communication they are allowed to start a new derivation
with any word of this language instead of starting with their axiom again.

Definition 4.1 A PC grammar system with returning languages is a (2?7, + 3)-tuple
F = (N, K, T,R. i , . . . , Rn, G1,..., Gn), where N, K, T and G\,..., Gu are the same
as usual, and Ri,... ,Rn are non-empty sets of words over (TV U T), the so-called
returning languages. (Ri C (TV U T)*,R.i ± {e} , Ri # 0,1 < i < ?i).

The system works like a usual returning system, but after communication com-
ponents may start a new derivation with any word of their returning language.

Let the class of context-free PC grammar systems with returning languages of
n components of type X, X £ {PC, fPC} and the corresponding language classes
be denoted by rXnCF and C(rXnCF), respectively.

With the aid of systems with returning languages we will be able to prove our
theorem about the power of immediately communicating systems, which will turn
out to be the same as that of usual returning systems with a certain form of queries,
which we will call homogeneous queries.

Definition 4.2 Let, us call a query homogeneous, if all query symbols contained in
the corresponding sentential form request, the same string, that is, the sentential
form is of type aiQiaiQi... at-iQiat, where 1 < i < n, 2 < t and aj G (N U
T)\ 1 <j<t.

A component viith homogeneous queries is a component grammar Gt, 1 < i < n,
which is allowed to introduce only homogeneous queries, it has no rule of the form
A' - » aQiPQ jj, with i ¿ j , a, /3, y G (TV U T U K)*.

Various Communications in PC Grammar Systems 179

A PC grammar system is called homogeneous, if it has components with homo-
geneous queries only.

Let the class of homogeneous PC grammar systems of type X with n context-
free components and the corresponding language classes be denoted by h,XnCF
and C(hX,,CF) respectively, where X G {PC,NPC}.

The following inclusion is obvious because communication sequences with homoge-
neous queries produce the same result in the usual and in the immediate commu-
nication modes.

Observation 2 C(hPCnCF) C C(fPCnCF)

Our aim is to prove also the converse inclusion. First we present a lemma about
systems with returning languages.

Lemma 4.1 Let F be a returning PC grammar system with immediate commimica-
tions, having n context-free components and finite returning languages R.{ consisting
of only nonterminal symbols, i?,t C N, 1 < i < n.

If these conditions hold, then there exists F', a returning system with immediate
communications and 4n components which generates the same language as F.

Proof: Let T = (N, K, T, Gx,R.i,... ,Gn,R„) G rfPCnCF with nonterminal
alphabet Arj set of query symbols K, terminal alphabet T, n context-free compo-
nents Gy,..., Gn and returning languages R.\,..., R.n, R-t C N, 1 < i < n. Now
let T' G fPCinCF be the following:

r' = (N', K', T, G\,.., G\, G\, ,.,G2n,G'{,.., G"n, G\,.., Gfn)

where

N' = {Si, Si S°-,S°',Sl,St',Sf | l < i < n } U
{A , [X] \XeN},

Pi = {Si Ql Si -> Q?} U { X [X] I X - » « e P . l ,
Pf = {s;2 QJ} U { [X] a I X a £ Pita G (N U T)*} U

{[A'] aiQ)^ ... Q)tat+1 | X -» aiQ^a-z... Qjtar+, G P (,
at £ (NUT)*,I <l<t + 1},

Pf = {St [Si\,S? Sf,Sf [Y] | Y G Ri} and
Pf = {Sl^Sj',Sl' ^S$",Sf ^Q-}u{[Y}^[Y]',[Y]' ^Q'l \YeR;}

for 1 < i < v..

The system has four n-tuples of component grammars, and the rules X —> a. £
Pi, ! < ' ' - < n of T are broken into two parts X [A] and [X] a. G],..., G,,
contain the first, parts X [X] and G'\,... ,G2n the second parts [X] —> a.

180 Gydrgy Vaszil

The}- work in the following way: all G\ use the first part of some rules while
G'j introduce the queries Qj. Now the sentential forms of G'j replace the query-
symbols in Gj, where the application of the rules is finished using their second
parts. Next the sentential forms are communicated to G\ and the process starts all
over again. The assistant components G'[and G\ are used to simulate the return
of a component to some symbol of the returning language, 1 < i < n.

First we show how the initial derivation step of T is simulated by T'. We start,
from a configuration

col el. c2 c2 ca qn at ct.\ Wl. : ' ' ' > Jn> °1 ' ' ' ' > °n> J ' ' ' ' °n> °1 > " ' ' ! °1l)

and get

Q\,...,Ql, <5? , . . . ,^ , S f ' . - . - . O .

where Sj is either Qj or Q". If some Sj = Qj then the derivation is blocked by a
circular query. Sf is either [5»] or Sf ' . If some = Sf then the derivation is also
blocked since S'f is passed to Gj and Pf does not contain rules to rewrite Sf. So
we must have

[Si], , . •, [S„], s{',....Sj,).
After one communication step we get

(Sj ' , . . •, Sjl, [S t] , . . . , [Sn], S ° , . . . , S®, SJ , . . . , Sj,),

and then

(<>,' ¿1: <5? , . . . ,^ , Si",..., St"). '
Here aj differ only in the indices of the query symbols from the strings pro-
duced by G, of r , 1 < i < n, through the first rewriting step. More precisely if
(Si , . . . ,S n) =>re,„ (a i , . . . , a „) , then aj = a* if | a* \K= 0, aj = aii Qj, ah ...Qjh a,,
if a,; = a.ilQj1ai2...Qjlait. The Sj are either Q" or Qj and are either Sf or
[S»], 1 < j < n. If Sj = Qj for some j, 1 < j < n, then the system is going to be
blocked after the next, rewriting step, when Gintroduces Q'j, because P• does nor,
contain rules to rewrite [Sj] or Sf. If Sj = Qj for all i, l<i< n, then (5*' = Sf
for all i, "1 < i < n, because [Sj] can not, be rewritten with the rules of P". So we
must have

(Qj,..., Qn, ax,... ,a.~n, Sj1 , . . . , Sj , . . . , Sj,),

and then after a number of communication steps we get

{ft i, • • •, ftii i , . . . , S - , S™ , . . . , S.JJ , S{ ,..., Sj,),

where the A: = Ji if (j i , • • •, j n) are the sentential forms of T produced by the initial
rewriting step and the possibly following communication sequence and 7, £ B.i. If
7 j £ B.j for some j, 1 < j < it, then ftj = Sj. If 110 aj contains query symbols
(there are no communication steps following the initial rewriting step in F), then
fii = aj. If fti is terminal then the system can stop here, if it, is not,, then the
simulation must go on. We start with

Various Communications in PC Grammar Systems 181

(„, C2 C2 on' oni ot" Qt"\

^Uj , . . . , ULn, , . . . , o n , J j , . . . , J n , Oj , . . . , o n),
where a, G (N U T)* U { 5 / } and get

(¿],..., Q{..., Ql [1U ..., [rn], Q t , Q ") ,
with (5| = [«.¿] where [a;] is aj with one of its nonterminals X rewritten to [X] or
if ai G T* then [a«] = a¿. If some communication occured in the previous step and
the j-th sentential form was sent to an other component, then ctj = S| and is
either QV or Qj. If ¿J = Qt for some j, 1 < j < n, then the system is blocked by
a circular query, so if ctj = Sj for some j , then we must have

([a\],..,Q«,.,[«„], Q\...,Ql, Q1,...,Q"),

with Yi G Ri, 1 < i < n. After a communication step we get

(S],..., Si [«i],.., [1 j],. . , [a,,.], SÎ,...,SZ, [y i] , . . . , [y„]) .

Now the system continues the derivation as if Gj has have returned to Yj instead
of its start symbol. We get

,..., 51 Pi,..., 01 ¿1,..., S«, [Fi]',..., [rn]'),

where Sf and Sf are the same as above and 0f differ only in the indices of the query
symbols from the strings produced by G, of T, 1 < i < n, as described above. The
<51 are either Qf or Q'j and Sf are either Sf or [Si], 1 < j < n. If S^ = Q'i for
some j, 1 < j < n, then previously described situation arises, the system is going
to be blocked after the next rewriting step, when GJ introduces Q'.j, because P!j
does not, contain rules to rewrite [S7] or Sf. If <5• = Q'j for all i, 1 < i < v., then
Sf = Sf for all i, 1 < i < n again, because [Si] can not be rewritten with the rules
of P^. So we must have

n ' 5 * * •) Pu ' ' ' ' ' î ^n 1 1])••') '»-]) •
After the communication sequence we get

(7i, • • •, In, Si..., SI, Sf,..., Sf, [n] ' , . . . , [K„]'),

where 7.-L are the results of the communication sequence prescribed by the /1,; sen-
tential forms with 7j = Sj if the sentential form of Gj has been sent to an other
component during the communication sequence. If 7] G T* the system stops or
else it can continue to simulate T in the same manner. •

Let the systems satisfying the conditions of the lemma and the corresponding lan-
guage classes be denoted by rXnCF and C(rXnCF), X G {PCJPC}, respec-
tively. Note that, this proof is based on the fact that, using immediate communica-
tions each component sends its string only once during a communication sequence,
in other words the strings a component has returned to after a communication
step are never communicated in'the same communication sequence. Since homoge-
neous systems also have this property and since the simulating system constructed
according to the previous theorem is homogeneous if we simulate a homogeneous
system, we have the following:

182 György Viiszil

Corollary 4.2 C(rhPC*CF) = C{hPC*CF).

Before we proceed, we need some further observations about the nature of deriva-
tions in PC grammar systems. In the proof of our main theorem we would like to
treat the communication sequences of a derivation as "units" together. This means
that we will assume that terminal words of the master appear only as a result of
a rewriting step or as a result of a whole communication sequence, so we need to
prove that all languages of PC grammar systems can also be generated this way,
where the details of communication sequences are "hidden".

Definition 4.3 Let T be a PC grammar system. The language generated by F
with hidden communications is

Lk(r) = {u e T* | (Si ,S 2 , ...,Sn)=>* (w ,a 2 , . . . , a „) } ,

where | a* |k = 0, 2 < i < n or a 2 , • • •, ctn contain a circular query. In other words,
the generated language consists of terminal strings present as sentential forms of
the first component either after a rewriting step which does not introduce queries,
or at the end of a communication sequence, or in a final blocking configuration.

Let, the class of languages generated with hidden communications by X type
PC grammar systems with n context-free components be denoted by £/,(A"„Ci ?) ,
x e {.fPC,rfPC}.

Lemma 4.3 If L is a language generated by a context-free PC grammar system.
F £ XnCF, X € {PC, fPC}, L = L (r) , then L can also be genera,ted by a system,
with, returning languages T' £ rX2n+-2.CF with hidden communications, L = /,/,(F').

Proof: Let, F = (N , K, T,GU..., Gn) with N, K, T and Gh 1 < i, < n as usual and
let r ' = (N ' , K ' , T , Go, Ro,G\,R{..., G\, R}n, G\,R{.:., R», Ga, R.a), where
Gn is the master grammar and

N' = {X , [X] | X £ N} U {A 0 , So, S'0, Sn, S'a, Sf SfSf | 1 < i < -/;.},

Ro = {Ao},

Po = {X -» X j A' £ N} U {So -> S^, S^ Ql} U {.40 Q\},

R\ = {A\},
Pi = {Sl^[Si},A]^Qi}u{X-^[X)\X€N},

Rl = {S*},
Pf = {Sf —> Q}} U { [X] a. \ X a £ Pi,\ a \K= 0} U

{[A'] -4 a i a 2 . ..atQltat+1 | X aiQha2 .. .OLtQilat+i £ Pi:

otj £ (JVUT)*,1 <j <t, + 1},
Ra = . {S„ } ,

Pa = {Sa^ S'a,S'a-> S':,S';^QoS'a},

for 1 < i < n.

Various Communications in PC Grammar Systems
85

This T' system starts with the initial configuration

(So, S},..., S7\, S f , . . . , S~, S„).

After a rewriting step we get

(s ^ s [s n]> Q1 J • • •) Qn, S a)

and after a communication

(S'0,Ai,...,Al[S1],...,[Sn],S'n).

Now a rewriting step follows producing

(Ql, Ql, • • • , Qn, a\, • • • 1 an, Sa),

where a\ — a* if S» a ; £ Pj and | Q>j |/<-= 0 or if | a , 0, =
«¿i Q-ii fxi-> •••Qjiait , then a'; = aj1<3]10!i2"-(9}1Qii • After the communication we
have

(So, fli, • • •, 0n, Si,..., S„, S^),

where are the results of the communication sequence prescribed by a[,..., a'N

with ftj = Sj if the j-th component has returned to its axiom and r$o is either 0y
or if = Sj then ¿o is the string which was sent by during the communication
before it has returned to its axiom. If <50 is terminal F' stops here, otherwise its
work continues. After a rewriting step we get

(So,{0i},...,[0n),Q\,.--,Qi,QoS'a),

where [/3,] is 0i with one of its nonterminals X in brackets [A] ([/3i] = [Si] if 0-, = Sj)
or if it does not contain any nonterminals then [0i] = fti and ¿o is the same as above.
Now we get

(Ao,Al...,Al,[01},...,[0n},SoS'a)

and then

(Ql,Ql,...,Ql,il,...,in,5oS^),

where 7- = 7i if 0i =>c,', 7i with one rewriting step and | 7.i \j<= 0, or if | 7/
0, 7i = IhQhUz-Qitli,, then 7- = Ti1Q1jlJi2--Qjl7it- After the communication
sequence we get

j Sn, S j , . . . , S,j,

where ¿¿, 1 < i < n are the results of the communication sequence prescribed by
7l 1 • • • j In with 6j = Sj if the j-th component has returned to its axiom and So
is either or if ¿1 = Sj then £0 is the string which was sent by G} during the
communication before it has returned to its axiom. If So is terminal F' stops here,
otherwise its work continues in the same manner. •

Now we need to define a notion we will use in the proof of the next lemma.

184 György Viiszil

Definition 4.4 Let T = (N. K, T, Gi...., Gn) a context-free PC grammar system
with I< = {Qi,.... Qn} and let a be a query, a = a1Qila-2Qi2...atQilat,+i, =
0, 1 < k < t + 1, 1 <ij <n, 1 <j<t.

We define the j-th portion 1 < j < t + 1 of this query in the following way: If
j < t — 1 then the j-th portion is a jQ^ . Moreover, if j = t. then it is at,Qt.(Xt.+1.

Now we are ready to prove the following:

Lemma 4.4 Ch(ffPCtCF) C C(rhPC*CF)

Proof: Let T = (N, K, T, i? . , , . . . , Rn, Gu..., Gn) £ rfPCnCF be a PC grammar
system with immediate communications, nonterminal alphabet N, set of query
symbols K, terminal alphabet T, returning languages R,\...., i?,„ and n context-
free components G\,..., Gn.

Now we construct F' £ rhPCmCF, which generates the same language as F.
Here •in, = (t, + 2)n + 2u + 3, where t and u are the following: t, is the number of
possible rule combinations that we can try to apply to the sentential forms of F,
•u is the sum of uk, 1 < k < t,, where uk is the sum of u^, 1 < i < n and •u,f
is the number of query symbol occurrences on the right-hand side of the i-tli rule
of the A;-th rule combination. Formally t = IPJ n iL 'd -^ l ^ w e denote the
rules of the k-th rule combination with A'f —> a t h e n n =

T' simulates the application of each rule combination of F in a different vi-
t.uple of simulating components with the aid of assistants assigned to each of the
simulating n-tuples. First an integer k, 1 < k < t is selected and the application
of the fc-th rule combination is simulated in the k-th -/¿-tuple and in the /;;-tli set of
assistant components in p steps, with rules using only homogeneous queries. The
integer p must, be twice the number of necessary communication steps, which is at
most p = 2v, — 2. The simulating system contains the following components:

T' = (N',K',T,Ri, ,Rb,
si 1 s~i'2 r-it. (-TJ , ••, (J l , U n , b j , .., LT,„ , . . . , LTJ , .., Lr.n.

Gl /-fl 1 S-tl /~lt
11' ••! luj ' 21 ' ••!(-j2I4' II' 1 > •••.Llnu'n ••

Gni , G0.2 ; 115 Gu,.., G G,,)

where the 7/,-tuples simulating the £;-th rule combination are denoted by Gf: i. <
i < n with their assistant components GkL {,... ,Gfuk. G,u and Ga-2 are inv<)lved in
selecting the number of the rule combination to be simulated, G\...., G'n are needed
to help in sending back the sentential forms to G i , . . . , G n after the simulation
of a rule combination, G\x,.., GLnut are used to force a restart of the components
G\ |, •••.G'nu,. by querying them when necessary and G/, makes sure the system blocks
if it, simulates a rule combination which produces a circular query.

Let, C C {1, . . . , * } be the set, of those integers which number rule combinations
that introduce circular queries and let, the start symbol of the component G^y be

Various Communications in PC Grammar Systems 185

A** . ' cy-f

N' = {Z, B, F} U {(l)j, (I), (Si)j | 1 < I < t, 1 < j < V + 2,1 < i < n} U
I / I / ' 7

,St* | 1 < k < t, 1 < m < V + 2,1 < i < n, l < j < u'i} U
| G£7 is a component of T ' } U { X , [X] j X £ N} and

= { S f 7 } , where G^7 is a component of F',
Pi = {Ai -4 Si} U {X [X] I X a £ Pi) U {S,„ ->• [X] | X e Ri} U

(Si)1, (SiY (S i y + \ (S i) " + l i i < j < P } ,
Pi = Ll{ U {S./ - » (5m, -4'i —> Qai, Srtl -> S f l] , (;/) —» Q.;} U

{(A;) (fc)1, (fc)' (A;)i+\ (fc)"+2 Qttl | 1 < /;: < i, k ± //, .
1 <1 <p+ 1}

for all 1 < i < ??,, 1 < j < t and

{ (/) - > (/) | 1 < i < U #
for all 1 < k < t, 1 < i < n, 1 < j < Ui,

• Pa, = {Aai (A:),Sn] -> (fc),50l S01 | 1 < k < t],

Pa3 = {Aa.2 -> Qni, s;l2 gni, srt2 -> , (*o -> (¿o i i < k < t>,
P[= {X X I X £ (N U { S a i }) } U {(k) -»• Q>i I 1 < k < t} U

{ 4 S'i, S[S 1 ' , S.f -> s < + 1 ' s f Qn.2 I 1 < / < - 1>,
for 1 < i < n,

pk' _ r A k' . cA:'1 cfc' , qfc" cfc'm , + 1 ^k
1 i.j — X-n-ij ^ Jij >°ij ^ °ij) ij ^ °ij ' ij ^''«¿.7

| 1 < 7/1 < p + 1} U
{ (0 - > 5 ^ , 5 a i \ljtk,l<l<t}

for all 1 < k < t, 1 < i < n, 1 <j<u- and
P„ = {A„ S,„ S„ -> S,1, Si -> Sl+\S>: 0 „ 3 | 1 < I < p - 1} U

{(j)->B,B^F\jeC) U
Cj)1,^)1 S i l j g c } .

We construct the sets Llf and L2y 1 < i < n, 1 < < vt* in the following way:
Let us fix a k and observe the n rules of the fc-th rule combination.

The right sides of the rules determine the communication sequence that would
follow after rewriting with our certain rule combination.

We say that a sentential form contains a query at a certain point of the commu-
nication sequence if it contains query symbols which are not yet replaced at that
point of the communication sequence.

If our A;-t,h rule combination produces a circular query, we modify the rules. We
replace those query symbols which participate in the circle with a new nonterminal
Z and execute the following algorithm on this modified rule combination. (See the

186 György Viiszil

example at the end of this section.)
For each m. 1 < m < p/2, we repeat the following steps. (Note that p/2

is the maximal number of communication steps in T.) If the 7-t.l1 rule of our
rule combination is the empty rule, then Llk is empty since uk = 0, no assistant
components Gj { are present, so we do not, need to construct L2ji. During the
following algorithm we consider the j-th sentential form only if the j-tli rule of the
combination is not empty.

l . a . If the i-th sentential form does not contain a query at, the beginning of the
7/?,-t,h communication step and it is not communicated in the 7n-th communication
step then we put the rule [X^] —> «¿[A^]1 in Llf where Xt —¥ ai is the i-tli rule of
the A;-th rule combination if 771 = 1 and the rule [A',]2"1 -- - » [X i] 2 m _ 1 for all other
m.

1.b. If the v'-th sentential form does not contain a query and it is communicated
in the 7/1-th step, then we put [X.£] —\ ai in Lf if m = 1 and [X^]2"1-2 c- for all
other 711.

2. If the i-th sentential form contains a query which is not yet satisfied at the
beginning of the in-th communication step, then we put, [Xj] —> [A"j]J in Llf if
m = 1 and [Xi] 2" ' - 2 [X^2™-1 for all other rn.

2.a. If the j-th query symbol of this query is replaced in the 7/1-th communi-
cation step then we put (A) 2" 1 - 1 aQfft(k)2m in L2fp where aQifi is the j-th
portion of the right side of the z-th rule of the fc-tli combination.

2.b. If the j-th query symbol was or will be replaced in a step different from
the 771,-th, then we put, (k)2'n~[-4 (k)2m in L2l?j.

3. There must be queries that, are completely satisfie'd during the 7/7-th com-
munication step. If the ¿-th sentential form contains a query which is satisfied
completely during the 771-th communication step, we put [X.;]2"1-1 - » Qf, in Llf
and we put (k) 2 m Qf(j+i) in L2fj for all 1 < j < uf - 1 and (k)2m [X,;]2'"' in
L2k k.

VII i

4. For all ?! we did not deal with in point 3, we put [Xi] 2 1" - 1 [X;]2"' in L lf. If
the ¿-th sentential form contains a query which is not, yet, satisfied completely during
the m-th communication step, we put (k)2m —> (¿ ;) 2 m + l in all £2*-, 1 < j < v.f.

After repeating these steps for all 1 < 77/, < p/2, finally add [X',;]'' —> e to Lif,
1 < i < n.

Now we turn to the proof of our lemma. First we concentrate 011 the overall
architecture of the simulating system and show how it works. We will see how it,
provides p steps for simulating each rule combination with the rules of the set,s Llf
and L2fj, 1 < k < i, 1 < i < n, 1 < j < uf. T' starts with the initial configuration

(.•4i,.., An, /1},.., A}n,..., A\,.., Ajlt

a 1 41 At At "̂ 11., lnj ' ' ' * ' ill ' ••'•finu'n>

An,,Aa.2, A[,..,A'n, A\x,.... Alnut^, Ab).

After one rewriting step we get
(Si • ••; S f l , Qa\ j Qa 1 j Qai j Qai :

Various Communications in PC Grammar Systems 187

(k), Qai J S[,.., S'n, Sh ,...-, Sfnu^, Si,),

where the component Gai introduced the nonterminal (k) 1 < k < n. This selection
of k means that the system will try to apply the A;-t,h rule combination. Now a.
communication follows

(Sl}..,Sn, (k),..,(k),...,(k),..,(k),
(A;),.., (A;),...,(/=),.., (A;),
Sni i (k), S[,.., S'n, Sh ,..., S'n<, Sb),

where k, 1 < k < t is the number of the rule combination to be applied to the start,
symbols. Next, we get,

(k)1,.., (A;)1 Qu..,Qn (k)\..,(ky:

(k),..,(k) ,..., (k)\..,(ky (/.')•..:(/••):
, (k), 5 j ,.., S,1, , S^ ,..., S*n<, Si),

where <% is either (Si)1 or [Si], I < % < n and <5ni is either Sai or (I), 1 < I, < t. If
Si is (Si)1 or Sai is (I) then the system will get blocked, since G'i do not have rides
with (Si)1 and Gn i does not have rules with (I) on the left side. So we must have

([5i],.. ,[5„], (ky,..,(ky ,..., Q1,..,Qn ,..., (ky,..,(ky,
(k),..,(k) ,..., (ky,..,(ky ,..., (k),..,(k),
Sai,(k), ¿"l ,--,Sn , 51X ,..., Sfnu^, Si).

The assistant grammars Gf , for the fc-th rule combination introduced
Ql, ••; Qn, they will receive the sentential forms of G», 1 < i < n and G„,2 preserves
the value of k for later use. After the communication we have

(Slt..,Sn, (i:)1.... (/;•}' ,..., [5i],.., [S„] ,..., (ky,..,(k,y,
(fc),..,(fe) ,..., (k)^.... (/.•}' ,...,jk),..,(k),
Sat,(k), S1 ,.., 5,1, , Sh ,..., Sllu,^, Si).

If the fc-th rule combination is not applicable to the start symbols, then the rules
of P.,̂ are not, applicable to [5»], 1 < i < n. In this case the system is blocked, so
let us assume that the fc-th rule combination is applicable.

In the next rewriting step the system starts to simulate the effect, of the fc-th
rule combination in p rewriting steps. We are going to show that if the A;-t,h rule
combination is applicable to the current sentential forms, then the system provides
time for the simulation, takes the resulting sentential forms back to the first n-tuple
and starts the process all over again with an other rule combination. The details of
the simulation of the rule combinations will be discussed later, for now we denote
the sentential forms of the active simulating components Gf and their assistants
Gl,n, 1 < m < u'i by a{ and pf, 1 < i < n, 1 < / < uk, 1 < j < p .

We are only interested in the effect the active simulating components and their
assistants can have on the rest of the system and this is the following: After com-
munication they return to their axioms and then introduce the query symbol Qai

querying the "outside world", the component G f l l .

188 György Viiszil

If they receive Sa , then they use the rule S„, —> Sfll and at the end of the p
steps this nonterminal will be sent back to Gi, 1 < i < n with the other simulation
result, where it behaves exactly as the original start symbol. We show that the
system is blocked if they receive an other symbol. After one rewriting step we get

(Si,..,8n, (A;)2,.., (A;)2 ,..., a\,..,ai ,..., (k)2,.., (A;)2,
(k),..,(k) ,..., (k),..;(k),

Sa,, (k), S j ,.., S~ , S}x ,..., Snu'n'

where S.L is either [Si] or (Si)1, l . < i < n and <5„, is either Sn, or (/), 1 < / < t. If Si
is [Si] or <5(ll is (/), then the system is blocked since Pi and P<n does not contain rules
with [Si] or (I) on the left side, respectively and no other component (not even the
active simulating components Gf and their assistants G*-, 1 < i < n, 1 < j < uf)
could introduce queries requesting one of these <5 i or 6ai sentential forms. So we
continue from

((S O V . t S n) 1 , (k)2,..,(k)2 ,..., a\,.., ,..., (k)2,..,(k)2,
(k),..,(k) ,..., /i!,..,/^,..., (A;),..,(fc),
Sn,, (k), Sf ,.., S~ , Sjj ,..., Slnut^, S^),

and get

((Sj.)2,.., (Sn)2 , (A;)3,.., (A:)3 ,..., a 2 , . . , a 2 ,..., (kf...... [k)\,
(A;),.., (A;) ,..., /?2,..,/32, ,..., (A;),.., (A;),
Sn. ii(A'0> S'l , ..,S3 , S|j ,..., S'nut^, S 3) .

where Sni is the same as above. We claim that rewriting steps follow in this manner
providing the time for the simulation of the rule combination:

((Si) 2 , . . , (S n) 2 , (A;):l.... (A'):i ,..., af , . . , a 2 ,..., (A:)3,.., (A:)3,
(A;),.., (A;) ,..., ft2, ,..., (A;),.., (A;),
S(ii, (A:), S'l , . - ,S3 , Sj-j , . . . , , S 3) =>• ... =>•

((Si) ' ,—1 , . . , (Sn)'>—1, (A)", .•,(*)">•-. ai_1,..,<-L ,..., (A;)'J,.., (k)'",
(A:),.., (A:) ,..., (! '•):-(k):
¿ai;(A':), SJ ,..,Sf,, S}^ ,..., ,S'b).

To verify our claim we show that the active simulating components and their assis-
tants can not, interfere with the work of the other components. To do this we have
to observe their rule sets.

If one of the simulating components Gf, 1 < i < n returns to its axiom during
this series of rewriting steps, it introduces Qai and receives 5ni from Ga, • If Sai

is Srtl then it uses the rule Sni ->• S f t l . If 5ni is (I), I, ^ k, then it uses its rules
(I) - » (Z)1 and (I)* (l)i+1, 1 < i < p+ 1. If Sai is (A:), then it introduces Qi in
the next rewriting step and receive (Si)m , 1 < m < p — 2 from Gt. In this case the
system is blocked since the simulating components do not, have rules with (Si)"' on
the left side.

Various Communications in PC Grammar Systems 189

Now let, us look at the assistants of the simulating components (7f-, 1 < i <
n> 1 < i < u-i- If one of them returns to its axiom it, also introduces Q,,., and
receives from Gni• If Sai is Sai or (I), I ^ k then the same things happen
as we explained above. If <Sttl is (A:) then it is rewritten to (A;)1 and then rules of

must be used. These rules can only query the active simulating components
or their assistants, so they do not interfere with the rest of the system.

From these considerations we see that, the system is either blocked, or it readies
the following configuration:

((S 1) * - V . , (S n) " - 1) (A:)7',... (A:)'' a r 1 , . . , ^ - 1 (ky,..,(k)p,
(A:),.., (A:) ,..., ^ r 1 , - , ^ : 1 (*)>••>(*),
X (l.\ CP' cpl C l ' , , + 1 Ct 'P + 1 qp\

where a''~
1 and /3? , 1 < i < ni 1 < .'/ < uk can be sentential forms of components

that either returned to their axioms or not. If they did not, then we assume the
sentential forms to be correct, if they did, then and pp~l can be either SU],
(0, (0" ' or Qu 1 < I < t, 1 < i < n, 1 < m < p - 1. If any of them is Q; then a
communication step follows and the system is blocked. In the other cases rewriting
is possible, so we get, ({S1y,..,(Sny, (k)p+1,.., (k)p+1 ,..., ,..., (A:)'''1,-.., (A:)'"'1,

(A;),.., (A:) ,..., (k),..,jk),

Sni>{k), Qn2>-->Qa2, Sii : Qa2) >

and then after a communication
((^ r i - . ^ S n) " , (*) P + V - , (*) P + 1 ,..., (A;);,+ l , . . , (k)p+l,
(A;),.., (A:) ,..., Pl..,Pl' lk ,..., (A:),.„(A:),

where ap and pp are correct by our assumption (if their component, grammars never
returned to their axioms), or ap and Pf can be either S,n, (I), (l) m or Qi, 1 < i <
ii,, 1 < m, < p. If any of them is Qi then after the replacement, of this symbol the
system is blocked. In the other cases rewriting is possible again, so we get

((S , F + V . , (S „) " + 1 , (k)p+2,.., (k)p+2 ,..., a î ' + l , . . , < + 1 (k)p+2,..,(ky+2,
(A;),.., (A;) ,..., ,..., (k,),..,(k),
àa,,S'U2, QR,..,QN, QH,..., Qlnutn, Su),

and then after communication

((Si) ' , + I,.., (5 n) p + 1 , (k)p+2,..,(k)p+2 ,..., Si, ••,Sk ,..., (A;)/l+2,.., (k)v+2,
c 1 ct. ° i i > •••! J7l< '
Sa,, S'a2, c4+1,..,ap+\ (k),...,PP+1,.., pP+i,..., (k),Sh),

where Sh is either B if the system should block after the simulation of the fc-th rule
combination or (A;)1 if it should not. Now if any of the a p + 1 , 1 < i < v, whose
component grammar has returned to its axiom is not, Sa, or some P\'+[was not
Sai before the communication, then the system is blocked. Otherwise we get

190 György Viiszil

(Q 1 / *•> V̂Jl? ft 1 } • • • J
Qaj j • • •) Qai)

x n r v p + 1 0 - P + 1 9 1 ' 1 < ? ' " ¿ ' 1

and then
(rrp+l nv+1 * s

^aj j •••5 8ai 5
S[,..,S'n, Sjj >---yStnu^,6'll),

where ¿„, is either Sn , or (/), 1 < I < t. If it is Sa, then the system is blocked,
since G d o e s not have a rule with Sa , on the left. So we have

K + 1 , . . , < + 1 , (/) , - , (0 .
(0 , . . , (/) ,
Sn , ,(0> S n , ..., Snut^ ,

where 1, 1 < i < n is the result of the fc-th rule combination with SHl instead
of Si if the i-th component has returned to its axiom after a communication and
S'b is either F or Si,. If oci is terminal the system stops here, if it is not, then it
can continue in the same manner with the simulation of the Z-th rule combination
if S'b is not F. S^ is F only if the fc-th rule combination introduces a circular query
in T in which case F' should be blocked. If = Sa, 'for some j, then the j-tli
component should return to an element of Rj. This is simulated by using a rule
Sni —> [yY], A' € R.j in the next step.

Now we show how the p step simulation of the rule combinations is done. We
have two cases. If the rule combination to be simulated does not introduce a query,
then no assistant components are present. At the beginning of the simulation we
get

(..., [Si], [Sn],...) (..., ^ [S i] 1 , . . , an[Sn]1, •••)>

in Gf using the rules of Lf , 1 < i < n, where a^ are the right sides of the rules of
the fc-th rule combination. Now p rewriting step follows, we get

(..., a^Si] 1 , . . , «„[Sn]1 , . . .) => ... => (. . . . a ^ S i] " , . . , « « ^] " , . . .) ,

and in the next step

(..., a:i,.., a,i,...)

using the rules [Sj]'J e, 1 < i < n. Here a* is the result of the application
of the ¿-th rule of the simulated rule combination, the system deals with it, as we
previously described.

If the fc-th rule combination introduces queries, the situation is more compli-
cated. At, the beginning the sentential forms of the simulating ?i,-tuple and the
assistants are

(...,[S|j,..,[Sn;, ,(/;:)',..,(/,:)',...).

Various Communications in PC Grammar Systems 191

The sentential forms of the components Gf and Gfj after the Z-th rewriting step
will be denoted by a/ and a^ ' , 1 < i < n, 1 < j < uf, 1 < I < p + 1.

After the first rewriting step, the sentential forms of the simulating n-tuple and
their assistants are the following:

If the ¿-th sentential form in F is communicated in the first step then the sen-
tential form of Gk, a-i1 is Ui, the right side of the ¿-tlx rule of the rule combination:

(...,«{, ...wîl, ..,aln, , (k)2,.., (A;)2, ...).

If the ¿-th sentential form in T does not contain a query and it is not communicated
in the first step then a f is (¿¿[S;]1, u)i is as above:

(..., a|. . . ,u i x , . . , u i2 [SiJ1,.., a i , , (A;)2,.., (A;)2,...).

In these two cases -uf = 0, so there are no corresponding assistant, components.
If the ¿-th sentential form of P contains a query and the j-th query symbol of

this query is replaced in the first step, then ai = [Sj]1, and the sentential form of
the assistant component corresponding to this query symbol, a ,] is aiQfa2(A;)2 ,
where ayQi.a-> is the j-th portion of righthand side of the ¿-th rule:

..., (A;)2,.., axQfa 2 {k) 2 , . . , (A;)2,...).

If the j-th query symbol of the ¿-th sentential form is not, replaced in the first, step,
then ai:jl = (A;)2:

(. W i , , . . , [SVJ1,.., [Sij]1, ...
...,(A;)2;..,a1Qfa2(A:)2,..,(A;y2,..,(A;)2,...).

Now a communication follows in F'. If the /-th sentential form replaces the j-th
query symbol of the ¿-th sentential form in the first communication step of F, then
in T' ai1 becomes Sk, ai1 remains [S.;]1 and q^ 1 becomes aiai1a2(k)2 :

(..., a},.., Si1,.., ^^[Siz]1,.., [Sij]1,.., a*,...
..., (A:)2,.., aiwila2(A,02,.., (A;)2,.., (A;)2,...).

Now a rewriting step follows in T'. If the ¿-th sentential form was communicated
in the first, step then aj — Qai •

If the ¿-th sentential form was not communicated in the first step and it does
not contain a query, then aj =

If the ¿-th sentential form contains a query but it is not completely satisfied in
the first step, then aj = [5»]2. If the j-th sentential form of this query was replaced
in the first, step then a¿7-2 = aiai1a2(A;)3:

(•••>aii -Qa,,-,^2[SiJ2,.., [Si3]2, -,ajx,...
...,(A:) : i,..,a1^1a2(A:)3,..,(A ;)3,..,(A03,...).

If the ¿-t,h sentential form contains a query which is completely satisfied in the first,
step, then aj = Qttk and ajj = uiQi<j+i)> 1 < j < - 1 and a 2 ^ = a;.,,!-[S,;]2

where u>i, 1 < Z < uf is the satisfied Z-th portion of the righthand side of the query

192 György Viiszil

of the ¿-th rule. In this case a communication step follows in which the results of
the query are collected and passed back from the assistants to :

(..., aj,Qai,...u>i2[Si2]-,.., Qk4

..., (k f , . . . w i Q i 4 2 , W 2 [5 i 4] 2 , (A O 3 , - , (AO 3 , •••),

(...,af, ..,5h, ..,u>i2[Si2]2, . . , w i w 2 [5 , 4] 2 , . . .

•-•J (*0'\ Si4l; Si42> , (k)31 ••> (AO3, ••),

where is either S n i , (I) with I ^ k or (k).
Now the simulation of the first communication step of F is complete, the system

begins to simulate the second one in the same manner. A rewriting step follows. If
the ¿-th sentential form in F is communicated in the second step then is erased
from the sentential form of . If the ¿-th sentential form in T does not contain a
query after the first communication step and it is not communicated in the second
step then either [S,]2 is changed to [S*]3 or if the ¿-th component has returned to its
axiom after the first communication step of T then there are three possibilities. If
Qai was replaced by S n i , then it is not changed. If Qai was replaced by (/), I. ^ A;,
then it is rewritten to (I)1. If Qai was replaced by (AO, then it is rewritten to QL

and after this communication no further rewriting will be possible:

(..., a?,.., ¿1,..,uji2,.., [5,3]3,.., wiw2[Si4]3, - , a 3 ,),

where is either Sai, (I) with I ± k or Q.h. If S^ = Qi, then the system is blocked
after the communication.

Now let us look at the assistant components, lïuf ^ 0 (the ¿-th sentential form
contained a. query which was completely satisfied in the first step), then G,-;-, 1 <
j < u1-, the assistant components of Gf have also returned to their axiom and now
have Qai as their sentential form. If Qai is replaced by 5 a , or by (I), I ^ A;, then
it will not be changed later. If Q a i is replaced by (k), then it will be rewritten to
(A:)1 and the assistant will begin to repeat what it previously had done. This will
not interfere with the rest of the simulation process, since the ¿-th sentential form
was already communicated.

If the ¿-t,h sentential form of T contains a query and the j-th query symbol of
this query is replaced in the second step, then a f = [S;]3, and the sentential form of
the assistant component corresponding to this query symbol, a*,-3 is a\Qi<t-î{k)4,
where a iQ;a 2 is the j-th portion of righthand side of the ¿-th rule. If the y-th
query symbol of the ¿-th sentential form is not replaced in the second step, then
« : , / = (AO4

(• • • , a f , . . , < 5 ^ , . . , u j i 2 , . . , [5 , 3] 3 , . . , w i w 2 [5 i 4] 3 , . . , a 3 , . . .

- , (AO 4 , - , Qai, Qai, - , a i Q & a 2 (f c) 4 , . . , (fc)4,...).

Now a communication follows in T'. If the /-th sentential form replaces the //-th
query symbol of the ¿-th sentential form in the second communication step of F,
then in T' et;3 becomes S^, «¿3 remains [S;]3 and a^ 3 becomes a i a f a.2{k)A.

(, . . ,o:î , . ,<5| l , . ,5f2 , . . , [5 i 3]3 , . ,a;1a;2[5 Î 4]3 , . . ,a3 , . . .
-•, (AO4, -,aiW i2a2(A:)4,.., (A;)4,...).

Various Communications in PC Grammar Systems 193

Now a rewriting step follows in F'. If the ¿-th sentential form was communicated in
the second step then a j = Q a i . If the ¿-th sentential form was not communicated
in the second step and it does not contain a query, then [5j]3 is changed to [S;]4 in

If the ¿-th sentential form contains a query but it is not completely satisfied
in the second step, then a\ = [Si]4. If the j-th sentential form of this query was
replaced in the second step then a^ 4 = aia/3a:2(A;)5.

If the '¿-th sentential form contains a query which is completely satisfied in the
first step, then af = Quk and a\j = u>jQk^+1), 1 < j < and aiuk4 = w„ t[5j]4

where w/, 1 < I < uk is the satisfied I-th portion of the righthand side of the ¿-th
rule:

(- , a j , . . , S l , . . , Q a i , ..,Qk3l, ..^w^S^]4, ...

•••> 0)5> ••> SUI,SU2> ••,a1u)i2a2[Si3}'1,.., (k)5,...).

In this case a communication step follows in which the results of the query are
collected and passed back from the assistants to Gk:

(...,Q'Î, , . - A 2 , ..,aiw.i2Q2[5i3]4, ..,wiw2[5j4]4, . .a4 , . . .
..., (k) ',.., Si4i,Sf42, ••, Si2i, ••! •••)•

Now the simulation of the second communication step of T is complete, the system
begins to simulate the third one in the same manner, and so on.

If the simulation of all communication step is complete, then the system uses
the rules [S,]m [Si]m+\ 1 < ¿ < n, 1 < m < p - 1, and finally when G'-, get
ready to receive the result, it erases [Si]p, 1 < i < n.

It is clear that all our arguments about the simulation of the first rewriting
step and the following communication sequence of T by F' also hold for all other
rewriting steps and communication sequences, where all of the sentential forms
contain at least one non-terminal.

Now let us consider the case when one or more of the sentential forms ttj,..., <x„,
of G\,..., Gn is terminal and the system chose to simulate the application of a ride
combination to these sentential forms.

If atj is terminal for some j and the ji-th rule of the chosen combination is
empty, the simulation is correct. Now we show that the simulation is also correct,
if OLj is terminal and the j-th rule of the chosen combination is not empty, but it is
Xj u>j.

If \ujj\x = 0, the j-th rule does not introduce queries, then the simulation
would consist of rewriting [Xj] to WjfX,-]1, u>j[Xj}2 and so on, until the bracketed
nonterminal [Xj]1 is finally erased. Using these rules on o.j € T* has the same effect
as if the chosen combination contained the empty rule instead of X j —> Wj.

| If \UJ)\K 0, the ;y'-th rule introduces queries, then the assistant components
G^,.., Gkjuk begin to collect the result of the query. The system will get blocked

when they are ready to send the result to Gk, because Gkx can not rewrite the
bracketed nonterminals [Xj]1, 1 < I < p. •

194 György Viiszil

We demonstrate this construction on a simple example.

Example Consider the following PC grammar system F g rfPG^CF generating
the language {aa}.

T = (N,K,T,R.i,...,R4,G1,...,Gi), N = {Si | 1 < i < 4}, T = {a..b};

Pi = {S, -> Q3Q2}, P2 = {S2 -4 Q 3 } , Ps = {S3 -> «}, P4 = {S4 - » ft).

Since we have only one rule in each rule set, our rule combinations contain the ride
of Pi and we are free to choose the empty rule instead of one or more rules of the
other components. This gives us a total number of 8 combinations, of which only
that one is applicable which contains the four rules of the four components. Let
this one be the 8-th one and let us concentrate only 011 this combination.

Now t. = 8, u = 20, uf = 2, -it® = 1, u3 = 0, u* = 0, the simulating system
r ' € ThPCs.iCF contains the following components:

T' =(N',K',T,RU. .,R„,
G/^i /-tl /-fl /08 /-iH 1, ..,<J4, <-TJ , .., LT4,, (J-J, .., (.T4,

r> r r<1 n 8 r<8 r<8 <jr n , . . . , Cr21 , Crj j , (_T12, (jroj ,

Gai,Gtt2, G'1:..,G'n, G\x,...., G^j, Gi,).

The longest, communication sequence of the original system contains 2 communi-
cations steps so the choise of p — 4 is appropriate. The rest of the system F'
is:

N' = {Sit [Si] | 1 < i < 4} U {S f 7 , A^ | G%yis a component of F'| U
1 / 1 /"I 1

{Sij , S& I 1 < k < 8, 1 < i < 4 , 1 < j < v.f, 1 < m < 6 } U

{ (0 , (l) j , (S t y I 1 < l < 8 , 1 < .y < 6, 1 < i < 4 } U

{Z,B,F},
Rfa7 = { S f 7 } , Gg7 is a component of T',

Pi = {Ai -4 Si} U {Si -4 [Si]} U {Srtl [Si]} U
{Si^Sl,Sl ->st,st sf, Sf Q'i},

Pi = L\{ U { S - -4 <3„, , A? -4 Qax, (j) -4 Qi, Sat Sai } U
{(*) -4 (k)1, (k.y (k)2,(ky (kf,(kf -4 (k)\(k ,y -4 (k.r,

(fc)5 -4 (k)a,(kf -4 Qai I 1 < k < 8, k # j],
for all 1 < i < 4, 1 < j < 8 and

Pi = L2*ij U {S^- -4 Qai, Afj -4 Qai, (k) -4 (/¡;)J, Sa , S„, } U
{ (/) - » (0 I 1 < l < 8 , l i L k } ,

for all 1 < k < 8, 1 < i < 4, 1 < j < uf.
pai = {Aai (fc), S a i -4 (fc), Sn i -4 Sa i I 1 < k < 8},
Pn2 = {Aa2 - » <2n, , s ; 2 Qai,Sa2 S'a2, (k) (fc) | 1 < fe < 8} ,
Pi = {Si^Si,Sai->Sai}U{A'i^S'i,(k)->Q$\l<k<8}\J

Various Communications in PC Grammar Systems 195

{s; sy,sr -> sr,s? s3',s3 st ,s4 g«,}, '3 ' c3' ci1 c4'

for 1 < i < 4 and
, / I / I /1 , / 1 /1 I / Til , /111+1 , /6 , pi; / /IK , ok ok ok ÇK . çk çk /m+1

| 1 < m < 5} U
11 /1

lui an 1 «, N U, J. ' ^ M, J- J « i ,

Pfc = { A , S(,, 5Î, S 1 , S1 S 2 , Si -4 S 3 , S3 - » S 4 , S4 Q f t 3} U
{ (i) ^ (i) 1 , ^) 1 ^ | 1 < j < 8 } .

for all 1 < k < 8, 1 < i < 4, 1 < j < u* 'i >

Now if we construct the sets L\\ and L2\^ according to the algorithm given above,
we get the following result:

JA = {[5i] [Si]1, [Si]1 [S i] 2 , ^] 2 -> [Si]3, [Si]3 Qft, [5i]4 e},

L\ = {[S2] [S,]1, [Si]1 -> Q*21, [S2]2 e},

Ll = {[S3] «, [S3]] [S3]2, [S3]2 -> [S3]3, [S3]3 [S3]4, [S3]4
 C } ,

L\ = {[S4] b[S4]\[S4]1 [S4]2, [S4]2 [S4]3, [S4]3 [S4]4, [S4]" e>,

L2?! = {(8)1 g« (8) 2 , (8)2 (8)3, (8)3 (8)4, (8)4 Qf2>,

L2?2 = {(8)1 (8)-\(8)2 (8)3(8)3 Qi(8)4 , (8)4 [Sj]4},

L 2 l 1 = { (8) 1 - > Ç « (8) 2 , (8) ^ [S 2] 2 } . •

By corollary 4.2, lemma 4.3 , lemma 4.4 and by observation 2 we have the following
theorem:

Theorem 4.5 C{fPC*CF) = C{hPC,CF)

Proof: The inclusion £(/ iPC*CF) Ç C(fPC*CF) holds by observation 2. To
show the converse inclusion, we have C(fPCrCF) C Ch(rf PC*CF) by lemma 4.3,
Ck(ffPCtCF) Ç C{rhPC*CF) by lemma 4.4 and C(rhPC*CF) = £{hPC*CF)
by corollary 4.2. •

5 Conclusion
In this paper we have introduced immediate communication in parallel commu-
nicating grammar systems. Since it differs only slightly from previously existing
communications, the generative power of these systems do not change in most cases.
To study the generative power of non-centralized, returning systems, we general-
ized the idea of "returning to the axiom after communication" and we have shown
that the use of immediate communications in non-centralized returning PC gram-
mar systems results in the same generative power as if we only used homogeneous
queries with the usual communication protocol.

196 György Viiszil

References
[1] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Päun, Grammar Systems. A

Grammatical Approach to Distribution and Cooperation, Gordon and Breach.
London, 1994.

[2] J. Kari, L. Santean, The impact of the number of cooperating grammars on
the generative power, Theor. Computer Sei. 98 (1992), 249-263.

[3] V. Mihalache, On parallel communicating grammar systems with context-free
components, in Mathematical Linguistics and Related Topics (Gh. Päun, ed.),
The Publ. House of the Romanian Academy, Bucharest, 1995, 258-270.

[4] Gh. Päun, Parallel communicating grammar systems; the context-free case,
Found. Control Engineering, 14, 1, (1989), 39-50.

[5] Gh. Páun, A. Salomaa, S. Vicolov, On the generative capacity of parallel
communicating grammar systems, Intern. J. Cornput.er Math. 45 (1992),.49-
59.

[6] Gh. Päun, L. Santean, Parallel communicating grammar systems: the regular
case, Ann. Univ. Bucharest, Ser. Matem.-Inform. 38, 2 (1989), 55-63.

[7] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

