
Acta Cybernetica 13 (1998) 209-224.

NP-completeness results concerning the
transformation of logic programs into attribute

grammars

Markus Lohrey *

Abstract
Attribute grammars and logic programs axe two well investigated for-

malisms, which were related in [DM85] for the restricted class of simple logic
programs. In this paper we define the more restricted class of very simple
logic programs and we prove that the problem of deciding, whether a given
logic program is (very) simple, is NP-complete.

1 Introduction

Attribute grammars were introduced in [Knu68] as a formalism for the specification
of the semantics of programming languages. [DJ90] and [AM91] give an overview
of current research trends. One of the most significant features of attribute gram-
mars are their declarative programming style and the existence of efficient attribute
evaluation methods. For the last point, see e.g. [Alb89].

Another declarative programming paradigm are definite program clauses. Their
ability to specify computations was first recognized in [Kow74]. For a modern and
exhaustive introduction to the wide area of logic programming see [Apt96].

In [DM85] a strong relationship between attribute grammars1 and definite pro-
gram clauses has been established. The investigation of this relationship is at-
tractive, because one can try to apply a great number of techniques, which were
originally developed for attribute grammars, to logic programs. For instance, de-
pendency graphs can be used to study strictness, necessity of the occur-check or
other run-time properties of logic programs. Moreover, attribute evaluation meth-
ods can be used for giving alternative operational semantics to logic programs.

It has been shown in [DM85] that every attribute grammar, whose function sym-
bols are interpreted as term constructors, can be transformed into a semantically

'Grundlagen der Programmierung, Institut für Softwaretechnik I, Fakultät Informatik, Tech-
nische Universität Dresden, D-01062 Dresden, Germany.

'The kind of attribute grammars we use in this paper are called functional attribute grammars
in [DM85].

209

210 Markus Lohrey

equivalent logic program. However, the reverse construction, i.e., the transforma-
tion of a logic program into a semantically equivalent attribute grammar is not
always possible. In [DM85] the restricted class of simple logic programs has been
defined and a construction has been presented, which transforms a simple logic
program into an equivalent attribute grammar. In general, the semantic domain of
the resulting attribute grammar is not a free term algebra. In Section 3 we will de-
fine the even more restricted class of very simple logic programs. For a very simple
logic program the construction in [DM85] produces an attribute grammar, whose
semantic domain is a free term algebra. It should be noted that the class of simple
logic programs is still Turing-complete whereas very simple logic programs axe no
longer Turing-complete (in fact, attribute grammars with a free term algebra as
semantic domain are not Turing-complete).

For a given logic program it can be decided whether this logic program is (very)
simple or not. Since many techniques, developed for attribute grammars, can be
applied to simple logic programs and even more to very simple logic programs, see
the note above, and [DM85], [DM93] for more details, it would be useful to have
efficient algorithms for these problems. In this paper we show that the problem
to decide, whether a given logic program is (very) simple, is in fact NP-complete.
Therefore it is unlikely to find efficient algorithms for these problems.

This paper is organized as follows. Section 2 gives some basic definitions con-
cerning attribute grammars and logic programs. In Section 3 we define the class
of simple and very simple logic programs and show how a simple logic program
can be transformed into an attribute grammar. Finally in section 4 we prove the
NP-completeness results mentioned above.

2 Preliminaries

First we recall some basic notions from universal algebra. Throughout this paper
we assume that there is a countable infinite set V of variables.

Defini t ion 2.1. A ranked alphabet V is a finite set of symbols together with a
mapping rankr : T N = {0,1 ,2 , . . .} . r<n) = { / G T | rankr(f) = n} is the set of
all symbols of rank n. The set of all T-terms with variables in V, denoted by Tp (V),
is the smallest set such that (i) V C T r (V) and (ii) / G r ' " ' , ^ , . . . ,tn G T r (V)
implies f(ti,. .. , i„) G T r (V). For t G T r(V), V(t) denotes the set of all variables,
which occur in t. If x G V(t), we say that x occurs in t.

Defini t ion 2.2. A semantic domain D = (fi, T, II, <p) consists of a set f2, two
ranked alphabets T and II of function and predicate symbols, respectively, such
that r D n = 0, and an interpretation function ip, i.e., for every n > 0, / G
and q G t p (f) is a partial function <p.(f) : fi" ii and <p(q) is a relation
<p(q) C n n . An assignment is a function val : V —> ii. Every assignment val
can be lifted to a function val : Tr(V) i) by (i) val(x) = val(x) for x 6 V
and (ii) val(f(ti,... ,tn)) = ip{i){val{t{),... ,val(tn)) for n > 0, / G and

NP-completeness results concerning the transformation of logic programs 211

t i , . . . ,tn£Tr(V) 2.

Note that we allow partial functions. For the rest of the paper we fix two
ranked alphabets T and II of function and predicate symbols, respectively, such
that r n n = 0.

Definition 2.3. The free V-term algebra (generated by V), denoted by Tr(V),
is the semantic domain (Tr(V), T, 0,ip), where ip(f)(ti,... ,tn) = f(ti,... ,tn) for
n > 0, / € r<»>, and i i , . . . ,tn G Tr(V). Thus, a free T-term algebra does not
contain relations and every function symbol / 6 T is interpreted by itself. A
substitution is an assignment 6 : V Tr(V) such that {x £ V | 6{x) ^ a;} is finite.
If 9(xi) = ti for 1 < i < n and Vx e V \ { i i , . . . ,xn} : 6(x) = x, we use the notation
t{U/xi | 1 < i < n} rather than 6(t) for t € T r(V).

Next we have to introduce the machinery of attribute grammars. For the simu-
lation of logic programs it is not necessary to include terminals and start symbols
in the grammatical part of attribute grammars. Therefore we just introduce the
notion of an abstract context-free grammar (see [GTWW77]), which is equivalent
to the notion of a many-sorted signature.

Definition 2.4. An abstract context-free grammar, or briefly abstract cfg, Go =
(N, L, P) consists of a finite set N of nonterminals, a finite set L of labels and a
finite set P C L x N x N*3 of productions such that for every (I, X, a), (V, X', a') €
P, I = V implies (l , X , a) = (l ' , X ' , a ') , i.e., different productions are labeled by
different labels. The production (l , X , a) will be denoted by I : X a.

Derivations of abstract cfgs will be represented by trees. Nodes of a tree are
specified by means of the well-known Dewey notation, i.e., a tree node x is a string
x = i\.i<2 ... in with ij > 0 for 1 < j < n. Intuitively, this string indicates the path
from the root of the tree to x. Thus, the root itself is denoted by the string e of
length 0. Furthermore, for technical reasons it is useful to define ,t.O = x.

Definition 2.5. Let Go = (N , L , P) be an abstract cfg. A syntax tree of Go is a
finite tree s whose nodes are labeled by nonterminals from N such that the following
condition holds:

For every node x there is a production (I : Xo —• Xi... Xn) 6 P with n > 0
such that x is labeled by -Xo, x has exactly n successor nodes x.l,... , x.n, and
x.i is labeled by Xi for 1 < i < n. In this situation we say that the production
I: A'o —• Xi... Xn is applied at the node x.

Definition 2.6. An attribute grammar, or briefly ag, G = (Go,D,B,R,C) con-
sists of the following components:

• an abstract cfg Go = (N, L, P)
2We assume that tp(f)(ai,... , a„) is undefined if one of its arguments aj is undefined.
3 As usual, N' denotes the set of all finite sequences of elements of N, including the empty

sequence, which will be denoted by e.

212 Markus Lohrey

• a semantic domain D = (fi,r,n,y>)

• an attribute description B = (Inh, Syn, inh, syn). Inh and Syn are finite
disjoint sets of inherited and synthesized attributes, respectively, inh and
syn are functions inh : N —2Inh4 and syn : N —> 2Syn, respectively.
Att = Inh U Syn is the set of attributes of G.

• a set R = {R(p) \ p £ P} of finite sets R(p) of semantic rules. To every
production p £ P of the form I : Xo X\... Xn with n > 0 we assign the
set

in[p) = {(7 ,i) | (7 6 syn(X0) A i = 0) V (7 £ inh(Xi) A 1 < i < n)}

of inside attribute occurrences of p and the set

out(p) = {(7 ,i) | (7 £ inh(X0) A i = 0) V (7 £ syn(Xi) A 1 <i<n)}

of outside attribute occurrences of p . att(p) = in(p) U out(p) is the set of
attribute occurrences of p. For every (7 , i) 6 in{p), the set R(p) contains
exactly one semantic rule of the form (7 , i) = t with t £ Tp (out(p)). Nothing
else belongs to R(p).

• a set C = {C(p) | p £ P} of finite sets C{p) of semantic conditions. For every
p E P, very element of C{p) has the form q{t\,... ,tn) with q 6 I I (n ' and
ti e Tr(out(p)) for 1 < i < n.

G is called free iff there is a ranked alphabet T such that D is the free T-term
algebra Tr(V). In particular, a free ag does not contain semantic conditions.

The semantic of an ag is the set of all (correctly) decorated syntax trees of the
underlying abstract cfg, defined as follows.

Definition 2.7. Let G = (GQ,D,B,R,C) be an ag with an underlying abstract
cfg Go = (N , L , P) and a semantic domain D = (f i , r , I I , ^) . Furthermore let s be
a syntax tree of Go and x be a node of s, which is labeled by X 6 N. To x we
assign the set inh(x) = {(7,x) | 7 6 inh(X)} of inherited attribute instances of x
and the set syn(x) = {(7,z) | 7 £ syn(X)} of synthesized attribute instances of x.
inst(x) = inh(x) U syn(x) is the set of attribute instances of x. The set inst(s) of
all attribute instances of s is (J{insi(x) | a; is a node of s}. A decoration of s is a
function val : inst(s) —> fi. A decoration val is called valid iff for every node x of
s the following condition holds:

Assume that production p is applied at node x. Let 6 : out(p) —• inst(s) be
the substitution, defined by 0((j',j)) = (7 ' , x . j) for every (7 ' , j) £ out(p) (recall
that we defined x.O = x), where we assume w.l.o.g. that out(p) is contained in
the set V of variables. Then for every semantic rule (7 , i) = t in R(p), the equa-
tion val((j,x.i)) = val(9(t)) has to hold in D. Furthermore, for every semantic
condition q(ti,... ,tn) € C{p) we must have (val(6{ t \)) , . . . ,val(6{tn))) £ ip(q).

4For every set A, 2A denotes the powerset of A.

NP-completeness results concerning the transformation of logic programs 213

A decorated tree of G is a pair, consisting of a syntax tree s of Go and a valid
decoration of s.

In most investigations only the class of so called non-circular attribute gram-
mars is considered, since non-circularity of an ag G is sufficient for the construction
of an attribute evaluator for G. For our purpose this restriction is not necessary.
Next we give some basic definitions concerning logic programs.

Definition 2.8. The set of all (Г,n)-atoms with variables in V, denoted by
Ar,n(v)> is the set {q(tu--- ,tn) I q e П("> Л ¿ i , . . . , i„ e Tr(V)}. л г ,п(0) is
the set of all ground (r ,II)-atoms. V(q(ti,... ,tn)) = U™=1 V(ti) is the set of all
variables, which occur in the atom q{t\,... ,tn). A deñnite (Г, Щ-dause, or just
clause, is a formula of the form Vxi,... , xn(A\ Л . . . Л Am —¥ Ao), where m > 0,
A0, •. • , Am € Ar.ni1^) and . . . , x n } = |J™0 V(Ai). In the sequel we will use
the abbreviation Ao Ai,... ,Am for this clause. A deñnite logic program, or
briefly dip, is a triple H = (Г, П, U), where U is a finite set of definite (Г, II)-clauses.

Definition 2.9. Let 9 be a substitution. The atom в{А) = q{9(ti),... ,9(tn))
is called an instance of the atom A = q(ti,... ,tn). The clause 9(Ao)
9(Ai),... , 9(Am) is called an instance of the clause A0 A\,... , Am.

There are several ways to assign a semantic to a dip H = (Г, П, U). Probably
the way, which is familiar to most of the readers, is the least Herbrand model of H
(see [Apt96]). The least Herbrand model of H consists of the set of all ground atoms
that are logical consequences of U. This set can be generated by an operational
method as well.

Definition 2.10. Let H = (Г, П, U) be a dip. A proof tree of Я is a finite tree s
whose nodes are labeled by atoms from such that the following condition
holds:

For every node x of s there is an instance Ao A\,... , An (n > 0) of a clause
in U such that x is labeled by Ao, x has exactly n successor nodes x.l,... ,x.n,
and x.i is labeled by Ai for 1 < i < п.

As shown in [Cla78] the least Herbrand model of H consists of all ground atoms
that are the root of a proof tree of H.

3 Transformation of definite logic programs into
attribute grammars

In the rest of the paper we fix a dip H = (Г, П, U).
The material in this section is taken from [DM85]. Our aim is to translate the

dip H into a semantically equivalent ag G. What it means precisely that the dip H
and the ag G are semantically equivalent, will be defined at the end of this section.
Intuitively, the predicate symbols in П will become the nonterminals of G. The

214 Markus Lohrey

clauses in U will be translated into productions of G by simply removing the argu-
ment positions of the predicate symbols in II. To store the values of the argument
positions of q € , we assign n attributes q 1 , . . . , qn to q, one for each argument
position j £ {1 , . . . ,n} of q. Now the formalism of definite logic programs gives
no hint of how to split this attribute set into inherited and synthesized attributes.
Therefore we have to enrich H with some additional information.

Def ini t ion 3.1. A direction assignment, or briefly d-assignment, for H is a func-
tion d, mapping every pair (q, j) with q € n<»> and 1 < j < n to an element of the
se t{ t ,4} .

d(q,j) = | means that qj becomes a synthesized attribute, whereas d(q, j) =4.
means that qj becomes an inherited attribute. In the rest of this section, let d be
a d-assignment for the dip H. Since the value of an inside attribute occurrence
must be calculated by use of the outside attribute occurrences, we have to impose
a restriction on d.

Defini t ion 3.2. Let

u = (Qo (so,i > • • • , So,710) qi (Si ,1 , • • • J 5l,ni m, 1 j • * • j ^m,nm))tU. (1)
POS(u) = {(qij,i) | 0 < i < m A 1 < j < m} is the set of positions of u
(this set will become the set of attribute occurrences of the translation of the
clause u). For 0 < i < m, 1 < j < n^, the term Sjj is denoted by t((qij,i),u).
For pos £ POS(u), we say that t(pos, u) appears at the position pos of u. The
set POS(u) is partitioned into the sets ind(u) and out,i{u) of inside and outside
positions under d ofu, respectively, defined as follows:

ind(u) - {(qij,i) | (i = 0 A d{q0,j) = t) V (1 < i < m A c j) =4-)}

outd(u) = {{qij, i) | (i = 0 A d(q0 ,j) = |) V (l < i < m A d(qi,j) = t) }

d is called safe for H iff

Vu 6 U^ipos £ in,i{u)'ix £ V(t(pos, u)) 3pos' E outd{u) : x £ V (t(pos', u)).

This condition says that for every clause u £ U, every variable that occurs in a
term that appears at an inside position of u occurs also in a term that appears at
some outside position of u. d is called very safe for H iff d is safe for H and the
following additional condition holds:

Vu £ UVpos,pos' £ outd(u) : t(pos, u), t(pos', u) £ V A (pos ^ pos' =S> t(pos,u) ^

y£t(pos',u))

This condition says that for every clause u £ U, the terms that appear at
the outside positions of u are different variables. H is called simple iff a safe d -
assignment for H exists. H is called very simple iff a very safe d-assignment for H
exists.

NP-completeness results concerning the transformation of logic programs 215

Example 3.3. Let H = ({nil,cons}, {app}, {«1,^2}) be the well-known append-
dlp, where u\ = (app(n i l ,L ,L)), u2 = (app(cons(X,Li),L2,cons(X,L3))
app(Li, L-2, ¿3)), and X,Li,L2,Lz are variables. Let a d-assignment d for H be
given by d(app, 1) = d(app, 2) =4., d(app, 3) =t - <i is a safe but not very safe
d-assignment for i i . In fact, H is not very simple.

Example 3.4. Simple dips are Turing-complete since every two-counter machine
can be simulated by a simple dip. A two-counter machine M consists of a finite
set Q of states, an initial state qo € Q, a set F C Q of final states, and a finite set
R of statements. Every r € R has the following form, where q denotes the current
SticltG} X and y are two registers whose values range over N, and i,j € Q.

• if q — i then x := x + 1 and q := j (analogously for the register y)

• if q = i then x := x — 1 and q := j (analogously for the register y)

• if q = i and x = 0 then q :— j else q := k (analogously for the register y)

A calculation of M is defined in the obvious way. M can be simulated by the dip
H(M) = ({0,s}, {Pi | i 6 Q}, {Pi(x,y) «- | i 6 F} U \JreRUr), where Ur consists
of the following clauses, depending on the form of the statement r.

• Pi{x,y) Pj(s(x),y) (analogously for y)

• Pi(s(x),y) <- Pj(x,y) (analogously for y)

• Pi(0,i/) Pj(0,y), Pi(s(x),y) <- Pk(s(x),y) (analogously for y)

The d-assignment d for H(M), which is given by d(Pu 1) = d(Pt) 2) =4. for every
i G Q is a safe d-assignment for H(M). On the other hand, if for instance there
exist two statements of the form (if q = k then x := x + 1 and q := i) and (if q = i
then x := x — 1 and q := j) then H(M) is not very simple. In fact, it is not difficult
to see that very simple dips are not Turing-complete.

Example 3.5. Let H = ({0, s}, {plus}, {ui,u2}) be the well-known dip for adding
natural numbers, where u\ = (plus(0 ,x ,x)) and u2 = (plus(s(x),y,s(z))
plus(x,y,z). Let a d-assignment d for H be given by d(app, 1) = d(app, 3) = t ,
d(app, 2) =4,. d is a very safe d-assignment for H.

Since for every given dip there are only finitely many different d--assignments,
it is decidable whether a dip is simple or very simple, respectively. We call the
corresponding computational problems SIMPLE and VERY-SIMPLE, respectively.
A problem instance of (VERY-)SIMPLE consists of a dip H. The question is
whether H is (very) simple or not.

In the rest of this section we will show that a (very) simple dip H together
with a (very) safe d-assignment d for H can be transformed into a semantically
equivalent (free) ag G(H,d). This result is not necessary for understanding our
main results in Section 4 but we present it for completeness.

216 Markus Lohrey

If the d-assignment d is very safe for H, then for every clause u E U, the terms
in { t (pos ,u) | pos E ind(u)} can be constructed from the terms in {i(pos, u) | pos E
outd(u)} (which are variables in this case) and the function symbols in T. If d
is only safe but not very safe, we need additional special selector functions Si~f,
defined as follows:

Definition 3.6. For every / E and i E {1, • • • ,n}, Si~f is a partial function on
T r(V), defined by (i) Si~f(t) = t{ if t = / (¿ i , . . . , f„) and (ii) Si~f(t) - undefined
otherwise, s—f is called a selector function.

In order to refer to selector functions, for every S{-f we introduce a new function
symbol seh-f. Of course we assume that seli~f # T. We introduce the new ranked
alphabet V = T U {seh-f \ f E r< n ' , n > 0,1 < i < n}, where (i) rankv(f) =
ranhrtf) if / E r and (ii) rankr>(f) = 1 otherwise.

For a term t E Tr(V) and a variable x E V, we denote by Sel(t,x) the set of
all terms s = sel^-fii-.. selih-fk(x)...) such that the term s{t/x} evaluates the
variable x when every seli-f is interpreted by S{-f. In other words, ik-ik-i- - • • H
specifies a path from the root of t to an occurrence of the variable x in t. This is
formalized by the following definition.

Defini t ion 3.7. Let t E 2r(V) and x E V. The set Sel(t,x) is defined by (i)
Sel(x, x) = {x}, (ii) Sel(y, x) = 0 for y E and (hi) Sel(f(tu... ,tn),x) =
U ? = i { s { s e k - f (x) / x } | s G Sel(ti,x)} for n > 0, / G r ' ") and t u . . . ,tn E Tr{V).

For instance, Sel(g(f(x),g(x,y)),x) = {seh-f (seli~g(x)), sel2-g(sel2-g(x))}.
In addition to the selector functions, semantic conditions are also necessary for

the simulation of the dip H, if d is safe but not very safe. This is because of two
reasons. Firstly, if there exist an u G U and a pos G outd{u) such that the term
t(pos, u) is not just a variable, we have to express the fact that the value of the
attribute occurrence pos is an instance of t(pos,u). This will be done with the
help of a predicate symbol instancet(pos uj of rank one. Secondly, if there exist
pos,pos' E outd(u) and x E V such that x E V(t(pos,u)) fl V(t(pos',u)), we must
express the fact that the corresponding subterms of the values of the attribute
occurrences pos and pos' are equal. Therefore we have to include the syntactic
equality of terms into the semantic domain of the simulating ag. Note that both
situations cannot occur if d is very safe for H.

Construction 3.8. Let d be a safe d-assignment for H. The ag G(H,d) =
(•Go,D,B,R,C) is defined as follows:

• Go — (II, U, P), where for every clause u E U of the form shown in (1) we put
the production p(u) = (u : qo —> qi,... , qm) into P. Nothing else belongs to
P.

• D - (Tr(V),V, {=} U {instancet \ 3u E U3pos E outd{u) : t = t(pos,u) 0
V}, ip), where

— (p interprets every / G T as in the T-term algebra Tr(V),

NP-completeness results concerning the transformation of logic programs 217

- tp(seli-f) = Si-f for / G r<n> and 1 < i < n,
- (p(instancetl)(t2) iff i 2 is an instance of ii for ii , £2 G 7 r (V) ,

- </?(=) is the syntactic equality on Tr(V).

• B = (Inh, Syn,inh, syn), where for every <7 G 11^"', inli(q) = {qi | 1 < i <
n,d(q,i) =4-} and syn(q) = {qi \ I < i < n,d(q,i) =|}. Inh = Uggn inh{q)
and Syn = Uqen sVn(l)•

• For every clause u £ U, R(p(u)) = {pos = tpos,u | pos G in^u)}, where for
pos G indiu) the term tpoSiU G Tr»(V) is defined as follows:

For every x G V(t(pos,u)) let posx G outd(u) such that a; G V(t{posx,u)).
Since d is safe, such a posx must exist for every x G V(t,(pos,«)). Of course
there may be several choices for posx. Therefore the construction is non-
deterministic. Now let tx G Sel(t(posx,u),x). Again there may be several
choices for tx. We set tp0StU = t(pos,u){tx{posx/x}/x | x G V(t(pos,u))} G
Tv(outd(u)).

• For every clause u eU, C(p(u)) = Ci(p(u)) U Cuipiu)), where

- Ci(p(u)) = {instancet(poStU)(pos) | pos G outi(u),t(pos,u) g V} and
- C2(i>(u)) = {t{pos/x} = t'{pos'/x} | pos,pos' G outd(u),x G V, t G

Sel(t(pos, u),x),
t! G 5eZ(i(pos',w),a;)}. Of course, equations of the form t — t can be
omitted in C2(p(u))-

Example 3.9. Let H be the append program from Example 3.3 and let d be the
d-assignment for H from the same example. The ag G(H,d) = (GQ,D,B,R,C)
has the following components.

• G0 = ({app}, {ui,u2}, {ui : app -»• app,u2 : app })

• B = ({appl,app2},{app3},inh,syn), where inh(app) = {appl,app2} and
syn(app) = {app3}.

• R = {R{U1),R(U2)}, where R(ui) = {(app3,0) = (app2,Q}} and

R(u-2) = {(appZ,0) = cons(si-cons({appl,0)), (app3,l)),
(appl, 1) = s2-cons((appl, 0)), {app2,1) = (app2,0)}.

• C = {C(ui), C(u2)}, where C(u\) = {instancenu({appl,0))} and

C(u2) = {instanceC0ns[x,Li){{appl,l))}-

If d is very safe, then C(p(u)) = 0 for every u G U. Moreover, the function
symbols seli-J do not appear in the semantic rules of G(H,d). Therefore we can
omit them in the semantic domain D of G(H,d). In this way G(H,d) becomes a
free ag.

218 Markus Lohrey

Let Фя be the function, defined as follows. Фя maps a proof tree s of the dip
H to a pair, consisting of a syntax tree s' of Go (the underlying abstract cfg of ag
G{H,d)) and a decoration val of s'. s' results from s by replacing for every node
x of s the label q(t\,... , tn) of a; by the label q. val is defined by val((qi, x)) = U
for every node x of s with label q(ti,... ,tn) and 1 < г < тг.

Theorem 3.10. Let H = (Г, П, U) be a simple dip and let dbe a safe d-assignment
for H. Furthermore, let G(H, d) be the ag as constructed in Construction 3.8. Then
Фя is a bijective mapping between the set of all proof trees of H and the set of all
decorated trees of G(H, d).

The proof of this theorem can be found in [DM85].

4 Complexity of SIMPLE and V E R Y - S I M P L E
In this section we show that the computational problems SIMPLE and VERY-
SIMPLE are NP-complete problems. The NP-completeness of SIMPLE will be
proved by a reduction from SAT, which is the satisfaction problem for boolean
expressions (see [Coo71] and [GJ79]), to SIMPLE. For the corresponding result
for VERY-SIMPLE we will use a variant of SAT, called ONE-SAT, that will be
introduced later.

Theorem 4.1. SIMPLE is NP-complete.

Proof. Since we can guess a d-assignment for the dip H and check in polynomial
time, whether this d-assignment is safe for H, SIMPLE is in NP. To prove that
SIMPLE is NP-hard, we will construct a polynomial time reduction from SAT to
SIMPLE. Firstly, we recall the definition of SAT, A problem instance S of SAT is
a boolean expression, which can be assumed to be in conjunctive normal form, i.e.,

where Cj is a nonempty disjunction of literals Ai : i , . . . , (ij > 0) with

where the a i j are boolean variables. To ease notation we will write the disjunction
Ci as a set5, i.e.,

5 = Ci A C2 A . . . Л C, Ti 1 (2)

(3)

Ci = {Ai,u--- , М м } ^ 0- (4)

Finally, let

{ai,... , am} = {aitj | 1 < i < n, 1 < j < ¿¿} (5)
5Therefore in each disjunction a literal can only appear once. Of course this is not a real

restriction.

NP-completeness results concerning the transformation of logic programs 219

be the set of all boolean variables that occur in S. Given such a problem instance
S the question is, whether there exists a truth assignment for S which satisfies S,
i.e., whether there exists a function

w : {ai,... ,am} ->• {true, false} (6)

such that

Vz 6 {1, - -. ,n}3j € {1, • • • ,m} : (aj £ Ci A w(aj) = true) V ((->0,-) € Ci A w(aj) =

= false).

In [Coo71], this question was shown to be NP-complete.
In order to construct a polynomial time reduction from SAT to SIMPLE let S

be the problem instance of SAT given by (2) to (5). We construct a dip

H(S) = ({a},{g},{C/(Ci),... ,U{Cn)}).

The only function symbol a is of rank 0. The only predicate symbol q is of rank
m, which is the number of different boolean variables appearing in S, see (5). For
every 1 < i < n the clause U(Ci) is of the form

q(sitl,... ,sitTn) i- q(titi,... ,ii ,m).

We fix a variable x G V. For 1 < j < m the terms s,j and tij are defined by

S i j = [X [f a > £ C i and t i j = ! X
 (7) l a otherwise ' l a otherwise.

Let w be the truth assignment for S given in (6). We define a corresponding
d-assignment dw of H(S) by

(8)
14- n uj(aj) — true

for 1 < j < m. We will use the abbreviation dw(j) for dw(q,j).

Example 4.2. Let

S = («! V a-2 V a 3) A (->0:2 V ->0:3 V a 4) A (ai V a3 V -104).

Then H(S) consists of the following clauses:

q(x, x, x, a) q(a, a, a, a)

q(a, a, a, x) q(a, x, x, a)

220 Markus Lohrey

q(x, a, x, a) <— q(a, a, a, x)

Let w be the following truth assignment:

ii>(ai) = w(a 3) = w(a4) = false, «7(0:2) = true

In fact w satisfies S. The corresponding d-assignment dw is

dw(1) = dw(3) = <4,(4) = t , d w (2) = | .

dw is a safe d-assignment for H(S). The following claim shows that this is not just
a coincidence.

Claim 4.3. w satisfies S iff dw is a safe d-assignment for H(S).

Proof of the claim, ui satisfies S iff

Vi G { 1 , . . . ,n}3j G { 1 , . . . , m } : (aj G Q A w(ctj) = true) V ((->0:^) E Ci A w (a j) =

= false).

Because of (7) and (8) this is equivalent to

Vî G {1, • • • ,n}3j G {1,... ,m] : (sitj = xA dw{j) =4.) V (titj = x A dw(j) =f).
(9)

We claim that (9) is equivalent to the statement that dw is a safe d-assignment for
H(S).

Assume that (9) holds and consider a clause U(Ci). (9) says that x appears at
an outside position pos G outdw(U(Ci)) of U(Ci). Since x is the only variable that
occurs in U(Ci) (and therefore is the only variable y that occurs in a term that
appears at an inside position of U(Ci)), this shows that dw is a safe d-assignment
for H(S).

Now assume that dw is a safe d-assignment for H{S) and consider a clause
U{Ci) of H(S). We claim that x appears at an outside position of U(Ci). Since
Ci ^ 0, there exists a j G {1, . . . ,m} such that either Sij = x or tij = x. Thus,
x appears at some position.pos of U(Ci). If pos is an outside position of U(Ci),
we are ready. Thus, assume that pos is an inside position of U(Ci). Since dw is a
safe d-assignment for H(S), there exists an outside position pos' G outdm (U(Ci)) of
U(Ci) such that x occurs in the term that appears at position pos' of U(Ci). Since
H(S) does not contain function symbols of rank greater than zero, this implies that
x appears at the outside position pos' of U(Ci), which proves (9). •

Since the function that maps a truth assignment w for S to the d-assignment dw
of H(S) is bijective, the claim shows that we have constructed a correct reduction
from SAT to SIMPLE. Since this reduction can be done in polynomial time, the
proof of the theorem is complete. •

NP-completeness results concerning the transformation of logic programs 221

The proof above shows that for the class of logic programs with only one con-
stant symbol (and no other function symbol) and only one predicate symbol, SIM-
PLE is already NP-complete.

Theorem 4.4. VERY-SIMPLE is NP-complete.

Proof Of course, VERY-SIMPLE is also in NP. To prove that VERY-SIMPLE
is NP-hard, we use a variant of SAT, called ONE-SAT (see [Sch78], where the
problem is called ONE-IN-THREE 3SAT). Again a problem instance of ONE-
SAT is a disjunctive normal form S. The question is whether there exists a truth
assignment w for S such that in every disjunction Ci exactly one literal AhJ becomes
true under w. This problem is known to be NP-complete as well. Let S be the
disjunctive normal form 5 given in (2) - (5) and let w be the truth assignment for
S given in (6).

We will construct a dip H'(S) that is a mild variant of the dip H(S) =
({«},{<?}, {[/(Cx),. . . ,
U(Cn)}) constructed in the proof of Theorem 4.1. It is easy to see that the dip
H(S) and the d-assignment dw given in (8) satisfy the following fact:

w satisfies exactly one literal A i j in every disjunction Ci iff there is
exactly one pos £ outdw(U(Ci)) for every clause U(Ci) such that x £
V{t{pos,U{Ci))).

Therefore, if w satisfies exactly one literal A i j in every disjunction Ci, the d -
assignment dw is almost very safe for H(S). The only problem that may arise is that
there may exist a clause U(Ci) and an outside position pos £ out,^(U(Ci)) such
that t(pos,U(Ci)) = a, i.e., a term, which is not a variable, appears at an outside
position of U(Ci). We solve this problem by replacing every occurrence of the
constant a in U(Ci) by a new variable (different from x and all other new variables
that will be introduced). Call the resulting clause U"(Ci). Now it is possible
that one of these new variables appears at an inside position pos £ m ^ (U"(Ci)) of
U"(Ci) and thus has to appear also at an outside position of U"(Ci). To compensate
this, we collect all new variables of the clause U"(Ci) (i.e., all variables different
from x that occur in U"(Ci)) in the argument positions of a new predicate symbol
Pi and attach the resulting atom to the body of f/"(C,). The resulting clause will
be called U'(Ci). The d-assignments for the new predicate symbol p, are chosen
in such a way that every new variable appears exactly once at an outside position
pos £ outd„(U'(Ci)) of U'(Ci) and once at an inside position pos' £ indw(U'(Ci))
of TJ'(Ci). A formal presentation of this idea follows.

As motivated, every clause Ci is translated into a clause U'(Ci) of the form

q(siti, . . . , Si rn) (¡{ti i, • • • > ti,rn)iPi(ui, 1) • • • j ui,rm)-

The number rrii will be specified later. Let Y = {y±, y2,...} C V and Z =
{zi, z-2, • • • } C V be two disjoint sets of new variables different from x. The terms

222 Markus Lohrey

s'i :j and t \ j are defined by

x if Oij € Ci
Hj otherwise

and t
x if (->aj) £ Ci
z; otherwise

(note the small difference to the terms Sij and t i j in the proof of Theorem 4.1).
Fix an i £ {1 , . . . ,n}. Let K - {j | 1 < j < m A s'itj e y } = {fci, . . . , k#K}6 and
L = {j | 1 < j < m A i- j 6 Z} = {li,... be the set of all argument positions
of q, where variables from Y respectively Z appear in U'(Ci). W.l.o.g. we assume
that ki < kj and li < lj for every i < j. Define rrii = + # L . The terms Ui j
are defined by

For a given truth assignment w for S, the d-assignments dw(q,j) for the positions
of the predicate symbol q are defined as in (8). The d-assignments dw(pi,j) for the
argument positions of the new predicate symbol Pi are defined by7

E x a m p l e 4.5. Let S be the conjunctive normal form given in Example 4.2. H'(S)
consists of the following clauses:

Let w be the truth assignment given in Example 4.2. w satisfies exactly one literal
in each disjunction C{. The corresponding d-assignment dw is

• dw(q, 1) = dw{q, 3) = dw{q, 4) =t> dw{q, 2) = |

• dw(pi,l) = dw(pi, 3) =1\ dw{p\,2) = dw(p!,4) = d „ (p i , 5) = !

• dw(p2,l) = dw(p2,3) =t,dw(p2,2) = dw (p2,4) = dw(p2,5) =i

• dw(p3,2) = dw[p%iA) =t,dw(p3,l) = dw(p3,3) = dw(p3,5) =|.

This is a very safe d-assignment for H'(S).

The following claim completes the proof. Its proof is very similar to the proof
of the corresponding claim, made in the proof of Theorem 4.1, and it is therefore
omitted.

6#/1 denotes the number of elements in the finite set A.
7We define t _ 1 =4 and 4.-x=t-

if 1 < j < # K
if #K <j < rrii

q(x,x,x,y4) q{z\,z2,z3,zA),pi(yii,zi,z2,z3,Z4)
9(2/1,2/2,2/3,2:) <r- q(zi,x,x,z4),p2(yi,y2,y3,z1,z4)
q(x,y2,x,V4) <r- q(zi,z2,z3,x),p3(y2,yA,zi,z2,z3)

NP-completeness results concerning the transformation of logic programs 223

Cla im 4.6. w satisfies exactly one literal Aij in every disjunction C¿ of S iff dw

is a very safe d-assignment for H'(S).

The proof above shows that for the class of logic programs with an empty set
of function symbols, VERY-SIMPLE is already NP-complete.

5 • Conclusion
In this paper, we have proved that the problem of deciding, whether a given logic
program is simple, is NP-complete. A simple logic program H can be transformed
into an attribute grammar G. In general G has a semantic domain, which is not
a free term algebra, i.e., G is not free. We have defined the more restricted class
of very simple logic programs. Very simple logic programs can be transformed
into equivalent free attribute grammars. We proved that the problem of deciding,
whether a given logic program is very simple, is NP-complete as well.

References
[Alb89] H. Alblas. Attribute evaluation methods. Memoranda Informática,

89-20, University of Twente, Enschede, 1989.

[AM91] H. Alblas and B. Melichar. International Conference SAGA, Prague,
volume 545 of Lect. Notes Comput. Sci. Springer-Verlag, Juni 1991.

[Apt96] K. Apt. Prom Logic Programming to Prolog. Prentice-Hall, January
1996.

[Cla78] K. L. Clark. Predicate logic as a computational formalism. Report
Res. Mon. 79/59, Imperial College, London, 1978.

[Coo71] S.A. Cook. The complexity of theorem-proving procedures. In Proc.
3rd IEEE Symp. on the Foundations of Computer Science, pages 151-
158, 1971.

[DJ90] P. Deransart and M. Jourdan. Attribute Grammars and Their Appli-
cations, International Conference WAG A, Paris, volume 461 of Lect.
Notes Comput. Sci. Springer-Verlag, September 1990.

[DM85] P. Deransart and J. Maluszynski. Relating logic programs and at-
tribute grammars. J. Logic Programming, 2:119-155, 1985.

[DM93] P. Deransart and J. Maluszynski. A Grammatical View of Logic Pro-
gramming. MIT Press, Cambridge MA, 1993.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. Freeman, San Francisco,
1979.

224 Markus Lohrey

[GTWW77] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Initial
algebra semantics and continuous algebras. J. ACM, 24:68-95, 1977.

[Isa91] T. Isakowitz. Can we transform logic programs into attribute gram-
mars. Journal of Theoretical Informatics and Applications, 15:499-
543, 1991.

[Knu68] D.E. Knuth. Semantics of context-free languages. Math. Systems
Theory, 2:127-145, 1968.

[Kow74] R. Kowalski. Predicate logic as a programming language. Inform.
Process. Letters, 74:569-574, 1974.

[Sch78] T.J. Schaefer. The complexity of satisfiability problems. In Proc. 10th
Ann. ACM Symp. on Theory of Computing, Association for Comput-
ing Machinery, pages 216-226, New York, 1978.

Received May, 1997

