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Economical Transformations of Phrase-Structure 
Grammars to Scattered Context Grammars 

Alexander Meduna* 

Abstract 
This paper presents a transformation that converts any phrase-structure 

grammar, H, in Penttonen normal form to an equivalent scattered context 
grammar whose size differs from the size of H quite insignificantly; specifically, 
G has only five more nonterminals, four more context-dependent productions, 
and one more context-free production than H. An analogical result holds for 
Kuroda normal form, too. 

1 Introduction 
Transformations that convert grammars of one type to equivalent grammars of an-
other type are central to the formal language theory. Initially, this theory designed 
these transformations regardless of the size of the output grammars. Because this 
size was usually enormously greater than the size of the input grammars, transfor-
mations of this kind were of no use in practice. Therefore, at present, the formal 
language theory modifies these transformations to produce the equivalent output 
grammars as small as possible (see [2], [3], [5], [6], [7], and Chapter 4 in [1], including 
references therein). 

Following this line of the language theory, the present paper explains how to 
transform any phrase-structure grammar to an equivalent scattered context gram-
mar whose size differs from the size of the input phrase-structure grammar quite 
insignificantly. More precisely, it converts any phrase-structure grammar, H, in 
Penttonen normal form to an equivalent scattered context grammar, G, so G has 
only five more nonterminals, four more context-dependent productions, and one 
more context-free production than H. Then, this paper states an analogical result 
in terms of Kuroda normal form. 

2 Definitions 
This paper assumes that the reader is familiar with the language theory (see Chap-
ter 0 in [1]). 
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Basic Notions 
For a set, Q, card(Q) denotes the cardinality of Q. Set 

N = {1,2, . . .} and I = {0,1,2, . . .} . 

Let V be an alphabet. V* represents the free monoid generated by V under the 
operation of concatenation. The unit of V* is denoted by e. Set V+ = V* — {e}; 
algebraically, V+ is the free semigroup generated by V under the operation of 
concatenaton. 

For w £ V*, |w| denotes the lenght of w. Set 

subword(w) = {x : x £ V* and a; is a subword of w}; 
prefix(w) = {x : x is a prefix u>}; 
suffix(w) = {a; : x is a suffix u>}; 
alph(w) = subword(w) n V. 

For a £ V and w £ V*-, occur(a,w) denotes the number of occurrences of a's in w. 

Grammars 
A phrase-structure grammar is a quadruple 

G = (N,P,S,T) 

where N and T are alphabets such that N fl T = 0. Symbols in N are referred to 
as nonterminals while symbols in T are terminals. N contains S - the start symbol 
of G. P is a finite set of productions of the form 

x —>y 

where x,y £V* so alph(x) n N ± 0. If x —> y £ P and ut € (N U T)* for « = 1,2, 
then 

U1XU2 => Uiyu2; 
whenever this paper needs to specify the subword, x, rewritten during uixu> = > 
uiyu2, it underlines it as 

U1XU2 = > U\yU2-

Observe that represents a relation on (N U T)*. Let ==>"' denote the m-fold 
product of where m £ I. Furthermore, = > + and =$>* denote the transitive 
closure of = > and the transitive and reflexive closure of = > , respectively. The 
language generated by G,L(G), is defined as 

L(G) = {w£T* :S 10}. 

Let G = (N, P, S, T) be a phrase-structure grammar. G is in Penttonen normal 
form if P has only these two kinds of productions 

AB —> AC where A,B,C £ N, and 
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A —¥ x where A e N and x £ NN U T U {e}. 

A scattered context grammar is a quadruple 

G = (N,P,S,T) 

where N,T, S have the same meaning as in a phrase-structure grammar, and P is 
a finite set of productions of the form 

( A i , A 2 , . . . , A „ ) — • (xi,x2, • • • ,xn), 

where n € N, and for all i = 1 ,2 , . . . ,n, A{ £ N and n £ (JVUT)*. 
Let G = (N, P, S, T) be a scattered context grammar, and let v,w £ (N U T)*. 

If for some n £ N 

A. (Ai, A2, • • •, An) —> (xi,x2, - • •, xn) £ P, and 

B. v = u\Aiu2A2 ... unAnun-|_i and w = uixiu2x2 • • • unxnun+1 with m £ (N U 
T)* f o r i = 1 , 2 , . . . , n + 1, 

then v directly derives w in G, symbolically written as 

v ==>• w. 

Express v ==> w as uiAiu2A2 .. .unAnun+1 u\xiu2x2 • • .unxnun+i. 
Whenever this paper needs to specify the nonterminals, Ai through Arl. rewrit-

ten during this direct derivation, it underlines them as 

AjU2A2.. .UnABUn+1 UxXiU2X2 • • .unxnun+1. 

For m £ I, = > m denotes the m-fold product of . Furthermore, = > + and 
denote the transitive closure of ==?• and the transitive and reflexive closure of =$>, 
respectively. The language generated by G,L(G), is defined as 

L(G) = {w £ T* : S w}. 

Recall that phrase-structure grammars, phrase-structure grammars in Penttonen 
normal form, and scattered context grammars have the same generative power. 
Indeed, they all characterize the family of recursively enumerable languages (see 
[1], [4], and [7]). 

Context-Dependent and Context-Free Productions 
Let G be a grammar, and let P be G's set of production. In this paper, we separate 
P into two disjoint subsets - the set of context-free productions, ContextFree(P), 
and the set of context-dependent productions, ContextDependent(P). A production, 
p £ P, belongs to ContextFree(P) if and only if the left-hand side of p consists of 
one nonterminal; otherwise, p belongs to ContextDependent(P). 
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Specifically, if G = (N,P,S,T) is a phrase-structure grammar, then 

ContextFree(P) = {A —> x : A — n e P and A 6 A'}, and 
Cont.extDependent{P) = P— ContextFree(P). 

If G = (N, P, S, T) is a scattered context grammar, then 

ContextFree.(P) = {(A) —• (x) : (A) — ( x ) € P}, and 
ContextDependent(P) = P— ContextFree(P). 

Equivalently, if G = (N, P, S, T) is a scattered context grammar, then 

( .4 t , . . . , Au) —> (x\,..., xn) G ContextDependent(P) if and only if n > 2; 
otherwise, (Ai,..., An) —> ( x i , . . . , xn) G ContextFree(P). 

3 Results 
This section demonstrates that for every phrase-structure grammar, H = 
(Ar/, P',S',T), in Penttonen normal form, there exists an equivalent scattered con-
text grammar, G = (N,P,S,T), that satisfies 

A. L(G) = L(H)-

B. card (AO < card(N') + 5; 

C. card(Cont,extDependent (P)) = card(ContextDependcnt(P')) + 4; 

D. card(ContextFree(P)) = card(ContextFree(P')) + 1. 

Theorem 1 Let H = (M, R, S,T) be a phrase-structure grammar in Penttonen 
normal form. Then, there exists a scattered context grammar, G = (N,P,E,T), 
that satisfies 

A. L(G) = L{H)-

B. card{M) = card(N) + 5; 

C. card(ContextDependent,(P)) = card(ContextDependent(R)) + 4; 

D. card(Contexi.Free(P)) = card(ContextFree(R)) + 1. 

Proof.: Let 
H = (M,R,S,T) 

be a phrase-structure grammar in Penttonen normal form, where M denotes IJ's 
alphabet of nonterminals, R denotes its set of productions, S is its start symbol, 
and T denotes its alphabet of terminals. Without loss of generality, assume that 

{£ ,F , [ , ] ,$}nM = 0. 
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In the following, we describe how to construct a scattered context grammar, G, 
such that L(G) = L(H) and G satisfies the conditions of Theorem 1. 
Define the scattered context grammar 

G = (N, P, E, T), 

where 
N = {E,F, [,},$} UM 

and 

P = { E _ > F o n ^ m 

(F,[,],F,F)-^(F,e,e,F,F), 
(F,F,$,F) —> (F,F,e,F), 
(F,[,],F,F, [,],[) —> (£,£,£,e,F,[,]F,F[), 
(-F,[,],F,F,[,]) > (£,£,£,£,£,£,£)} 

U {(A, B) —> {A[,\C) : AB —• AC € R with A,B,C 6 M} 
U {(A) —> (x) : A —> x € R,Ae M,x 6 MM} 
U {(A) — > ( $ a ) : A — > x e R , A e M , a e T U {e}} 

Observe that 

card(M) = card(N) + 5; 
card(ContextDependent(P)) = card(ContextDependent(R)) +4; 
card(ContextFree(P)) = card(ContextFree (i?)) + 1. 

The proof that ¿(G) = £ ( i i ) is based on the following. 
By productions in 

{(A, B) —> (A[, ]G) :AB—>AC€R with A,B,C 6 M } 
U {(A) —> (x) : A —¥ xeR,AeM,xE MM} 
U {(A) —•> ($a) : A —> x € R,A £ M,a&T U {e}}, 

G simulates H's derivations. By productions in 

{¿5_>F0F[F]S0. 
(F,[,],F,F) ^(Fy£,£,F,F), 
(F,F,$,F) —> (F,F,e,F), 
(F,[,],F,F, [,],[) —• (£,£,£,£,F,[,]F,F[), 
(F,[ , j ,F,F,[ , ] ) > (£,£,£,£,£,£,£)}, 

G verifies that the simulation was performed properly. 
Next, this proof establishes several claims to demonstrate L(G) = L(H) in a rigor-
ous way. 
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Cla im 1 Let 
E =>+ u =>+ t 

in G, where u G (N U T)* and i £ T * . Then 

u = wFx, 

where w 6 T* and x G ((TV - {E}) U T)* with occur[F,v) = 2. 

Proof, of Claim 1: Consider any derivation, 

E u =>+ t 

in G, where u E (N U T)* and t ET*. Examine P to see that 

occur(E,u) = 0 and occur(F,u) = 3. 

Express u as 
u = W-F?;, 

where w,v £ (NUT)* and occur(F,v) = 2. Notice that 

alph(w) n {E,F} = 0. 

By contradiction, prove that 

alph(iu) 0(N - {E, F}) = 0. 

Assume that alph(w) n (N - {E, F}) ^ 0. Consider 

(F,l},F,F)-^(F,e,e,F,F), 

(F,[,},F,F, [,],D ^(£,e'e,e,F,[,]F,F[), and 
(-P.EJ.^^i,]) —> (£,£,e,£,e,£,e). 

As occur(F,v) = 2, none of these productions can rewrite any symbol in w. Because 
alph(w) n (N - {E, F } ) / 0, for every y such that wFv ==>+ y, 

alph(y) n(N- {E, F}) # 0, 

which contradicts wFv t with t ET*. Thus, 

alph(w)n(N - {E,F}) = 0. 

Consequently, 
u = wFv, 

where w ET* and v G ((N - {E})\JT)* with occur(F,v) = 2. 
Therefore, Claim 1 holds. 

• 
Define the morphism, a , from ((N - {£?}) U T)* to ({[,], F , # } UT)* as 

a{Y) = Y for all Y G ({[,], F} U T), and 
a(X) = # for all X e ({$} u M). 
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Claim 2 Let 
E wFvFxFy =>+ u 

in G, where w,u G T*, and v,x,y G ((TV - {E,F})\JT)*. Then, 

Proof of Claim 2: Let 

E wFvFxFy u 

in G, where w,u G T*, and v,x,y G ((N - {E}) U T)*. By contradiction we next 
prove that 

{ # } + n subword(a(v)) = 0. 

Assume that 

{ # } + n subword(a(v)) ± 0. 

Examine 

(F,[,],F,F)^(F,£,£,F,F), 
(F,F,$,F) —> (F,F,£,F), 
(F, {,},F,F,[,}, [) - U ' (£, e, 'e, e, F, [, }F, F[), and 
( F . U . F . F . U ) —>• (£,£,£,£,£,£,£). 

The form of these productions and {#} + H subword(a(v)) 0 imply that every 
word that G derives from wFvFxFy contains # . Specifically, 

{ # } + n subword(a(u)) ^ 0, 

which contradicts u G T*. Hence, 

{ # } + n subword(a(v)) = 0. 

Thus, 
$ £ alph{v). 

Consider 
{(A) —> ($a) :A —> x E R,A & M,aeTU {e}}. 

Observe that this set includes all productions containing symbols from T u {$}. 
Therefore, as $ ^ alph(v), 

T n alph(v) = 0. 

Consequently, 
a ( v ) € { [ , ] } * • 

• 
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Claim 1 Let 
E=>+y 

in G, where y E ({N - {£}) U T)*. Then, 

subword(y). 

Proof of Claim 3: Let 
E=*+y 

in G, where y E ((N — {E}) U T)*. All productions containing [ or ] are included 
in this set 

{ E _> F[]F[F]S0, 
(F,[,],F,F) —> (F,e,e,F,F), 
( F , F , $ , F ) — » ( F . F . e . F ) , 
(F, [, ], F, F, [,],[) —(£, £, F, [, ]F, F[), 
(F,[,],F,F,{,})—> (£,£,£•£,£,£,£)} 

U {(A,B) —> (A[,]C) : AB —> AC E B, with A,B,C E M}. 

By E —> F[]F[F]SQ, G generates i,[]JF,[F]S,[]. Notice that 

][£ su6word(F[]F[F]50). 

By using, the productions in 

{(A,B) —• (A[,]C) : AB —• AC G iî with A,B,C £ M}, 

G can generate no word containing ][. Finally, consider the other four productions: 

(F , [ , ] ,F ,F) —• (F,e,e,F,F), 
(F ,F ,$ ,F ) —> (F ,F ,e ,F ) , 
( F J , i , F , F , [,],[) - ^ ' ( e , £ , e , e ,F , [ , ]F ,F [ ) , and 
(F,[ ;] ,F,F,[ , ]) —> (£,£,£,£,£,£,£)}. 

If the current sentential form does not contain ][, then every word directly derived 
from this sentential form by using any of these productions does not contain ][ 
either. Thus, 

}[& subword(y). 

A formal version of this proof is left to the reader. • 

Claim 4 Let 
E =>+ wFvFxFy =>+ u 

in G, where w, u E T*\v E {[,]}*; and x,y E ((N - {E, F}) U T)*. Then, 
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Proof of Claim 4: This claim follows from Claims 2 and 3. 
• 

Claim 5 Let 
E wFvFxFy =>+ u 

in G, where w,ueT*-,ve {[}*{]}*; and x,y G ((N - {E,F}) U T)*. Then, 

v G {[']' : i G N}. 

Proof of Claim 5: Consider 

E wFvFxFy u 

in G, where w,u £ T*\v G {[}*{]}*; and x,y G ((N - {£ , F}) U T)*. 
By contradiction, we next demonstrate 

M > 1-

Assume that 
M = 0. 

Examine P to see that at this point, wFvFxFy derives no word over T, which 
contradicts wFvFxFy u with u G T*. Thus, > 1. 

Let i,j G I such that i < j and |w| = i + j. By contradiction, we now prove 

[? i a(v). 

Assume that 

Examine P to see that under this assumption, 

] G alph(u). 

Thus, 
u<£T\ 

which contradicts u € T*. Hence, 

[T # a(v). 

Analogously, prove [ lp ^ ce(v), where i,j G I so iFj and |u| = i + j. 
Thus, for any i, j g I such that i ^ j, 

fiV <*(«)• 
Therefore, Claim 5 holds. 

• 
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Cla im 1 Let 
E wFvFxFy =>+ u 

in G, where w,u £T*;v£ {[}'{]}* for some i £ N; and x,y £ ((N - {E, F})UT)*. 
Then, 

x e ({$}UTUM)*. 

P r o o f of Cla im 6: In G, consider any derivation that has this form 

E wFvFxFy =>+ u 

in G, where w,u £T*;v£ {[}i{]}i for some i £ N; and x,y £ ((N - {E,F})UT)\ 
By contradiction, demonstrate 

{[,}} n alph{x) = 0. 

Assume that 
{[, ]} fl alph(x) £ 0. 

Examine P; specifically, 

(F,[,],F,F, [,],[) —> (e,£,£,£,F,[,}F,F[), and 
(P, [,]) > (e,£,£,£,£,£,£). 

In this case, 
{[>]} n alph(u) -fi 0, 

which contradicts u £T*. Hence 

{[,]}nalph{x) = 0. 

Therefore, x £ ((N - {E, F, [,]}) U T)*, so 

x £ ({$} U T U M)*. 

Cla im 7 Let 
E =>+ wFvFxFy u 

in G, where w,u £ T*, and v £ {[}*{]}' for some i £ N,x £ ({$} U T U M)*,y £ 
((N — {E, F}) U T)*. Then, 

with 
K = ((N-{E,F,],[})UT). 

P r o o f of Cla im 7: Examine P; specifically, 

(P,[,],F,P) -+(F,£,£,F,F), 1 

(F,F,$,F) —> (F,F,£,F), 
(F, [,], F, F, [,], [) - U ' (e, e, e, e, F, [, )F, F[), and 
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(F,[,],F:F,[,}) —• (e,e,e,e,e,£,£)}. 

Based on this examination, observe that this claim follows from Claims 5 and 6 (a 
formal verification of this observation is left to the reader). 

• 
Define the morphism, /3, from ((N - {E}) U T)* to (N - {[,],$, E, F}) U T)* as 

P(Y) = £ for all Y £ {[,], $, F}, and 
0(X) = X for all 'X £ (AT- { [ , ] , $ , F } ) U T . 

Claim 8 Let 
E = > m w z 

in G, where m 6 {N,2 6 T*,w £ (N U T)*. Then, 

5 p ( w ) 

in H. 

Proof of Claim 8: This claim is established by induction on m = 0, 
Basis: 
Let m = 1. That is, 

E = • F[]F[F]S[] = » * v 

in G. Notice that /?(QF[.F]5[]) = S. As 

S S 

in H, the basis holds. 

Induction Hypothesis: 
Suppose that there exists j £ N such that Claim 8 holds for every m < j. 

Induction Step: 
Let 

E =>j+1 w =>* 2 

in G, where z £ T* and w £ (N Li T)*. Based on Claims 1 through 7, express this 
derivation as 

S =>j tFvFxFy w z 

in G, where z,t £ T*, and v £ {[}*{]}* for some i £ N , x £ ({$} U T U M)\ 
y £ (KUK^Y : i £ N}/O*{0> with K = ((N - {E,F,], [}) U T). Let p be the 
production that G uses to make tFvFxFy => w. By the induction hypothesis, 

S =»* 0(tFvFxFy) 

in H. Next, this proof considers all possible forms of p. Before this consideration 
notice that p surely differs from E —• F(]F[F]5[] because E does not appear in 
tFvFxFy. 
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1. Assume that p has this form 

(A,B) ^ ( A [ , ] C ) , 

where A,B,C G N. Because z,tET*,ve {[}i{]}i for some i E N . i e ({$} U T U 
M)*, and y G {KuKtfY : i G N}/0*{[]} with K = ((N - {E, F,], [}) U T), the 
previous claims imply that 

u = tFvFxFy'Ay"By"' and w = tFvFxFy'A[y"]Cy'", 

for some y' G prefix(y), y'" G suffix(y), and 

V" G ({[? : t G I}-

Thus, 
0{y")=e. 

As (A,B) —> (A[,]C) GP, 
AB —y AC e R. 

Notice that 

p{tFvFxFy')mv")mv'") =• (3(tFvFxFy')AP(y")CP(y"') 

in H. Because P(tFvFxFy')A/3(y")Cf3(y"') = ¡3{w), 

S 0(w) 

in H. 

2. Assume that p has this form 

(A) (x). 

A G M,x G MM. At this point, 

u = tFvFxFy'Ay" ovu = tFvFx'Ax"Fy. 

Assume that u = tFvFxFy'Ay". At this point, 

w = tFvFxFy' xy". 

As (A) —> (x) G P, 
A —> x G R. 

Notice that H makes 

/3{tFvFxFy')Aj3(y") =4> 0(tFvFxFy')xP(y") 

by using A —> x. Because f}(tFvFxFy')x(3(y") = 0{w), 

S =>* /3(w) 
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in H. Analogically, prove that S =$>* /3(w) in the case when u = tFvFx'Ax"Fy. 

3. Assume that p has this form 

(A) —• (So), 

where A G M and a G T U {e}. Observe that 
either x = x'Ax" so u = tFvFx'Ax" Fy 

where x' G prefix(x) and x" G suffix(x) 

or y = y'Ay" so u = tFvFxFy'Ay" 
where y' G prefix(y) and y" G suf fix(y). 

Assume that u = tFvFx'Ax"Fy. At this point, 

w = tFvFx'$ax" Fy. 

As (A) — > ($o) G P, 
A — » a G R. 

Notice that H makes 

/3(tFvFx'$)Aj3{x"Fy) =>• P(tFvFz'$)a/3(x"Fy). 

Because P{tFvFx'%)aP{x"Fy) = /3(w), 

S =>* p(w) 

in H. 
Analogously, establish S =>* P{w) under the assumption that u = tFvFxFy'Ay". 

4. Assume that p is a production from 

{(F,[,},F,F) —> (F,e,e,F,F), 
(F,F,$,F) (F,F,e,F), 
(F,[,},F,F,[,],[)-+ (e,e,e,e,F,[,]F,F[), 
(F,[,),F,F,[,}) —> (£,£,£,£, £,£,£)}. 

Then, 
¡3(tFvFxFy) = p(w) 

By the induction hypothesis, 
S (3{w) 

in H. 
Thus, Claim 8 holds. 

• 
Claim 9 

L(G) C L{H). 
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Proof of Claim 9: By Claim 6, if 

E =>+ v 

in G with v G T*, then 
S=>* v 

in H. Therefore, Claim 9 holds. 
• 

Claim 10 Let 
S u =>* z 

in H, where j el, z e T*, and u G (M U T)*. Then, 

E wFvFxFy 

in G, where w G T*,v G { [ } i { ] } i for some i G N , a ; G ( { $ } U T ) * , y G {(N-{E,F})U 
T)*, so that 

u G p(wFvFxFy). 

Proof of Claim 10: This claim is established by induction on j = 0 , . . . . 

Basis: 
Let j = 0; that is, 

S 5 = > * z 

in H. Notice that G makes 
E =» F[}F[F}S[] 

by using E F[]F[F]S[], and S G / 3 ( i , 0* , №Q). Thus, the basis holds. 

Induction Hypothesis: 
Suppose that 

S u z 

in H, where z G T*, u G ( M U T)* , for all i = 0 , . . . , j , for some j G I. 

Induction Step: 
Let 

S u =>* z 

in H, where z G T* and u G (M UT)*. Express this derivation as 

S u => t = > * z 

in H, where t G (MUT)* and u t is made according to p G R. By the induction 
hypothesis, 

E wFvFxFy 

in G, where w G T*,v G {[}i{]}i for some? G N , i G ({$}U T)*,y G ({N-{E,F}) U 
T)*, so u G 0(wFvFxFy). Let H make u => t by using a production, p £ R. Next, 
this proof considers all possible forms of p. 
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1. Assume that p has this form 

AB —> AC. 

Express U = > T in H as 
u'ABu" =• u'ACu", 

where u'ABu" = u and u'ACu" = t. As ID £T",v £ {[}*{]}* for some i £ N,.x £ 
({$} UT)*,?y e ((N - {E,F})l>T)*,u£ P{wFvFxFy), and 

AB £ subword(y). 

Assume that 
y = y'A[k)kBy", 

where u' £ P{wFvFxFy'),k £ I,u" £ ¡3(y"). 
As AB —• AC £ R, 

{A,B) {A[,]C) £ P. 

Thus, 

wFvFxFy'A[k]kBy" => wFvFxFy'A[k+1]k+1Cy" 

in G. Therefore, 
E =>+ wFvFxFy'A[k+1]k+1Cy" 

in G so 
u £ /3(wFvFxFy'A[k+1]k+1Cy"). 

2. Assume that p has this form 

A —> BC. 

Because w £ T*,v £ {[}i{]}i for some i £N,x£ ({$}UT)*,y £ {{N-{E, F})UT)*, 
and u £ fi(wFvFxFy), 

A £ subword(y). 

Express y as 
V = y'Ay". 

As A —> BC £ R, 
(A) —>• (BC) £ P. 

Thus, 
wFvFxFy'Ay" => luFvFxFy'BCy" 

in G. Therefore, 
E =>+ wFvFxFy' BCy" 

in G so 
u £ P(wFvFxFy'BCy"). 
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3. Assume that p has this form 
a. 

As w E T*,v E {[}i{]}i f o r s o m e i e N, a E ({e} U T),x E ({$} U T)*,y E 
((N - {E, F}) U T)*, and u E ß(wFvFxFy), we have 

A E subword(y). 

y = y'Ay". 

(A) —> (So) E P. 

wFvFxFy' Ay" => wFvFxFy'%ayn 

E =>•+ wFvFxFy'$ay" 

u E ß(wFvFxFy'$ay"). 

Express y as 

As A —> a E R, 

Thus, 

in G. Therefore, 

in G so 

Therefore, Claim 10 holds. 

Cla im 11 

Proof of C la im 11: 
By Claim 10, if 

in H, where v ET*, then 

in G. Therefore, Claim 11 holds. 

By Claims 9 and 11, 
L(G)=L(H). 

To summarize the proof, 

A. L(G) = L{H)\ 

B. card(M) = card(N) + 5; 

C. card(ContextDependent(P)) = card(ContextDependent(R)) + 4; 

D. card(ContextFree(P)) = card(ContextFree(R)) + 1. 

L(H) C L(G). 

• 

• 
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Thus, Theorem 1 holds. 
• 

In its conclusion, this paper points out that the previous theorem also holds for 
phrase-structure grammars in Kuroda normal form (see [2]). Recall that a phrase-
structure grammar, G — (N, P, S, T), is in Kuroda normal form if P has only these 
two kinds of productions 

AB —> CD where A, B,C,D £ N, and 

A —> x £ R, where A £ N a n d x £ NN U T U { e } 

Theorem 2 Let H = (N1 ,P', S',T) be a phrase-structure grammar in Kuroda 
normal form. Then, there exists a scattered context grammar, G = (A T ,P ,S ,T ) , 
that satisfies 

A. L(G) = L{H); 

B. cnrd(N) < card(N') + 5; 

C. card(Cont,extDependent(P)) < card(ContextDependent(P')) + 4; 

D. card(ContextFree(P)) < card{ContextFree(P')) + 1. 

Proof.: Prove this theorem by analogy with the proof of Theorem 1. 
• 

Acknowledgement: The author thanks the anonymous referee for useful comments 
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References 
[1] Dassow, J. and Paun, G.: Regulated Rewriting in Formal Language Theory. 

Springer, New York, 1989. 

[2] Kuroda, S. Y. : "Classes of Languages and Linear Bounded Automata," 
Inform. Control 7, 207 - 223, 1964. 

[3] Meduna, A. : "Syntactic Complexity of Scattered Context Grammars " Acta 
Informática 32, 285 - 298, 1995. 

[4] Meduna, A. : "A Trivial Method of Characterizing the Family of Recursively 
Enumerable Languages by Scattered Context Grammars," EATCS Bulletin 
56 (1995), 104 -106. 

[5] Meduna, A. : "Four-Nonterminal Scattered Context Grammars Character-
ize the Family of Recursively Enumerable Languages," International Journal 
of Computer Mathematics 63, 67-83, 1997. 



242 Alexander Meduna 

[6] Paun, Gh. : "Six Nonterminals are Enough for Generating each R.E. Lan-
guage by a Matrix Grammar," International Journal of Computer Mathe-
matics 15, 23-37, 1993. 

[7] Penttonen, M. : "One-Sided and Two-Sided Context in Formal Grammars," 
Inform. Control 25, 371 - 392, 1974. 

Received March, 1997 


