
Acta Cybernetica 13 (1998) 257-275.

On the Information Content of Semi-Structured
Databases

Mark Levene *

Abstract
In a semi-structured database there is no cleax separation between the

data and the schema, and the degree to which it is structured depends on the
application. Semi-structured data is naturally modelled in terms of graphs
which contain labels which give semantics to its underlying structure. Such
databases subsume the modelling power of recent extensions of flat relational
databases, to nested databases which allow the nesting (or encapsulation) of
entities, and to object databases which, in addition, allow cyclic references
between objects.

Due to the flexibility of data modelling in a semi-structured environment,
in any given application there may be different ways in which to enter the
data, but it is not always clear when the semantics are the same. In order to
compare different approaches to modelling the data we investigate a measure
of the information content of typical semi-structured databases in order to
test whether such databases axe information-wise equivalent For the purpose
of our investigation we use a graph-based data model, called the hypernode
model, as our model for semi-structured data and formalise flat, nested and
object databases as subclasses of hypernode databases.

We use formal language theory to define the context-free grammar in-
duced by a hypernode database, and then formalise the information content
of such a database as the language generated by this context-free grammar.
Intuitively, the information content of a database provides us with a measure
of how flexible the database is in modelling the information from different
points of view. This enables us to prove the following results regarding the
expressive power of databases: (1) in general, hypernode databases and thus
semi-structured databases express the general class of context-free languages,
(2) the class of flat databases expresses the class of finite languages whose
words Eire of restricted length between one and four, (3) the class of nested
databases expresses the class of finite languages, and (4) the class of object
databases expresses the general class of regular languages.

We then define two hypernode databases to be information-wise equiva-
lent if they generate the same context-free language. This allows us to prove

'Department of Computer Science University College London Gower Street London WC1E
6BT, U.K. email: mlevene@cs.ucl.ac.uk

257

mailto:mlevene@cs.ucl.ac.uk

258 Mark Levene

the following results regarding the computational complexity of determin-
ing whether two databases are information-wise equivalent or inequivalent:
(1) the problem of determining information-wise equivalence of hypernode
databases and thus semi-structured databases is, in general, undecidable, (2)
the problem of determining information-wise equivalence of flat databases
can be solved in time polynomial in the size of the two databases, (3) the
problem of determining information-wise inequivalence of nested databases is
NP-complete, and (4) the problem of determining information-wise inequiva-
lence of object databases is PSPACE-complete.

Keywords semi-structured databases, flat databases, nested databases, object
databases, information content, information-wise equivalence

1 Introduction
In a traditional data model such as the relational model [Cod79] there is a clear
separation between the schema and the data itself. Recently it has been recognised
that there are applications where the data is self-describing in the sense that it does
not come with a separate schema, and the structure of the data, when it exists,
has to be inferred from the data itself. Such data is called semi-structured, the
Web providing us with a rich source of semi-structured data to experiment with.
Semi-structured data is also useful when integrating several databases, some of
which may be structured. In such an integration process the data may come from
several different sources and thus it may be difficult to constrain the integrated
database to a single unifying schema. (For two recent surveys on semi-structured
data, which provide more motivation and examples of semi-structured databases,
see [Abi97, Bun97].)

Semi-structured data is naturally modelled in terms of graphs which contain
labels that give semantics to the underlying structure [Abi97, Bun97]. Herein we use
the hypernode model [PL94, LL95] as our data model for semi-structured data. The
hypernode model is well-suited for this task as it is a graph-based data model that
supports both complex objects of arbitrary structure and cyclic references between
such objects. There have been several other previous proposals for graph-based
data models [KV85, CM90, GPG90], all having the common thread of modelling
objects as graphs (or subgraphs) which can reference each other. (See [BH90]
for the graph-theoretic terminology.) Intuitively a hypernode database (or simply a
database) is a collection of directed graphs, called hypernodes, each such hypernode
modelling a unique object in the database which can reference other hypernodes.

Traditionally flat databases, as in the relational model, have been sufficient to
model most applications, but recently, it has been proposed to extend the modelling
power of flat databases to nested (or complex object) databases [AFS89] which allow
the nesting (or encapsulation) of entities, and to object-oriented databases [Kim90]
which, in addition, allow cyclic references between objects. (For the purpose of
this paper we concentrate on the data modelling aspects of objects and ignore the

On the Information Content of Semi-Structured Databases 259

wider issues of object-orientation in databases.) The hypernode model, as are other
semi-structured models [Abi97, Bun97], is more general than the above extensions
to the flat relational model, and in the sequel we will define suitable restrictions of
hypernode databases that allow us to model flat, nested and object databases.

Due to the flexibility of data modelling in a semi-structured environment, in
any given application there may be different ways in which to enter the data,
but it is not always clear when the semantics are the same. In order to compare
different approaches to modelling the data we would like to measure the information
content of typical semi-structured databases in order to test whether such databases
are information-wise equivalent. Moreover, for practical purposes it is essential to
know what the computational cost of testing for such equivalence is, given that
the database designer may have to choose one of the representations for the actual
database. In particular, it would be useful- to compare the expressive power of the
above mentioned extensions to the basic flat data model in terms of the information
content of the databases which are in the subclass of databases induced by each
such extension.

We illustrate the modelling power of hypernode databases with a running exam-
ple showing part of a hypernode database, where the labels of hypernodes represent
unique identifiers.of hypernodes in the database, providing the means by which hy-
pernodes can reference each other. The hypernode shown in Table 1, which is
labelled EMPS, models an entity set of employees, where each entity in EMPS is
represented by an isolated node in the hypernode. Correspondingly, the hypernode
shown in Table 2, which, is labelled EDS, models the.subset of employees in EMPS
working in the Maths "department. The hypernode shown in Table 3 models the
information pertaining to EMP1, where each, attribute and value of EMP1 is rep-
resented by an arc in the hypernode. Similarly, the hypernode labelled DEPTS,
shown in Table 4, models an entity set of departments and the hypernodes labelled
DEPT1 and DEPT2, shown in Tables 5 and 6, respectively, model the informa-
tion pertaining to DEPT1 and DEPT2. Note that in DEPTS the actual address
of the department is missing and also that it has the additional attribute faculty
which is missing from DEPT1. Finally, the hypernode labelled WORKS, shown in
Table 7, models the relationship of an employee working in a department, where
each employee and their department is represented by an arc in the hypernode.
We observe that nesting (or alternatively encapsulation) is achieved by referencing
another hypernode from within a hypernode; for example, EMP1 and EMPS are
nested in DEPT1, and EDS and EMPS are nested in DEPTS. Note the difference
in modelling the set of employees working in a department from within DEPT1
and DEPTS. In addition, we observe that cyclic references are achieved by two
hypernodes referencing each other; for example a cyclic reference exists between
EMP1 and DEPT1, since EMP1 references DEPT1 and DEPT1 references EMP1.

We use formal language theory [HU79] in order to reason about the information
content of databases by showing that a hypernode database induces a context-free
grammar and thus generates a context-free language. We then define two hypernode

260 Mark Levene

EMPS
EMPl
EMP2
EMPZ
EMPA

ED 2
EMPZ
EMPA

EMPl
(attribute —» value)

ename —t -john
dept —> DEPTl
boss —> EMP2

Table 1: The entity Table 2: A subset Table 3: The entity E M P l
set EMPS of EMPS

DEPTS
DEPTl
DEPT2

Table 4: The entity set DEPTS

databases to be information-wise equivalent if they generate the same context-free
language. In general, the problem of information-wise equivalence of hypernode
databases and thus semi-structured databases is uridecidable, since we show that
the general class of hypernode databases expresses the general class of context-free
languages. Therefore, we restrict our attention to three subclasses of hypernode
databases: flat databases, nested databases and object databases, all of which are
defined as suitable syntactic restrictions of hypernode databases."

(For an interesting example of the use of formal languages in database theory,
see [Shm93] wherein it was shown that the problem of determining equivalence of
Datalog queries is undecidable, by reducing the equivalence problem for context-free
grammars to this problem; see also [U1192] which looks into additional relationships
between logic rules and formal languages.)

We prove the following results regarding the expressive power of different classes
of databases:

1. The class of flat databases expresses the class of finite languages whose words
are of length at most four.

2. The class of nested databases expresses the class of finite languages.

3. The class of object databases expresses the general class of regular languages.

We establish the following results regarding the computational complexity of
determining whether two databases are information-wise equivalent or inequivalent:

1. The problem of determining information-wise equivalence of flat databases
can be solved in time polynomial in the size of the two databases.

On the Information Content of Semi-Structured Databases 261

value)
maths
ED2

EMP3

science

DEPT2

WORKS
EMP1 DEPTl
EMP2 DEPTl
EMP3 DEPT2

Table 7: The relationship WORKS

2. The problem of determining information-wise inequivalence of nested
databases is NP-complete.

3. The problem of determining information-wise inequivalence of object
databases is PSPACE-complete.

It follows that in terms of information-content, object databases are strictly
more expressive than nested databases and nested databases are strictly more ex-
pressive than flat databases. The interpretation that we place on the notion of
being more expressive is that it affords us with more flexible means of modelling
information. With respect to our running example, we have modelled the fact
that EMP1 works in DEPTl in three different ways, through the relationship
WORKS, through the attribute dept in EMP 1 and through the attribute ernp in
DEPTl. (We note that if we view primary keys in the relational model [Cod79]
as object-identifiers, then relational databases can easily represent our notion of
object databases.)

The problem of measuring the information capacity of database schemas was
investigated in [Hul86] in the context of the relational data model, in [HY84, AH88]
in the context of a complex objects data model and in [KV85] in the context of
a graph-based data model, which supports cyclic references between objects. In
[Hul86] several notions of equivalence are considered. The most restrictive measure
is query equivalence, which informally holds between two database schemas when for
any query on the first schema there is an equivalent query on the second schema and
vice versa, and the least restrictive measure is absolute equivalence, which informally
holds between two database schemas when there is a one-to-one correspondence

DEPTl
(attribute value)

dname —> computing
emp -»• EMP 1- -
emp EMP2
head EMP2

address —ï london

Table 5: The entity DEPTl

DEPT2
(attribute
dname —>

emp —>
head ->

address
faculty —»

Table 6: The entity

262 Mark Levene

between the number of objects that can be constructed by using sets of domain
values over the attributes of both schemas. In the context of complex objects, a
complete set of restructuring operations on database schemas that preserve absolute
equivalence was exhibited in [HY84, AH88]. Moreover, it was shown in [KV85] that
every database schema that has cyclic references is query equivalent (with respect
to a well-defined query language which is given in [KV93]) to a database schema
without any cyclic references; the concluding remark in [KV85] is: "But it is not
clear that this measure is the ultimate one. We believe that the issue of cycles
deserves further study".

The first difference in our work in comparison to the work mentioned above is
that we concentrate on the information content of individual databases at the in-
stance level rather than on the information content of database schemas. Thus we
measure the information content of each database without regards to its schema.
This difference is not so fundamental when the data has an underlying structure.
As can be seen from the running example, a typical hypernode database may induce
a database schema over which it is defined. On the other hand, since a hypernode
database is only semi-structured it may not be possible to compare the informa-
tion content of hypernode databases with reference to a fixed schema. The second
difference is that we concentrate on the data modelling issues without reference to
query equivalence, and as a result our definition of information-wise equivalence
seems to be incomparable to the various definitions of equivalence referred to in
the above work. This difference is fundamental since, for example, a flat database
may be query equivalent to a nested database, in the sense that for every query
defined on the flat database there is an equivalent query on the nested database
and vice versa, but not information-wise equivalent to it according to our definition
of information-wise equivalence. Intuitively, as demonstrated in the running exam-
ple, nesting and/or cyclic referencing affords the database user with more flexible
means of data modelling and therefore with several alternative ways to query the
same information. Moreover, we also investigate the computational complexity of
determining information-wise equivalence which was not dealt with in the work
mentioned above.

The layout of the rest of the paper is as follows. In Section 2 we formalise the
concept of a hypernode database, which comprises our model for semi-structured
data. In Section 3 we introduce the necessary background material from formal
language theory and formalise the notion of the information content of a database.
In Section 4 we define flat, nested and object databases and prove our results
concerning their expressive power. In Section 5 we prove our results concerning the
computational complexity of determining whether two databases are information-
wise equivalent. Finally, in Section 6 we give our concluding remarks.

2 Hypernode Databases
We first introduce the basic concepts pertaining to hypernode databases. We re-
fer the reader to [PL94, LL95] for more detail on the hypernode model including

On the Information Content of Semi-Structured Databases 263

a computationally complete query and update language operating on hypernode
databases.

Definition 2.1 (Hypernodes) We assume two finite and disjoint sets of con-
stants are available. Firstly we have the set of labels L whose elements are denoted
by strings beginning with uppercase letters. Secondly we have the set of atomic
values (or simply values) A whose elements are denoted by strings beginning with
lowercase letters.

A hypernode is defined to be an equation of the form

' H = (N,E),

where H £ L is termed the defining label of the hypernode and (N , E) is a directed
graph, termed the graph of the hypernode, such that N C A U L is a set of nodes
and E C (TV x N) is a set of arcs. We denote the set of isolated nodes in N, i.e.
the set of nodes which do not appear in any arc in E, by isolated(H).

Definition 2.2 (Hypernode databases) A hypernode database (or simply a
database), say HD, is a finite set of hypernodes satisfying the following two condi-
tions:

(HI) No two (distinct) hypernodes in HD have the same defining label.

(H2) For any label, say H, in the node set of a graph of a hypernode in HD there
exists a hypernode in HD whose defining label is H.

We denote the set of all labels that appear in the hypernodes in HD by LA-
BELS(HD) and the set of all atomic values appearing in the hypernodes in HD by
ATOMIC(HD). Moreover, we assume that a (possibly empty) set of distinguished
labels in LABELS(HD) is associated with HD, which we denote by rooi(HD).

We note that condition HI above corresponds to the entity integrity require-
ment of the relational data model [Cod79], since each hypernode can be viewed as
representing a real-world entity. In object-oriented terminology labels are unique
and serve as system-wide object-identifiers [Kim90], assuming that all of the hy-
pernodes known to the system are stored in a single database. Similarly, condition
H2 corresponds to the referential integrity requirement of the relational data model
[Cod79], since it requires that only existing entities be referenced. The intuition
behind the set of labels in rooi(HD) is that they represent the set of objects in the
database through which all other objects in the database can be accessed.

The Hypernode Accessibility Graph (HAG) of a hypernode H - (N,E) in a
hypernode database HD (or simply the HAG of H, whenever HD is understood
from context) is the directed graph telling us which hypernodes in HD are nested
in the hypernode whose defining label is H, when considering nesting as a transitive
relationship.

264 Mark Levene

Definition 2.3 (The accessibility graph of a hypernode) The HAG of II,
denoted by (NH,EH)•. is the minimal directed graph which is constructed from
hypernodes in HD as follows: H £ NfJ. and if II' e NH and H' = (N'.E') g
HD (such a hypernode must exist by condition H2), then (L fl N') C N/i and
\/n' 6 (L nN'),(H',u') 6 EH.

A hypernode database HD is acyclic if for all H 6 root.(HD), the HAG of H is
acyclic, otherwise HD is cyclic.

We close this section with the definition of two operations on hypernode
databases which, in the next section, are shown to preserve the information content
of the database.

Definition 2.4 (Renaming and duplication) A hypernode database HD' is
the result of renaming some of the hypernodes in a hypernode database HD, if
HD' can be obtained from HD by renaming some of the labels in LABELS(HD) to
distinct labels in L - LABELS (HD).

A hypernode database HD' is the result of duplicating some of the hypernodes
in HD, if HD' is the union of HD and a hypernode database that, is obtained by
renaming some of the hypernodes in HD.

3 Information Content of Databases

We next present our notion of the information content of a database and briefly
introduce the relevant definitions and results from the theory of context-free gram-
mars [HU79].

Definition 3.1 (Context-Free Grammar) A context-free grammar (CFG) is a
quadruple (V, T, P, 5), where V and T are finite and disjoint sets of varia,bles and
terminals, P is a finite set of productions of the form X —y a such that X is a
variable and a is a finite and nonempty string of variables and terminals, and S €
V is a distinguished variable called the start symbol.

A CFG (V, T, P, S) is said to be a regular grammar (RG), if each of the
productions in P is either of the form X —t aY or X —> a, where a is a string of
terminals (in the production À' —» aY a may be empty).

From now we will assume that G = (T, V, P, S) is a CFG and will refer to a
finite string of variables and terminals as a string and to a finite string of terminals
as a word. We define the length of a string a to be the number of symbols in a.

Definition 3.2 (Derivations) If /3 and 7 are strings and À" —> a is a production
in P, then pXf directly derives ¡3aj in G, written (3X7 => ¡3aj.

On the Information Content of Semi-Structured Databases 265

We say that a string a derives a string P in G, written a [J, if for some
•naturafnumber n > 0

a=>pi,fa ^ p2,...,pn=> p.

Thus =>* is the reflexive and transitive closure of =>.

Definition 3.3 (The language generated by a CFG) The context-free lan-
guage (or simply language) generated by G, denoted by £(G), is the set of all
words that can be derived from the start symbol S in G; a context-free language
£(G) is said to be a regular language if G is an RG.

Two CFGs, Gi and G2, are equivalent written Gi = G2 if C(Gi) = C(G2),
otherwise they are inequivalent.

We note that according to Definition 3.1 the right-hand side of productions is
always nonempty and thus we only consider languages where the empty word is not
a member of C(G).

The next lemma allows us to simplify the productions in an RG.

Lemma 3.1 Every RG, G, has an equivalent RG, G', such that every production
of G' is either of the form X —> Y, X —• aY or X —> a, where X and Y are variables
and a is a terminal.

Proof. The result easily follows by an induction on the length of a in productions
of the form X -+ aY. Suppose that the length of a is greater than one and a — Pa
for some terminal symbol a. Then, replace the production X —> /3aY with the two
productions X —¥ PZ and Z —• aY, where Z is a nonterminal not appearing in any
other production in the resulting grammar. It is evident that the newly formed
grammar is an RG and is equivalent to G. •

Definition 3.4 (Chomsky Normal Form) A CFG, G, is in Chomsky Normal
Form (CNF) if all its productions are of the form X -» YZ or X a, where X, Y
and Z are variables and a is a terminal.

The next theorem is a well-known result [HU79].

Theorem 3.2 Every CFG, G, (such that £(G) does not contain the empty word)
has an equivalent CFG, G', which is in CNF and is equivalent to G.

Intuitively, the information content of a hypernode database HD is the context-
free language that is generated by the CFG induced by G, and two hypernode
databases are information-wise equivalent if they generate the same context-free
language.

266 Mark Levene

Def in i t ion 3.5 (Information content of databases) The CFG induced by a
hypernode database HD, denoted by CFG(HD), is a quadruple (V, T, P, S), where
S i LABELS(HD), V = LABELS(HD) U{5}, T = ATOMIC(HD) and P is the
smallest set of productions such that for every label R E root (HD), 5 - > / ? . € P,
and for every hypernode H = {N,E) E HD, H n € P, if n E isolated(N) and
H -4 71] 712 € P, if (7li,n2) E E.

The language generated by HD, denoted by £(HD), is the language generated
by CFG(HD), i.e. £(CFG(HD)).

The information context of a hypernode database HD is defined to be the lan-
guage generated by HD. Two hypernode databases HD1 and HD2 are infomnation-
•uiise equivalent (or simply equivalent), denoted by HD1 = HD2, if C F G (H D l) =
CFG(HD2), i.e. £(HD1) = £(HD2). Otherwise HD1 and HD2 are information-wise,
inequivalent (or simply inequivalent).

We note that the information content of a hypernode database may be the
empty language, for example, if HD contains the single hypernode, H = (0,0), or
if rooi(HD) is empty.

The next proposition can be verified from Definitions 2.4 and 3.5.

Propos i t i on 3 .3 Equivalence of hypernode databases is closed under renaming
and duplication.

We next show that every CFG can be represented by a hypernode database.

Def in i t ion 3.6 (The hypernode database represent ing a cfg) The hypern-
ode database representing a CFG, G = (V, T, P, 5) , denoted by DB(G), is con-
structed as follows. Firstly, by Theorem 3.2, G is converted into an equivalent CFG
in CNF, which we also refer to as G. Secondly, we assume tha t V C L and tha t T
C A, and say that the production X —> YZ G P induces the hypernode X = ({Y,
Z}, {(Y, Z)}) and the production X -> a £ P induces the hypernode X = ({a}, 0).
Finally, DB(G) is the smallest set of hypernodes induced by the productions in P
and where roo£(DB(G)) = {5}.

The next proposition is now immediate.

Propos i t i on 3.4 Two context-free grammars G\ and Go are equivalent if and only
if D B (G L) and D B (G 2) are equivalent.

On the Information Content of Semi-Structured Databases 267

4 The Expressive Power of Database Classes
We are now ready to investigate the expressive power of various classes of hypernode
databases in terms of the set of CFGs that they induce.

Definition 4 .1 (Expressive power of classes of hypernode databases) A
class of hypernode databases, D, is said to express a class of context-free languages,
C, if for every hypernode database, HD £ D, there is a CFG, G £ C, such that
£(HD) = £(G), and for every CFG, G £ C, there is a hypernode database, HD £
D, such that £(HD) = £(G).

A class, D l , of hypernode databases is more expressive than a class, D2, of
hypernode databases, if the class of context-free languages that is expressed by D l
is a proper superset of the class of context-free languages that is expressed by D2.
Two classes of hypernode databases, D l and D2, are equally expressive, if both
D l and D2 express the same class of context-free languages.

The next lemma, which is an immediate consequence of Proposition 3.4 and
Definition 3.6, establishes the expressive power of the general class of hypernode
databases.

Lemma 4/1 The general class of hypernode databases, and thus the general class
of semi-structured databases, expresses the general class of context-free languages.

•

For the rest of this section we investigate the expressiveness of various classes
of hypernode databases, which correspond to flat, nested and object databases.

Our view of flat databases corresponds closely to Chen's binary entity-
relationship model presented in [Che84], which in its essence captures the fun-
damental notions of the more general entity-relationship model [Che76, MM90,
Teo94]. (For the purpose of this paper we do not address the concepts of special-
isation and generalisation which are important notions in the entity-relationship
model.)

Definition 4.2 (Flat databases) A flat database is a hypernode database HD
such that the hypernodes H = (N, E) in HD are restricted to be one of the following
types:

1. An entity set, where N C L and E = 0.

2. A value set, where N C A and E = 0.

3. An entity, where (N , E) is a bipartite graph [BH90], such that N is partitioned
into two nodes sets N\ and N2, with JVC A and none of the nodes in N2 are
isolated, and there exists an entity set H' = (M', 0) in HD with H 6 M'\ the
nodes in Nj are called the attributes of the entity represented by H and the
nodes in N2 are called the values of the entity represented by H.

268 • Mark Levene

4. A relationship, where N = iVi U JV2, with (N , E) having no isolated nodes,
and such that there exist two entity sets Ht = (Mi,0) and H-2 = (M2 ,0) in
HD such that Ni C Mx and N2 C M2.

Moreover, rooi(HD) contains a (possibly empty) subset of the set of defining
labels of the entity sets, value sets and relationships in HD.

For example, the hypernodes shown in Tables 1, 2 and 4 represent entity sets,
the hypernodes shown in Tables 8 and 9 represent entities, the hypernode shown in
Table 7 represents a relationship, and the hypernode shown in Table 10 represents
a value set.

FLAT-EMP1
(attribute —> value)

ename john
dept. —» computing
boss —> jack

FLAT-DEPT1
(attribute —• value)
dname —• computing

emp —> john
emp jack
emp jill '
head —> jack

address —> london

Table 8: The entity FLAT- Table 9: The entity FLAT-
EMP1 DEPT1

EMP - VALUE
jack
jill

john

Table 10: The value set EMP-VALUE

It can easily be verified from Definition 4.2 that flat databases are acyclic and
that such databases have no nesting of entities or relationships. Moreover, we
observe that we represent attributes of entities by atomic values; see the hypernodes
of the running example, shown in Tables 3, 5 and 6.

The next lemma thus follows from Definition 3.5 and 4.2.

L e m m a 4.2 The class of flat databases expresses the class of finite languages hav-
ing nonempty words of length less than or equal to four.

We next define grouped databases which modify flat databases such that at-
tribute values of entities are modelled by grouping them into value sets.

On the Information Content of Semi-Structured Databases 269

Definition 4.3 (Grouped databases) A grouped database HD is a variation of
a flat database, where the definition of an entity is modified, as follows:

3. A hypernode H — (TV, E) is an entity, where (TV, E) is a bipartite graph, such
that TV is partitioned into two nodes sets and TV2, with TVi C A, TV2 C L
and none of the nodes in TV2 are isolated, there exists an entity set IIy =
(Mi,0) in HD with H £ Mi, and for all n £ TV2, there exists a value set
H-i = (M2,0) such that n = H2.

For example, the hypernode shown in Table 11 represents and entity in a
grouped database.

GROUPED-DEPT1
(attribute •> value)

dname computing
emp + EMP - VALUE
head •» jack

address -» london

Table 11: The entity GROUPED-DEPT1

The next result follows from Definitions 4.2 and 4.3 on using Definition 4.1.

Lemma 4.3 The classes of flat databases and grouped databases are equally ex-
pressive.

Our view of nested databases is to extend flat databases by allowing nesting of
entities. In particular, we disallow the nesting of relationships, since otherwise by
part (2) of Theorem 5.2, which is given in Section 5, equivalence of such databases
would be intractable.

Definition 4.4 (Nested databases) A nested database HD is an extension of a
flat database such that the definition of an entity is modified as follows, with the
restriction that HD is acyclic:

3. A hypernode H = (TV, E) is an entity, where (TV, E) is a bipartite graph, such
that TV is partitioned into two nodes sets Ni and TV2, with TVX C A, TV2 C
A U L and none of the nodes in TV2 are isolated, there exists an entity set
Hi = (Mi,0) in HD with H £ Mi, and for all n £ TV2, with n £ L, there
exists an entity set H2 = (M2 ,0) such that either n = H2 or n £ M2 .

For example, the hypdenodes shown in Tables 5 and 6 may represent entities in
a nested databases. In this case the employee entities in the nested database may
not reference either of the departments in order that HD be acyclic.

270 • Mark Levene

We observe that in nested databases we allow only the nesting of entity sets and
entities. The next result follows from Definitions 3.5 and 4.4 on using Lemma 3.1,
noting that any finite language can be generated by an RG.

L e m m a 4.4 The class of nested databases expresses the class of finite languages.

The next corollary follows from Lemmas 4.2 and 4.4.

Corol lary 4.5 The class of nested databases is more expressive than the class of
flat databases.

Our view of object-oriented databases is to extend nested databases by allowing
cycles as long as these do not involve relationships. This restriction is essential,
since otherwise by part (1) of Theorem 5.2, which is given in Section 5, equivalence
of such databases would be undecidable.

Def ini t ion 4.5 (Objec t da tabases) An object database is an extension of a
nested database such that the database may be cyclic.

For example, the database shown in the running example in Section 1 is an
object database.

We observe that as is the case of nested databases we disallow nesting of rela-
tionships in object databases.

L e m m a 4.6 The class of object databases expresses the general class of regular
languages.

Proof. By Definitions 3.5 and 4.5 on using Lemma 3.1, it is easy to see that the
class of object databases is at least as expressive as the general class of regular
languages. It remains to show that relationships do not add expressive power to
the class of object databases. By Definition 4.5 relationships are not nested and
thus any derivation of a word which uses a production such as R XiX2 must be
of the form

S R=> XiX2 =>* w,

where no other production of the form R' —• X[X^ is used in the derivation.
Therefore, w = iuiw2, where for i = 1 and 2, A'j =>* W{, implying that Wi is a
member of the language induced by the RG with start symbol X{. The result now
follows, since RGs are closed under concatenation [HU79]. •

The next corollary follows from Lemmas 4.4 and 4.6.

Corol lary 4.7 The class of object databases is more expressive than the class of
nested databases.

On the Information Content of Semi-Structured Databases 271

5 The Complexity of Determining Equivalence of
Databases

Herein we investigate the complexity of determining equivalence of hypernode
databases for the classes of databases defined in Section 4. We assume that the
reader is familiar with the notion of undecidability [HU79] and fundamental com-
putational complexity classes NP (nondeterministic polynomial time), PSPACE
(polynomial space) and NEXPTIME (nondeterministic exponential time) [G.J79].
(We define the size of a set S to be the cardinality of a standard encoding of S.)

Theorem 5.1 The following statements regarding the computational complexity
of decision problems for CFGs are true:

(1) Equivalence of CFGs is undecidable [HU79, Theorem 8.12] (see also [HRS79]).

(2) Equivalence of CFGs which generate finite languages is NEXPTIME-hard
[HRS79, Theorem 4.5].

(3) Inequivalence of RGs which generate finite languages is NP-complete [Hun73,
Theorem 2.3].

(4) Inequivalence of RGs is PSPACE-complete [Hun73, Theorem 3.8].

The next theorem presents the results of this section.

Theorem 5.2 The following statements regarding the computational complexity
of decision problems for hypernode databases are true:

(1) Equivalence of hypernode databases is undecidable.

(2) Equivalence of acyclic hypernode databases is NEXPTIME-hard.

(3) Equivalence of flat databases can be tested in polynomial time in the size of
the two databases.

(4) Inequivalence of nested databases is NP-complete.

(5) Inequivalence of object databases is PSPACE-complete.

Proof. (1) and (2) are immediate consequences of Proposition 3.4 and parts (1)
and (2) of Theorem 5.1, noting that acyclic hypernode databases are finite.

(3) Let HD be a flat database. We show that the size of the language generated
by HD is polynomial in the size of HD, implying the result. Let mi be the number
of entities and value sets in HD, m2 be the maximal number of arcs and isolated
nodes in any entity or value set in HD, rriz be the number of relationships in HD
and m4 be the maximal number of arcs in any relationship in HD. Now, let m be
the maximum of m,, for i = 1,2,3 and 4. Thus the number of words in £(HD) is
bounded above by 3m4, since we need to count the number of words induced by

272 • Mark Levene

entity sets, value sets and relationships. The result now follows, since by Lemma 4.2,
the length each word in £(HD) is at most four.

(4) NP-hardness follows by Proposition 3.4 and part (3) of Theorem 5.1, on
using Lemma 4.4. It remains to show that the equivalence problem for nested
databases is in NP.

Given a nested database HD, the maximal length of words in £(HD) is bounded
above by twice the size of HD, since we disallow nesting of relationships. Now, let
HD1 and HD2 be nested databases and nondeterministically guess a word, say
w, whose length is less than or equal to the maximal length of words in either
CFG(HDl) or CFG(HD2) and such that its atomic values are in ATOMIC(HDl) U
ATOMIC(HD2). The result now follows, since membership of a word w in a CFG
can be decided in polynomial time in the length of w [HU79].

(5) PSPACE-hardness follows by Proposition 3.4 and part (4) of Theorem 5.1,
on using Lemma 4.6. It remains to show that the inequivalence problem for object
databases is in PSPACE.

Let HD be an object database. If there are no relationships in HD, the result
follows from part (4) of Theorem 5.1, since it can easily be verified that CFG(HD)
is an RG. Otherwise, suppose that due to a relationship whose defining label is R
we have the production R —> XiX2 in CFG(HD). Due to the fact that relationships
cannot be nested, it follows that for i = 1 and 2, any derivation, Xi =>* w of a word
w, is induced by an RG whose start symbol is Xi. Thus a derivation R =>* w of a
word w £ £(HD) can be viewed as the derivation of two words uii and iu2 such that
wyiu2 = w and for i = 1 and 2, Wi is a word in the RG induced by X¿. Moreover, R.
can be chosen nondeterministically from the set of defining labels of relationships
in HD. Thus the inequivalence of two object databases HD1 and HD2 reduces to
the problem of finding a word w = wiw2, as above, which is a member of one of
the languages £(HD1) or £(HD2), but is not a member of the other language. The
result now follows by part (4) of Theorem 5.1, since both w\ and w2 can be derived
by RGs in PSPACE. •

6 Concluding Remarks

We have investigated the information content of semi-structured databases and
shown that the general class of databases expresses the general class of context-
free languages, the class of object databases expresses the general class of regular
languages, the class of nested databases expresses the class of finite languages,
and the class of flat databases expresses the class of finite languages whose words
are of length less than or equal to four. Moreover, we have shown that testing
the equivalence of hypernode databases and thus semi-structured databases is, in
general, undecidable, but for object databases it is PSPACE-complete, for nested
databases it is NP-complete and for flat databases it is polynomial time in the size
of the input. Our results support the view that relationships are not entities, since
otherwise, if we allow relationships to be nested within entities, by parts (1) and (2)

On the Information Content of Semi-Structured Databases 273

of Theorem 5.2 determining equivalence of nested databases would be intractable
and determining equivalence of object databases would be undecid'able.

The interpretation we place on the notion of being more expressive is that it
affords us with more flexible means of modelling information. (We refer the reader
back to the running example given in the introduction to verify this statement.)
From the user's point of view this flexibility provides several alternative ways of
viewing and querying the same information; for example, the fact that an employee
works in a department can be modelled in three different ways. Moreover, this
flexibility may be an advantage for the query optimiser, when there are several
alternative routes to obtain an answer to a query. Although testing for equivalence
of object and nested databases is, in general, intractable we can provide restruc-
turing operations as in [HY84, AH88] in order to transform a database into an
equivalent one having a different structure. The formulation of a complete set of
restructuring operations that preserve information-wise equivalence for object and
nested databases is an open problem.

We now briefly outline, through an example, an extension to measure the nav-
igation capacity of hypernode databases, and thus semi-structured databases. Let
HD1 be a hypernode database comprising the hypernodes with defining labels A and
B shown in Tables 12 and 13, respectively, and let HD2 be a hypernode database
comprising the hypernodes with defining labels C and D shown in Tables 14 and
15, respectively. It can easily be verified that both £(HD1) = £(HD2) = {a, b},
and thus HD1 and HD2 are information-wise equivalent. In this case the nesting
of hypernodes does not increase the information-content of the database. Despite
this equivalence, from a navigation point of view HD1 is less expressive than HD2,
since in HD1 we cannot directly navigate from A to B or from B to A, while in
HD2 it is possible to navigate either directly from C to D or directly from D to C.
Thus information content on its own is insufficient .to measure expressiveness of a
database from the point of view of navigation. We suggest to utilise the hypernode
accessibility graph (HAG) for this purpose (see Definition 2.3). In our example, it
is evident that with respect to navigation HD2 is more expressive than HD1, since
HD1 = HD2 and the HAGs of A and B are subgraphs of the HAGs of C and D,
respectively, up to an appropriate renaming of labels.

B
T

C
a
D

D
i r
C

Table 12: The hy-
pernode labelled A

Table 13: The hy-
pernode labelled B

Table 14: The hy-
pernode labelled C

Table 15: The hy-
pernode labelled D

Another open problem is to extend our formalism to deal with integrity con-
straints such as keys and cardinality constraints. Finally, we mention that an

274 • Mark Levene

important application of our formalism is in software engineering process mod-
elling [CK092], as it was shown-in [LS097] that the graph-based approach of the
hypernode model provides a suitable platform for such process modelling.

References
[Abi97] S. Abiteboul. Querying semi-structured data. In International Conference

on Database Theory, pages 1-18, Delphi, 1997. Invited talk.
ri

[AFS89] S. Abiteboul, P.C. Fischer and H.-J. Schek, editors. Nested Relations and
Complex Objects in Databases, volume 361 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 1989.

[AH88] S. Abiteboul and. R. Hull. Restructuring hierarchical database objects.
Theoretical Computer Science, 62:3-38, 1988.

[BH90] F...Buckley and F. Harary. Distance in Graphs. Addison-Wesley, Redwood
City, Ca., 1990.

[Bun97] P. Buneman. Semistructured data. Proceedings of ACM Symposium on
Principles of Database Systems, Tucson, Az., 1997. Invited talk.

[Che76] P.P-S. Chen. The Entity-Relationship model - towards a unified view of
data, ACM Transactions on Database Systems, 1:9-36, 1976.

[Che84] P.P-S. Chen. An algebra for a directional binary entity-relationship model.
In Proceedings of IEEE International Conference on Data Engineering,
pages 37-40, Los Angeles, 1984.

[CK092] W. Curtis and M.I. Kellner and J. Over. Process Modelling. Communi-
cations of the ACM, 35:79-90, 1992.

[CM90] M.P. Consens and A.O. Mendelzon. Graphlog : A visual formalism for
real life recursion. In Proceedings of ACM Symposium on Principles of
Database Systems, pages 406-416, Nashville, Tn., 1990.

[Cod79] E.F. Codd. Extending the database relational model to capture more
meaning. ACM Transactions on Database Systems, 4:397-434, 1979.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman, New York, 1979.

[GPG90] M. Gyssens and J. Paredaens and D. Van Gucht.A graph-oriented ob-
ject database model. In Proceedings of ACM Symposium on Principles of
Database Systems, pages 417-424, Nashville, Tn., 1990.

[HRS79] H.B. Hunt III, D.J. Rosenkrantz and T.G. Szymanski.On the equiva-
lence, containment, and covering problems for regular and context-free
languages. Journal of Computer and System Sciences, 12:222-268, 1976.

On the Information Content of Semi-Structured Databases 275

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation, Addison-Wesley, Reading, Ma., 1979.

[Hul86] R. Hull. Relative information capacity of simple relational database
schemata. SIAM Journal on Computing, 15:856-886, 1986.

[Hun73] H.B. Hunt III. On the time and tape complexity of languages I. Proceed-
ings of ACM Symposium on Theory of Computing, pages 10-19, Austin,
Tx., 1973.

[HY84] R. Hull and C.K. Yap. The format model: A theory of database organi-
zation. Journal of the ACM, 31:518-537, 1984.

[Kim90] W. Kim. Introduction to Object-Oriented Databases, MIT Press, Cam-
bridge, Ma., 1990.

[KV85] G.M. Kuper and M.Y. Vardi. On the expressive power of the logical data
model. In Proceedings of the ACM-SIGMOD International Conference on
Management of Data, pages 180-187, Austin, Tx., 1985.

[KV93] G.M. Kuper and M.Y. Vardi. The logical data model. ACM Transactions
on Database Systems, 18:379-413, 1993.

[LL95] M. Levene and G. Loizou. A graph-based data model and its ramifications.
IEEE Transactions on Knowledge and Data Engineering, 7:809-823, 1995.

[LS097] M. Levene, L. Scott and R. Offen. A framework for seamless conceptual
data and process modelling. Research Report, Research Report No. 97/5,
Joint Research Centre for Advanced Systems Engineering, CSIRO - Mac-
quarie University, 1997.

[MM90] V.M. Markowitz and J.A. Makowsky. Identifying extended entity-
relationship object structures in relational schémas. IEEE Transactions
on Software Engineering, 16:777-790, 1990.

[PL94] A. Poulovassilis and M. Levene. A nested-graph model for the representa-
tion and manipulation of complex objects. A CM Transactions on Infor-
mation Systems, 12:35-68, 1994.

[Shm93] O. Shmueli. Equivalence of Datalog queries is undecidable. Journal of
Logic Programming, 15:231-241, 1993.

[Teo94] T.J. Teorey. Data Modelling & Design: The Fundamental Principles
Morgan-Kaufmann, San Francisco, Ca., 2nd edition, 1994.

[UU92] J.D. Ullman. The interface between language theory and database theory.
In J.D. Ullman, editor, Theoretical Studies in Computer Science, pages
133-151, Boston, Ma., 1992. Academic Press

Received October, 1997

