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Non-Markovian Policies in Sequential Decision 
Problems 

Csaba Szepesvári 

Abstract 
In this article we prove the validity of the Bellman Optimality Equation 

and related results for sequential decision problems with a general recur-
sive structure. The characteristic feature of our approach is that also non-
Markovian policies are taken into account. The theory is motivated by some 
experiments with a learning robot. 

1 Introduction 
The theory of sequential decision problems is an important mathematical tool for 
studying some problems of cybernetics, e.g. control of robots. Consider for exam-
ple the robot shown in Figure 1. This robot, called Khepera1, is equipped with 
eight infra-red sensors, six in the front and two at the back, the infra- red sensors 
measuring the proximity of objects in the range 0-5 cm. The robot has two wheels 
driven by two independent DC motors and a gripper that has two degrees of free-
dom and is equipped with a resistivity sensor and an object-presence sensor. The 
robot has a vision turret mounted on its top. The vision turret has an image sensor 
giving a linear image of the horizontal view of the environment with a resolution 
of 64 pixels and 256 levels of grey. The task of the robot was to find a ball in the 
arena, bring it to the stick and hit the stick by the ball so as to it jumps out of the 
gripper. Macro actions such as search, grasp, etc. were defined and the expected 
number of macro actions taken by the robot until the goal was reached was choosen 
as the performance measure. Some digital, dynamic filters provide the "state in-
formation" necessary for making decisions (for more details concerning these filters 
see [7]). The robot learnt on-line from the observations (x t , a t , c t ) , where xt € X is 
the actual output of the filters (X is a finite set, called the state space), a t _i G A 
is the previous (macro-)action taken by the robot (A is also a finite set, called the 
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action set), and Ct is the cost of transition (x t_ i , a t _i ,x t ) which was 1 until the 
goal was reached. The task turns out to be well approximated as a Markovian Deci-
sion Problem (MDP), i.e. one may assume the existence of transition probabilities 
of form p{x,a,y), where p(x,a,y) gives the probability of going to state y from 
state x when action a is used; and the existence of a cost-structure c{x,a,y) s.t. 
ct = c(xt-i,at-i,xt). The objective is to minimize the total expected discounted 
cost, o 7 t cí]i 0 < 7 < 1, by choosing an appropriate policy, a policy being any 
function that maps past observations to actions (sometimes to distributions over 
the action set). Because of the uniform cost structure and the absorbing goal state, 
the discounted cost criterion can be shown to be equivalent to the undiscounted 
one, i.e., to minimizing the expected number of steps until the goal is reached. The 
reason of considering the discounted total cost criterion is that the presence of the 
discount factor makes the theory of such MDPs quite appealing. In particular, it 
is well known that policies which, for any given state x € X, choose the action 
minimising ' 

P(x, a, y)(c(x, a, y) + jv* (y)) 
yex 

are optimal. Here v* is the so-called optimal cost function, defined by 

v*(x) — inf vn(x), x € X, xgll 

where n is the set of policies. More importantly, v* is known to satisfy the Bellman 
Optimality Equation 

v*(x) = min p(x, a, y)(c(x, a, y) + 7v*(y) ) , x 6 X, 
a€A L—' yex 

which is a non-linear equation for v*. Fortunately, because of the presence of the 
discount factor, 7, v* can be found (approximately) in a number of ways. For 
example, introducing the optimal cost operator, T :W.X Rx, defined by 

(Tv)(x) = min Y]p(x,a,y)(c{x,a,y) + 7^(2/)), x £ X, 
yex 

gives that v* is the fixed point of T, which can be shown to be a contraction in the 
sup-norm (in fact, ||T\> - Tu\\ < - u|| holds) and so the Banach fixed-point the-
orem yields that vn+i = Tvn converges to v* in the sup-norm for any choice of VQ. 
This algorithm, called the value-iteration algorithm (or dynamic programming al-
gorithm) , served as the basis of the most successful learning algorithm for the above 
robotic task. The idea of this learning algorithm is to estimate the transition prob-
abilities p(x, a, y) and the costs c(x, a, y) by their respective maximum-likelihood 
estimates to obtain pt{x, a,y) and ct(x, a,y), respectively and then compute vt, the 
£th approximation to the optimal cost function v*, as the fixed point of the approx-
imate optimal cost operator Tt which is defined as T but when p and c are replaced 
by their respective estimates. After a few hours of learning the performance of the 
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Figure 1: T h e K h e p e r a r o b o t 
The figures show a Khepera robot. The description of the sensors and actuators of the 
robot can be found in the text. 

robot using this learning strategy was comparable to that of a well designed control 
strategy (whose design took a couple of days). 

It is important to observe that the expected total discounted cost criterion, al-
though suitable in many cases, may yield undesirable behaviour in some cases. For 
example, in safety-critical applications (like controlling a Mars-rover) the average-
case optimal policy may be too bold. Other criteria, such as the minimax criterion 
which concerns only the long-term worst-case outcomes of the decisions, take safety 
much better into account. There is a continuum of other criteria which are in be-
tween the expected and the minimax criteria. In this article we consider structural 
questions, such as the validity of the Bellman Optimal Equation, associated with se-
quential decision problems given by general decision criteria. However, the problem 
of learning optimal policies will not be considered here. Nevertheless, the theory 
investigated here is important as the analysis of such learning algorithms should be 
based on it. For further information on learning issues the reader is referred to the 
articles [5, 9] and [6]. The main contribution of this article to the "static-theory", 
which considers structural problems, is that here we do not restrict the analysis to 
Markovian policies as it is usual in the literature (see, e.g. [1, 10]), but we also con-
sider general policies, which is important since learning policies are non-Markovian 
by nature. 

2 Results 

Nota t ion . The set of natural numbers ({0,1,2,. . .}), integers and reals will be 
denoted by N, Z and IK, respectively. 7Z(Z) will denote the set of extended real-
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valued functions over Z: 7Z(Z) = [—oo,oo]z, and B(Z) will denote the set of 
bounded real-valued functions over Z: B(Z) C K z , s.t. if / G B(Z) then | | / | | = 
sup2 € Z \f(z)\ < oo. The relation u < v will be applied to functions in the usual 
way: u < v means that u(x) < v(x) for all x in the domain of u and v. Further, 
u < v will denote that u < v and that there exists an element x of the domain of u 
and v such that u(x) < v(x). We employ the symbol < for operators in the same 
way, and say that Si < S2 {SUS2 : 11{Z) -4 K(Z)) if Siv < S2v for all v G K(Z). 
If S : TZ(Z) —» TZ{Z) is an arbitrary operator then Sk (k = 1 ,2 ,3 , . . . ) will denote 
the composition of S with itself k times: S°v = v. Slv = Sv, S2v = S(Sv). etc. In 
the following t, s, n,i,j, k will denote natural numbers. 

D e f i n i t i o n 2 . 1 An operator S : H(Zi) TZ(Z2) is said to be Lipschitz with index 
0 < 7 i f S maps B(Zi) into B(Z2) and if for allf,g £ B(ZI), | |S / -Sc / | | < 7 l l / - » | | -
S is said to be a contraction with index 7 if S is Lipschitz with index 7 < 1. 

D e f i n i t i o n 2 . 2 An operator S : TZ(Zi) TZ(Z2) is said to be (weakly) continuous 
if for all pointwise continuous function sequence { / n } C IZ(Zi) with limit function 
f , also limn^oo (Sfn)(z) = (Sf)(z),\/zeZ2. 

It is well known that S can be Lipschitz without being continuous and vice versa, 
continuous in the topology induced by pointwise convergence: Let S : Z?(N) —• 23(N) 
be defined as (S/)( i) = i n f ^ i f ( j ) if i = 0 and ( S f ) ( i ) = f(i), otherwise. Clearly, 
S is Lipschitz with index 1. Let fn{i) = 1, if 0 < i < n and fn(i) = 0 otherwise. 
Now, if we let f(i) = 1, i G N then fn—*f pointwise but not in the sup-norm, and 
0 = limn^co(S/n")(0) ^ (S/)(0) = 1 showing that S is not continuous in the sense 
of Definition 2.2. 

Sequential Decision Problems. 

D e f i n i t i o n 2 . 3 An sequential decision problem (SDP) is a quadruple (X, A, Q, I), 
where X is the state space of the process, A is the set of actions, Q : [—00,00]^ —» 
[—oo, oo]"^-4 is the so-called cost propagation operator and I G B(X) is the so-
called terminal cost function. 

In most of the results we will assume that Q is a contraction and is continuous in 
the sense of Definition 2.2. 

The mapping Q makes it possible to define the cost of an action sequence in 
a recursive way: the cost of action a in state x is given by ( Q f ) ( x , a ) provided 
the decision process stops immediately after the choice of the first action and the 
terminal cost of stopping in state y is given by f(y). 

The history of a decision process up to the i t h stage is a sequence of state-
action pairs: (a't,xt,at-i,xt-i,... ,a o,£o)- Set Ht = (Ax X)1, t > 0. For brevity, 
h = ((at,xt),... ,(ao,xo)) will be written as h = atxt •.. aoxo- Further, for any 
pair hi = ((at,xt),..., (a0,xo)) and h2 = ((a's,x's),..., (a^Xg)) we will denote by 
h\h2 the concatenation of hi and h2: ((at,xt),.. •, («0,2:0), (a's,x's),..., (ab,x'0)). 
We admit the assumption that the ordering of the components of h = atxt... clo^o 

corresponds to the time order, i.e., (at,xt) is the most recent element of the history. 
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D e f i n i t i o n 2 . 4 A policy is an infinite sequence of mappings: TT = 
(710,71-1,... ,nt,...), where nt : X x Ht A, t > 0. If irt depends only on X 
then the policy is called Markovian, otherwise, it is called non-Markovian. If a 
policy is Markovian and irt = 7To for all t then the policy is called stationary. Ele-
ments of Ax are called selectors and every 7r £ Ax is identified by the associated 
stationary policy (7r, 7r, 7r,...). 

D e f i n i t i o n 2 . 5 If n £ Ax is an arbitrary selector let the corresponding policy-
evaluation operator T„ : TZ(X) —> TZ(X) be defined as 

In the literature the evaluation of Markov policies is defined with the help of the 
policy-evaluation operators: 

D e f i n i t i o n 2 . 6 ( B e r t s e k a s , 1 9 7 7 ) The evaluation function of a finite-horizon 
Markov policy IT = (TT0, 7Ti, . . . , IRT) is defined as V„ = TnoTni ...TVt£, while the 
evaluation function of an infinite-horizon Markov policy 7r = (710, 7Ti,..., 7r t,...) is 
given by 

assuming that the limit exists. 

If the policy is stationary (7rt = 7r0 for all t > 0) the latter definition reduces to 

Note that if Q : B(X) —>• B(X x A) is a contraction then Tn is a contraction with 
the same index (n € Ax) and so is well defined. The evaluation of arbitrary 
policies is more complicated and is the subject of the next section, but the following 
example may shed some light on the forthcoming definitions. 

E x a m p l e 2 . 7 Finite Markovian decision problems with the expected total cost cri-
terion [2, 8]. (X,A,p,c) is called a finite MDP if the following conditions hold: 

1. X and A are finite sets; 

2. p\ XxAx-X-^'R. and for each a £ A, p(-,a, •) is a transition probability 
matrix, i.e., for all (x,a ,y ) £ X x A x X, 0 < p(x,a,y) < 1; and for all 
{:x,a) £ X x A, Y,yexP(x,a,y) = 1; 

3 . c : X x Ax X —y R. 

Now let 7r be any policy. Then, for any X-valued random variable "" generates 
a probability measure P = P5oi3r over (X x _4)N which is uniquely defined by the 
finite-dimensional probabilities 

P(x0,a0,x1,a1,. ,.,xn,an)= p(£0 = x0)6(a0,Tr0(x0))p(x0, a0,x-i)... 

(T,f)(x) = (Qf)(x,n(x)). 

( 1 ) 

(2) 

• • -p(xn-i,<in-i,xn)ö(an, Trn(xn, an_\xn-\ .. .a0a:o) 
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where S : A2 —> {0.1} is defined by S(a, b) = 1 iff a = b. Clearly, 
one can construct a random" sequence (£n, an) E X x A (the controlled 
object) s.t. P ( f n + i | a n , £„ , . . . , a 0 ! Co) = p{Zn, a», £n+i) and where a.n = 
i"n(£n><*n-i£n-i • • QoCo)- If is concentrated on {.'/;} for some x E X then 
is d e n o t e d b y PX,TT-

Assume that P(£o = x) > 0 for all x E X. The evaluation of a policy n in state 
x is defined as 

Vjt(X) =f lc{ii,auit+\) 
t=o 

Co = X — ET, (x) <:(x) \ 
Lí=o 

where 0 < 7 < 1 is the discount factor and the expectation is taken w.r.t. Pf0 „ 
(resp. Px,Tt) and {(&, ct^)} (resp. {(£jx \ a j^ )}) is the controlled object correspond-
ing to 7t and the initial random state £0 (resp. initial state x). The second equality 
in the above equation comes from the definitions and shows that vv(x) is indepen-
dent of the particular form of £o- Now, if N — (7ro, TTI, . . . ) is any policy then by the 
law of total probability 

5,(1) = £ Px,TT = y) EXin 

vex .t=0 
Ci = v 

E ^0(3;), v) c(x, TT0{x),y)+jEXt„ 
vex 

E ^ í d í i . ^ i . í f ö ) 
i=0 

i r ° --// 

= E p(x' 7r°(a'); y) c(x> n0(x),y) + 
yex 

E ^ e ? » , ^ , ! ^ ) 
_t=0 

= E p(x' n° > y} ( c ( X j 770 (3;) > y) + ív** (y)) = 
vex 

= {QVx*)(x,TTo{x)), (3) 
where irx denotes the policy executed after the first step, i.e., nx = (nfi, 7rf , . . . ) with 
ii'f(x,h) = 7rt+i(x, hito(x)x), {{£tV\ is the corresponding controlled object 
given that the initial state is y, and Q : 7Z(X) -4 7Z(X x A) is defined by 

(Qf){x,a) = Y^v(x,a,y){c{x,a,y) +yf(y))._ 
vex 

(4) 

Equation 3 is called the Fundamental Equation [3] and will be proved to hold for 
general SDPs in the next section. Note that if ?r is Markovian then TTx = (7?!, 7r2,...) 
for any x E X, and so Equation 3 yields that = Tno ... T1Tlv{lTl+uni+.2t,, ). 
Therefore, for any given I E B(X). v„ = limi-»«, T„0 ... TVl i = vn since 

l|2V0 • • • I ^ i , ? r t + 2 , . ) P^o • • • < 7 t+ii ..)-e\\<it+1c í+i r1 ¿ztfp 0. 
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for some C > 0, where we exploited that for any selector 7r, Tn is a contraction 
with index 7 and that s u p ^ n < 00. 

Interesting "risk-sensitive" criteria may be obtained if Q is given by 
{Qf)(x,a) = (¿2y€XP(x>a>y)(c(x>a>y) + 7f(y))p)1/p, 1 < P < 00, where c and 
/ are assumed to be non-negative. This definition can be shown to give the min-
imax criterion when p 00. The results derived below hold for these criteria as 
well. 

Objectives. The objective of the decision maker is to choose a policy in such a 
way that the cost incurred during the usage of the policy is minimal. Of course, 
the smallest cost that can be achieved depends on the class of policies available for 
the decision maker. 

D e f i n i t i o n 2 . 8 The sets of general, Markov and stationary policies are denoted 
byHg, IIm aiid IIj, respectively. Further, let 

v*A(x) = inf vn(x), 
rrenA 

be the optimal cost function for the class IIa, where A is either g or m or s. 

For any e > CLand fixed x 6 X the decision maker can assure a cost less than 
v*A(x) + e by the usage of an appropriate policy from IIa but this policy will 
depend on x. Here we are interested in uniformly good policies: 

D e f i n i t i o n 2 . 9 Let H A ( v ) = {-IT e H a \vn < t>}, that is I I A ( i> ) contains the poli-
cies from Ha whose cost is uniformly less than or equal to v. A policy is said to be 
(uniformly) e-optimal if it is contained-in ns(w*fl +e ) . 2 

The objective of sequential decision problems is to give conditions under which 
nA(f* s + e) is guaranteed to be non-empty when e > 0 or e = 0. 

D e f i n i t i o n 2 . 1 0 Elements ofHg(v*g), nm(v*g), andlls(v*9) are called optimal, 
optimal Markovian and optimal stationary policies, respectively. 

The Fundamental Equation. Now we define the evaluation function associated 
to non-Markovian policies and derive the fundamental equation. 

D e f i n i t i o n 2 . 1 1 If IT = (7ro, 7Ti, . . . , 7 r t , . . . ) is an arbitrary policy then 7r4 denotes 
the ¿-truncation of -K: 7xl = (no, 7Ti,..., nt). Further, let Vt and V denote the set 
of t-truncated (finite-horizon) policies and the set of (infinite horizon) policies, 
respectively. The s-truncation operator for t-truncated policies is defined similarly 
if s<t. 

D e f i n i t i o n 2 . 1 2 The shift-operator, S(x>a) : V ->• V, for any pair (x,a) e X x A 
is defined in the following way: 

S(x,a)ir = (K'^l'- • •)> 
2 l f v is a real valued function over X and e is real then v + e stands for the function v(x) + e. 
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where tt) is defined by 
T't(x.H) = 7rt+1(x, liax) 

for all t > 0. M̂ e s/ia/Z wriie 7rx /or S^Ti-ofx))71" and call TTx the derived 
policy. For t-truncated policies S( I )a) is defined in the same way, just :now 
S M :Vi-*Vt-i,t > 1. 

The above definition means that TTx G Vt-i holds for any n G Vt and x G X. The 
following proposition follows from the definitions. 

P r o p o s i t i o n 2 . 1 3 ?T1'X = TTx<1~1 and thus if TT £ Vt then TT1'x = TXX-L~L G Vt-l; 

t> 1. 

Now we are in the position to give the definition of the evaluation of policies with 
finite horizon. 

D e f i n i t i o n 2 . 1 4 If n G V0, i.e., TT = (ir0) then vn(x) = (Qi)(x.ir0(x)), where 
i G V(X) is the terminal cost function. Assume that the evaluation of policies in 
Vt is already defined. Let TT G Vt+i • Then 

vn(x) = {QV^)(X,TT0(X)). (5) 
Since TTX G Vt, v„* is already defined and thus (5) is well defined. One can interpret 
this definition as follows: irx is the policy that is applied after the first decision. 
The cost of the derived policy is vK*. This cost together with the cost of the first 
action (the first being TTO(X) in state x) gives the total cost of the policy. 

E x a m p l e 2.15 If tt is a ¿-horizon policy in an MDP (X,A,p,c) (cf. Example 2.7) 
and we set 

v^ix) = E 
.71=0 

£O = X 

where {(£n,cin)} is the controlled object corresponding to 7r and the random initial 
state The argument of Example 2.7 gives that v ^ = where v ^ is the 
evaluation of tt in the sense of Definition 2.14 in the SDP (X,A,Q, £), with Q 
given by (4) and where i(x) = 0 for all x G X. 

The evaluation of an infinite horizon policy is defined as the limit of the evalu-
ations of the finite horizon truncations of that policy: 

D e f i n i t i o n 2.16 Let TT G V = VCX}. Then the total cost of TT for initial state x is 
given by 

vn(x) — lim inf vnt (x), 
t—too 

x G X. 

E x a m p l e 2.17 Continuing the above example, if 7r is an arbitrary policy then (by 
the boundedness of c) 

V?T (•'«) —f E E 7 " c ( f n , c t „ , f „ ) I £o = ; 
L;i.=0 

and so v„ = in. 

= lim E t-> oo 

Í-1 
Ifo = x 

.11=0 
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D e f i n i t i o n 2 . 1 8 Q is said to be m,onotone if Qv < Qu whenever u < v. 

In what follovis we will always assume that Q is monotone. 
Equation 6 below, which in harmony with [3] we call the fundamental equation 

(FE), has already been derived for MDPs in Example 2.7. Here we show that it 
holds in general SDPs when Q is continuous. 

T h e o r e m 2 . 1 9 If Q is continuous then 

vn(x) = (QvK*)(x,w0(x)). (6) 

Proof. Let vt = -(V and let n = nt+1. By definition v^(x) = (Qv^)(x, fi0(x)). 
According to Proposition 2.13 nx = 7rt+1,x = 7rx,t and /xo — ttq, therefore 

= (Qv„*.')(z;7ro(x)). (7) 

Now, let t tend to infinity and consider the lim inf of both sides of the above 
equation: 

vw(x) = lim inf (£>?;„•*,i )(.'£, iro(x)) - (Q[liminfX* <]) 7r0(a,-)) = ( Q v ( x , 7 r 0 ( x ) ) , 
t—> oo i V i—> oo / 

where in the first equation we exploited the definition vn, in the second equation we 
used that Q is monotone and is continuous, and in the third equation the definition 
of vwas utilised. • 

C o r o l l a r y 2 . 2 0 Assume that Q is a contraction and is continuous. Then v„t 
converges to vn, i.e., in Definition 2.16 lim inf can be replaced by lim, and for any 
Markovian policy IT, the evaluation function associated to n in the sense of Def-
inition 2.16 coincides with the evaluation function in the sense of Definition 2.6. 
Moreover, if % is stationary, then T™vo converges to vn, where vq € B(X) is arbi-
trary, and vn = T,,-'!;^. • 

Proof. Recall that in Definition 2.6 the evaluation of a Markovian 
policy 7r = (7To, 7Ti,... ,7Tt,...) was defined as the limit vn(x) = 

lim/.—»OO 
^ . . . { T ^ i T ^ l ) ) . . } j . Easily, Tn0 • • • Tnt-iTntl — vnt, so the defini-

tion of Bertsekas coincides with that of ours. The rest of the statement follows 
from the Banach fixed-point theorem. • 

Uniformly Optimal Policies. 

D e f i n i t i o n 2 . 2 1 Policy ir is said to be uniformly e-optimal i f , for all x e X: 

v (x) < fv*3(x)+£> ifv*a(x) > -oq; 
n \ — 1/e, otherwise. 
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T h e o r e m 2 . 2 2 If the FE is satisfied then for all e > 0 there exists an e-optimal 
policy. 

Proof. Fix an arbitrary x 6 X. By the definition of v*9(x) there exists a policy 
XIR = (xTXO,xTX\, . . . ) for which vin(x) < v*9(x)+e when v*9(x) > —oo and viir(x) < 
— 1/e, otherwise. We define a policy which will be e-optimal by taking the actions 
prescribed by xn when x is the starting state of the decision process. The resulting 
policy, called the combination of the policies XTX, is given formally by n0(x) = 
XTXO(X) and 7r t (y ,hax) = Xixt{y,hax). We claim that v„(x) = vil,(x) and thus IT 
is uniformly e-optimal. Indeed, ixx = (xTT)x and TTO(X) = XTTO(X) and so v7r(x) = 
(QVXV*){X,TT0{X)) = (Qvx7r*){x,XTT0(x)) =vi7r(x). • 

Finite Horizon Problems. 

D e f i n i t i o n 2 . 2 3 The optimal cost function for n-horizon problems is defined by 

vnA(x)= inf xev* 

where = { TX11 \ TT E IIa }, and A 6 {g,m, s}. 

D e f i n i t i o n 2 . 2 4 The optimal cost operator T : TZ(X) TZ(X) associated with 
the SDP (X, A, Q, I) is defined by 

(Tf)(x)= inf (Qf)(x,a). 
aeA(x) 

It is immediate from the definition and by the triangle inequality that if Q is a 
contraction with index 7 then the optimal cost operator is a contraction with the 
same index. 

D e f i n i t i o n 2 . 2 5 Q is called upper semi-continuous if for every (pointwise) con-
vergent sequence of functions Vt G V-(X) for which Vt > lim^oo nt we have 

lim Qvt = Q( lim vt) £—>00 t—¥ OO 

T h e o r e m 2 . 2 6 ( O p t i m a l i t y E q u a t i o n f o r F i n i t e H o r i z o n P r o b l e m s ) 

The optimal cost functions of the n-horizon problem satisfies 

v*9 = v*rn = T n t ( 8 ) 

provided that Q is USC and the FE is satisfied. 

Proof. We prove the proposition by induction. OnS immediately sees that the 
proposition holds for n = 1. Assume that we have already proven the proposition 
for n. Firstly, we prove that Tn+1£ < v*l+l. Note that this inequality will follow 
from the FE and the monotonicity of Q alone: no continuity assumption is needed 
here. 
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Let IT € Vn+i- show that Tn+1£ < v„. By the induction hypothesis 
(Tn+1 £)(x) = ( T < s ) ( x ) . According to the FE, v^x) = {Qv^)(x,n0{x)). Since 
TTx € Vn so > v*-9. Since Q is monotone it follows that 

{Tv*°)(x) = inf (Qv*B)(x,a) < inf (QvK,)(x,a) < (Qv„. )(x,w0(x) = v„(x). 
a£ A(x) a£A(x) 

This holds for arbitrary 7r e Vn+i and thus Tv^9 < v*?+1. Using the induction 
hypothesis we find that Tn+1£ < v*n°+1. 

Now let us prove the reverse inequality, i.e., that < Tn+li holds. Let us 
choose a sequence of Markovian policies £ Vn such that vnk converges to v*"1. 
Clearly, v„k > v*m. Now let nj : X —• A be a sequence of mappings satisfying 
lim^ooT^.'ti*9 = Tv*9. Now consider the policies vk,j = 7 © M j € Vn+\ - the first 
n actions of vk,j are the actions prescribed by -Kk while the last action is the action 
prescribed by fij. It is clear that < < vVkj = Tlljv7Tk: the last equality-
follows from the FE. Taking the limitin k we get that 

< lim THv«k = r , t . ( lim v„J = TMjv*m 
k—too k—too 

holds owing to the choice of the policies 7rk and since Q is USC. Now taking the 
limit in j the induction hypothesis yields that < v*™x < Tv*m = Tn+L£ which 
finally gives that v*J+i — = Tn+1i, completing the proof. • 

The following example shows that the conditions of the previous theorem are 
indeed essential. 

E x a m p l e 2 . 2 7 [1] L e t X = { 0 } a n d A = ( 0 , 1 ] , £ ( 0 ) = 0 , a n d ( Q / ) ( 0 , a ) = 1, i f 

/ ( 0 ) > 0 ; and ( Q / ) ( 0 , a ) = a, otherwise. Note that Q is not U S C . It is easy to see 
that 0 = Woo(0) = (Tn£) (0) < v*9(0) = 1 = v*9(0) if n > 2. 

The Be l lman Opt imal i ty Equa t ion . According to Theorem 2.26, if v*-> con-
verges to v*a then v*9 can be computed as the limit of the function sequence vo = £, 
vt+i = Tvt provided that Q is USC and the FE holds. The convergence of v*a to 
v*'J expressed in another way means that the inf and lim operations can be inter-
changed in the definition of v*9: 

v*9 = inf lim = lim inf = lim v*9. (9) 
irev n—>oo n->oai\£V oo 

t h e o r e m 2.28 (i) Assume that Q is continuous and set Voo = lim sup„_>00 Tni. 
Then 

Vvo < v*°. (10), 

(ii) If we further assume that Q is a contraction then lim^^ca v*!J = 
lim7l_>oo Tuvo = v*9 = v*m, where v0 £ B(X) is arbitrary, and 

Tv*9 = v*u. ( 1 1 ) 
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Proof, (i) Note that by Theorems 2.19 & 2.26 v^ = lim s u p n ^ c o . Let x £ X 
and let c be a number s.t. c > v*9(x). By the definition of v*9 there exists a policy 
7r £ V such that v7!(x) < c. Furthermore, since vn{x) = limn^oo v^ (x) there exists 
a number n0 such that from n > no it follows that (x) < c. Thus if n > n0 then 
v*fl (x) < c and consequently lim s u p , ^ ^ v*9 (x) < c. Since c and x were arbitrary, 
we obtain the desired inequality. 

(ii) By the Banach fixed-point theorem v = \imn^tooTni = lim n—>oo Wo 
and Tvoo = Voo• It is sufficient to prove that v*9 < Tv*9 since then iterating this 
inequality will yield v*9 < Tnv*9 Voo,ii -» oo, which together with Part (i) shows 
(11). Let 7rn be a sequence of 1/n-uniformly optimal policies. Such policies exist 
by Theorem 2.22. Further, let p n be a selector such that Tflnvltn < TvVn + l/n. 
Then v*° < v < (Tv7rn) + l / n , and taking the limit in n yields the desired 
inequality. n 

Existence of Optimal Stationary Policies. 

D e f i n i t i o n 2 . 2 9 A stationary policy $ is said to be greedy w.r.t. v £ TZ(X) if 

7> = Tv, 

i.e., if for each x £ X, (Qv)(x, <p(x)) = (Tv)(x) = infaeA(Qv)(x, a). 

Note that the finiteness of A assures the existence of greedy policies w.r.t. any 
function v £ 1Z(X). If A is infinite special continuity assumptions are needed on Q 
for the existence of greedy policies (see [1] for further information on this). The next 
theorem shows that greediness is a useful concept under the appropriate conditions 
since the knowledge of the optimal cost function can be sufficient to find optimal 
stationary policies. 

T h e o r e m 2 . 3 0 If Q is a contraction and is continuous then optimal stationary 
policies are greedy w.r.t. v*9; and vice versa. 

Proof. If (j) is greedy w.r.t. v*9 then T^v*9 = Tv*9 = v*9 and by induction we get 
that T£v*9 = v*° holds for all n. Since by Corollary 2.20 the l.h.s. converges to 
Vtj, as n —• oo, we get that = v*9, i.e., <f) is optimal. Now, if cf> is an optimal 
stationary policy then Tv*9 = v*9 = v^ = T^v^ = T^v*, showing the greediness of 
4>. • 

Theorems 2.28 & 2.30 are at the very core of the learning algorithms used in the 
robotic experiments. In particular, a theorem was proven in [5] which shows that in 
contractive models (i.e., when Q is a contraction) value iteration can be combined 
with learning processes without effecting the convergence. In [9] and [6] examples 
are shown for asymptotically optimal learning policies which use the adaptive value 
iteration scheme. 
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Final Remarks. Similar statements hold for models when (Q£)(-, a) > £ or when 
(Q£)(-, a) < I (a G A) in which cases we require Q to be lower (resp. upper) semi-
continuous on the set of functions {v G TZ(X) \v > £} (resp. {w G < £}). In 
such cases the analysis should be based on the monotonicity of the various function 
sequences involved. However, problems related to the existence of stationary opti-
mal policies become more complicated: in fact for models satisfying (Q£)(-,a) > £ 
(these are called increasing models) value iteration does not necessarily converge 
to v*9, but greedy policies w.r.t. v*9 are optimal; whilst in models satisfying the 
opposite inequality, (Q£)(-,a) < t (these are called decreasing models) value itera-
tion does always converge to v*9 but greedy policies w.r.t. v*9 are not necessarily 
optimal. It is also worth noting that Howard's policy improvement theorem [4] 
is valid in increasing or contractive models, and when iterated converges to opti-
mum in contractive models [5] but does not necessarily converge to optimum in 
increasing ones. In certain contractive models one can estimate the speed of con-
vergence of both the value and the policy iteration methods which turns out to be' 
pseudo-polynomial [5]. 
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