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On Two-Step Methods for Stochastic
Differential Equations

Rézsa Horvath Bokor *t

Abstract

The paper introduces a new two-step method. Its order of strong conver-
gence is proved. In the approximation of solutions of some stochastic differ-
ential equations, this multistep method converges faster in mean E|X — Yn|
than the One-step Milstein scheme with order 1.0 or Two-step Milstein scheme
with order 1.0.

Keywords: Stochastic differential equations, strong solutions, numerical
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1 Introduction

The problem considered in this article is that of approximating strong solutions of
the following type of the It stochastic differential equation:

dX, = a(t,X;)dt+b(t,X;)dW;, for 0 <t <T, X; € RY, (1)

where
a = ((l] . CLd)T,I) = (bl - b(l)r,)(() = ‘Y(E Rd)

The above system is driven by the one-dimensional Brownian motion. Details
about this stochastic object and corresponding calculus can be found in Karatzas
and Shreve [2].

We suppose that throughout this paper E || Xo ||> < +00 and Xj is independent
of F; = o{Ws : 0 < s < t}, the o-algebra generated by the underlying process.
Also, suppose that coefficients a(t, z) and b(¢, z) satisty conditions which guarantee
the existence of the unique, strong solution of the stochastic differential equation.

The approximations considered here are evaluated at points of regular partition
of the interval [0, T; these have the form (0,A,2A,..., NA), where N is a natural
number and A = 1—1(,- We denote nA by 7, forn=20,1,..., N.
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Here we shall use the abbreviation Y;, to denote the value of the approximation
at time nA and the following operators

o 8

L’ = —+Zak bEpt , (2)
Lt klzl Oz 07,
d

L' = Z azk (3)

To classify different methods with respect to the rate of strong convergence as in [3]
we say that a discrete time approximation Y2 converges with strong order y > 0 if
there exist constants Ag € (0,+00) and K < +00, not depending on A, such that
we have a mean global error

Eps(T) =

| < KAY for all A C (0, Ag).

The widely used method of order 1.0 is the Milstein method, which has the form

VM =Y M +a(ma, M)A + b(ry, Y, AW, + L b(Tn; YMY((AW,)? — A), (4)

with Y¥ = X,. The two-step Milstein strong scheme, for which the k-th component,
in the general multidimensional case d = 1,2, ... is given by

YET = (1= )YET 4 Yo + o (r, YA+ VE (5)

3

+ '}%l((l—ak)ak(Tn,YnT)—i-aka’”(Tn 1,.Y, 1))A+V’” 1

with

=
*
I

] 1., ‘
Ve (1, Y)Y AW,, + 5le’v(Tn,YﬂT (AW,,)? — A),
Y |

XO: }/1T = YlMa

where AW, =W, ., - W, ,n=0,1,..., N~1,k=1,...,d, and o, € [0,1].
In the general multidimensional case with d = 1,2,... the kth component of
the new multistep scheme takes the form

Vi = Q—)YF + Y +af(m, Ya)A + 08 (r, Yo) AW,
1 ,
+ -élek(Tn,Yn)((AWn)z —A)

+ Yk l:((l - ak)ak (T'n.y Yn) + akak(rn—lay;L—l)> A

[N

(bk (Tn’ )/n) + bk(Tn—l ) Yn—l)) AI/Vn—ly
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1 .
- Elek(Tn—IJYn—l)A ) (6)
Yo = Xo, Yi=YM,

where AW,, = Weph ~We, A= —m,n=0,1,..., N-1,k=1,...,dand
ar, s € {0,1].

During the last years several authors have proposed multistep methods for
stochastic differential equations with respect to strong convergence criterious.

I refer here to the books of Kloeden and Platen [3], Boulean and Lépingle [1]
and the paper of Lépingle and Ribémont [4].

2 The Main Results

Now we are able to state the corresponding convergence theorem for the multistep
method (6):

Theorem 2.1 Consider the Ité equation (1). Let

0u o a0 0b % 5%
8% 5%b 8%b

d d
G50t 5.0, Dwidm;omy © CoUOTI X RLRY,

be given for all 1 < i,j,k < d, where Cy([0,T] x R% RY) denotes the sct
of continuous and bounded functions from [0,T] x R? to R, and functions
Lo, L%, L'a, L°L b, LY L'b fulfill the linear growth condition

I f(t2) I < KL+ 11D,

for every t € [0,T),z € R%, where K1 is a positive constant. Under the assumptions
the multistep method converges with strong order v = 1.0, that is for all n =
0,1,...,N and step size A= 5 N=23...

E(| X, - Yall) K1+ E}| X0 [)A?,
where K, does not depend on A.

Remarks 2.2 (1) In computation, the boundedness assumption is no restriction
since any number generated by the computer is bounded by the capacity of the
computer.

(2) |-l is a norm in R

(3) We would prove the statement of the theorem for the scheme (6), where ay, =
0.0. For ay, € (0,1] we prove the statement of the theorem on the same way.
For oy, = 0.0 the scheme (5) equals ({) if YL = YM and Y{¥ = ¥YM.
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To prove Theorem (2.1), we recall the following lemmas:

Lemma 2.3 For all natural number N = 1,2,... and for all k = 0,1,...,N are
valid the next inequalities

E(IYM I”) < Ks(1+ El| XolP),
E(Y{I7) < Ks(1 + E|| XolP).

Lemma 2.4 Under the assumptions of Theorem 2.1 the Milstein approxzimation
Y M converges with strong order 1.0 that is

E|| Xy - YN I’ < KA (1 + E|| Xo ") + KeE || Xo — Y5 |
where the constants K5, K¢ do not depend on A.
Proof

Since the first-order partial derivatives of a and b are bounded, there exists a
K7 < +o0o such that for all z,y € R%, (see details in Newton [5])

lla(t,z) —alt,y)ll < Krllz-yl,

ot,z) — bt )l < Kellz—yll,

| L't ) = Lot ) | < Krllz-yll,

lla(t,z) |+ 116, =) | + 11 L0t 2) || < Kz(1+ =),

We introduce the Milstein approximation (4) in the form

v o= ( — V) YEM 4 aF (1, VM)A + (7, VM) AW,
+ lel‘("’m V) (AW, ) —A) '*"YkYTf’M

(1 — ) YoM Lok YMA + 05 (r,, Y, AW,

il

+ %lek(Tn; Y (AWn)? = A) + 7 (Yk 2+ (e, YA

. 1.,
+ bk(Tn_l,Ynﬂil)AWn_l+§L1b’~(rn_l,YM])((AWH )2 —A))

Taylor’s expansion is used to give the term b*(7,,_1,Y;} ) around (7,,,¥,™) and
k M k M 8
b (-1, Y2,) = b (Tn,Y )+ 5 b (T, Y Y (1o — )
Obk

(Tn, Y)Y 2M — Vo M)

oz;
=1 i
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1 621)"’ * 2
+ 5 8{3 ( "’Y Al)(Tn 1 T7.)‘
- o M M ;
i Z otox; (o, Yo" ) (1 — T'n,)()f,: 1 —ynM
i=1 4
1 d bk o ‘ .
t 5 2 e (e OO YR -
i,j=1 z
and
abk 8bk (9 bk *, % ¥ %
Ox; (T“7 }/M) - %(Tn“l’ n— 1) * 5iom otdx; (Tn—] ) /n’_l’M)(TvL
~ O M M M
*® % Y* * Y] j, .
+ 7:216'1,]6 ;L(Tn IR )( ao =Y )

Also; used the fact that

Y/ M

s M
n—1 )n

—ad (1,21, ;1 )A
1 . .
§le](7'n—1> Ynnzl)((AI’Vn—l)z - A).

When these are substituted into the expression
orem are used we get

Yo, = (1 - 1) (Y, = Y,2M) + (a*(r, Vi)
bk (Tn 3 K{‘d))AWn

Yn-i-l

kM
) n+l —

(blL (Tll.a }/n) -

% (lek (7'”, Ya) - lek("'m Y;{M)> ((AVVH)Z - A)

- U‘k(Tna Y,{W))A

'7]”(}/”’7 1 YLM"*‘(GI (7-n I;YTI 1)_0‘ (T“ 1’)7{\/]]))A

1 ‘ :
5 [lek(fn_l, Y1) = LY*(m_y,

FL(Tnet, T, YL Y MNA - AW, Z))

Fo(Tne1, T, Y.ML Y MY (A2 - AW, 1)

f3(Tn=1,Tn, Yoo 1,YM)(A (AW, _1)?)

Fa(Tn1, T, Yol 1, V) (AW, 1)?

fo(Tna1,mn, Y30 1,YM)(A (AW2_,))
My(AW,

Y1)

)

+ 4+ + + 4+ o+

fG(Tn—l,Tn: 17 n n— l)

- I)] (T‘ll-l ) }/nAZ] )AWn—l

1], .
E[bk(Tn>Yn) *bk(’rn; )+bk(Tn 1; n— 1) _b (T'n 17Y )
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- Tn—‘l)

and assumptions of the the-

AW,,_;
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where ” fl(Tﬂ 1 T”HYMD n )” < C (1 + ll )n 1 “2)5" = 1:2;3:4:5;6'
Squaring both sides of the equation, taking expectation and from Lemma (2.3)
we get
E(I1YE, =Y 7)< E(1Y = YEMIP)(Ks + Ko + K1pA?)
+ E(IVE, =Y I (K + KiaA + KizA?) + K4AY,

n—1

where Kg, Ky, K10, K11, K12, K13 and K14 do not depend on A.
Using for the starting routine Milstein approximation i.e. Y§ = )’},""M and
Y = ¥ we get that for alln = 0,1,...,N

E(|Y;F - YoM |y < K502,

where K15 does not depend on A.
From Lemma 2.4

E(| X, - YM ) < Kis(1 + E || Xo|)A2,

where K15 does not depend on A (see in [3]), we apply these results to prove finally
the strong order v = 1.0 of the multistep method, as is claimed in Theorer 1.

3 Some Experiments

Let us consider the Milstein approximation (4), two-step order 1.0 strong scheme
(5) and the approximation set out above (6). The three approximations set out
above were each tested on the following examples.

Example 3.1

dXt 15Xtdt + Xf,(lI/Vf, (7)
Xo = 10,

where (W) is a Wiener process.
The solution of (7) is Xy = Xo exp(t + W)

Example 3.2
- aX, - a - [
Xo = 10anda=2.0

where (W) is o Wiener process. :
The solution of (8) is Xy = (1 +1t)> (W, +t + 1.0)
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In each case the mean-square error E|| X, — Y} ||° at the final time (T = 1) is
estimated in the following way. A set of 20 blocks, each cousisting of 100 outcoines
(1 <7<20, 1< j<100), were simulated and for each block the estimator

100

1 2

) €= 105 Z Il X1 (wi ;) = Yov (wiy) |l
=1

was found. Next the means and variances of these estimators were themselves

estimated in the usual way:

and

According to the central limit theorem, the g; should be nearly Gaussian and so
approximate 90 percent confidence limits for E|| X; — Vv ||” can be found from the
Gaussian distribution; these were calculated according to the formula e £1.73. %

The results of the simulations for Examples 3.1 and 3.2 are shown in Table
1 and 2. These results are gotten for @ = 0, v = 1.0 in Example 3.1 and for
a=0, vy=10and &« = 0.5, v = 1.0 in Example 3.2. There is no sense to take.y
near zero, because then the new term can be neglected, so the new scheme behaves
as Milstein 1.0. The meaning of the headers in the tables is:

A - time step size of the strong approximation;
€ - absolute errors for different time step sizes;

L - half of the confidence interval lengths.

For example, we can see from the tables that in Example 3.2 for A = 27% and

o = 0.0 and v = 1.0 the absolute error by Milstein method (4) is 3.42858 - 1072,
by Two-step Milstein method (5) is 9.45832 - 107*, while by the new scheme (6)
is 6.81161 - 1073, Also, the length of the confidence interval by the new scheme is
smaller than by Milstein 1.0 and Two-step Milstein methods. This statement, is
also true for the Example 3.1.
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Table 1: Example 3.1
Milstein method (4).

A € L |
1.00000E+00 | 2.27665E+00 | 1.47186E-01
5.00000E-01 | 1.97078E+00 | 2.40568E-01
2.50000E-01 | 1.20429E+00 | 8.45154E-02
1.25000E-01 | 7.37239E-01 | 5.64921E-02
6.25000E-02 | 3.82413E-01 | 3.99189E-02
3.12500E-02 | 2.39074E-01 | 6.31194E-02
1.56250E-02 | 1.10807E-01 | 1.27486E-02
7.81250E-03 | 5.60566E-02 | 8.09157E-03
3.90625E-03 | 2.53057E-02 | 3.36756E-03
Multistep method (6) for « = 0 and v = 1.0.

[ A 3 L. ‘
1.00000E+00 | 2.51146E+00 | 1.98164E-01
5.00000E-01 | 1.41485E+00 | 9.57135E-02
2.50000E-01 | 6.39612E-01 | 5.46793E-02
1.25000E-01 | 3.21211E-01 | 2.94124E-02
6.25000E-02 | 1.50961E-01 | 8.22891E-03
3.12500E-02 | 7.51688E-02 | 5.73330E-03
1.56250E-02 | 3.92063E-02 | 2.09849E-03
7.81250E-03 | 2.00488E-02 | 1.25050E-03
3.90625E-03 | 9.94833E-03 | 6.94911E-04
Two-step Milstein (5) for &« =0 and v = 1.0.

I A € L ]
1.00000E400 | 2.37813E+400 | 1.87704E-01
5.00000E-01 | 1.45746E+00 | 1.12863E-01
2.50000E-01 | 8.02364E-01 | 9.384G8E-02
1.25000E-01 | 4.91936E-01 | 6.26155E-02
6.25000E-02 | 2.36993E-01 | 2.86351E-02
3.12500E-02 | 1.22735E-01 | 6.91430E-03
1.56250E-02 | 6.22639E-02 | 5.80727E-03
7.81250E-03 | 3.31988E-02 | 2.88916E-03
3.90625E-03 | 1.65349E-02 | 1.28400E-03
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Table 2: Example 3.2
Milstein method (4).

L4 | £ l L l

1.00000E+400 | 4.21558E-+00 | 9.211294E-02
5.00000E-01 | 2.90298E+00 | 7.181054E-02
2.50000E-01 | 1.77082E+00 | 4.158990E-02
1.25000E-01 | 9.78134E-01 | 2.936154E-02
6.25000E-02 | 5.27383E-01 | 1.338104E-02
3.12500E-02 | 2.75086E-01 | 7.950747E-03
1.56250E-02 | 1.36424E-01 | 3.334465E-03
7.81250E-03 | 6.97031E-02 | 1.644745E-03
3.42858E-02 | 7.971471E-04

3.90625E-03

Multistep method (6) for & = 0 and v = 1.0.

L8 | £ | L ]
1.00000E+400 | 4.27766E+00 | 1.03425E-01
5.00000E-01 | 1.70013E+00 | 3.85968E-02
2.50000E-01 | 6.21525E-01 | 1.72348E-02
1.25000E-01 | 2.60004E-01 | 8.05579E-03
6.25000E-02 | 1.16169E-01 | 3.57810E-03
3.12500E-02 { 5.50517E-02 | 1.51257E-03
1.56250E-02 | 2.71983E-02 | 9.70674E-04
7.81250E-03 | 1.33966E-02 | 4.02296E-04
3.90625E-03 | 6.81160E-03 | 2.22766E-04

Multistep method (6) for & = 0.5 and v = 1.0.

[ A € L ]
1.00000E+400 | 4.17855E+00 1.05099E-01
5.00000E-01 | 2.22505E+00 4.56814E-02
2.50000E-01 | 1.15922E+00 3.09267E-02
1.25000E-01 5.91574E-01 1.29769E-02
6.25000E-02 2.90397E-01 5.80337E-03
3.12500E-02 1.43653E-01 3.21847E-03
1.56250E-02 7.27217E-02 2.00281E-03
7.81250E-03 3.50626E-02 8.46181E-04
3.90625E-03 1.77133E-02 3.59233E-04

205
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Two-step Milstein (5) for « =0 and v = 1.0.

| A € L ]
1.00000E+00 | 4.24832E400 | 9.85367E-02
5.00000E-01 | 1.77406E+-00 5.03204E-02
2.50000E-01 7.62093E-01 1.71932E-02
1.25000E-01 3.37591E-01 1.07679E-02
6.25000E-02 | 1.60081E-01 | 5.27565E-03
3.12500E-02 7.77709E-02 2.43576E-03
1.56250E-02 3.73556 E-02 1.02419E-03
7.81250E-03 1.96293E-02 5.93383E-04
3.90625E-03 9.45832E-03 2.41391E-04

Two-step Milstein (5) for @« = 0.5 and v = 1.0.
& | £ I L l

1.00000E+00 | 4.23623E+00 8.01164E-02
~5.00000E-01 | 2.28984E+00 4.36308E-02
2.50000E-01 | 1.21665E+00 3.63160E-(2
1.25000E-01 | 6.34940E-01 1.90075E-02
6.25000E-02 | 3.13706E-01 8.61972E-03
3.12500E-02 | 1.60810E-01 4.54545E-03
1.56250E-02 | 8.02790E-02 2.21567E-03
7.81250E-03 | 4.09332E-02 1.03573E-03
3.90625E-03 | 2.04743E-02 4.97450E-04
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