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On Decision-Mappings Related to Process Network 
Synthesis Problem 

Z. Blázsik * Cs. Hollót B. Imreht 

Abstract 

Process network synthesis (PNS) has enormous practical impact and a struc-
tural model can be given for it on the basis of a combinatorial approach. An 
important tool of this approach is the notion of the decision-mapping. In the 
present work, the number of the consistent decision-mappings is counted and 
an upper bound is presented for the number of the feasible solutions of a P N S 
problem. 

Introduction 

In a manufacturing system, materials of different properties are converted into de-
sired products through various physical, chemical, and biological transformations. 
Devices in which these transformations are carried out are called operating units 
and a manufacturing system can be considered as a network of operating units, 
i.e., process network. Naturally, minimizing the cost of a process network is indeed 
essential. For this purpose, several papers have appeared for solving PNS prob-
lems by global optimization methods (see, e.g., [2] and [8]) and by combinatorial 
approach based on the feasible graphs of processes (cf. [3], [4], [5], [7], and [9]). 

In this paper, using the combinatorial approach, the number of the consistent 
decision-mappings is counted, furthermore, an upper bound is given for the number 
of the feasible solutions of a PNS problem. The paper is organized as follows: 
Section 1 reviews the precise definition of the structural model of PNS problem 
and introduces some relevant basic concepts. In Section 2, the number of the 
consistent decision-mappings over a nonempty set is calculated. On the basis of 
the relationship between the maximal consistent decision-mappings and the feasible 
solutions, an upper bound is presented for the number of the feasible solutions in 
Section 3. Finally, Section 4 contains an example for illustrating this bound. 
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1 Preliminaries 
Let M be a given finite set of objects which are materials capable of being converted 
or transformed by a process. Transformation between two subsets of M occurs in 
an operating unit. It is necessary to link this operating unit to others through the 
elements of these two subsets of M. The resultant structure is a process graph (see 
[4] and [5]) defined as follows. 

Let M be a finite nonempty set, and also let 0 C p ' (M) x p ' (M) with 0 ^ 0 and 
MHO = 0, where p ' (M) denotes the set of all nonempty subsets of M. The elements 
of O are called operating units: for operating unit u — (a, ¡3) £ O, a and /? are called 
the input-set and output-set of u, respectively. Pair (M, O) is defined as process 
graph or P-graph in short. The set of vertices of this directed graph is M u O , and 
the set of arcs is A = Ai U A2 with A-y = {(X , Y) :Y = (a, /3) £ O and X £ a} and 
A2 = {(Y,X) : Y = (a,/?) £ O and X £ /3}. If there exist vertices X1,X2, ...,Xn, 
such that (Xi, X2), ( X 2 , X 3 ) , . . . , (Xn-i,Xn) are arcs of process graph (M, O), then 
[Xi, Xn] is defined to be a path from vertex X\ to vertex Xn. Let process graphs 
(m, o) and (M, O) be given; (to, o) is defined to be a subgraph of (M, O), if m C M 
and o C 0. 

To define a structural model of PNS, the set of materials to be included in the 
model need be specified. In the sequal, each material is an element of M*, an 
arbitrarily specified infinite set of the available materials. From the technical point 
of view, we suppose that M* fl (p'(M*) x p'(M*)) = 0. Now, a process design 
problem can be defined from a structural point of view in the following way. By 
a structural model of PNS, we mean the triplet, M = ( P , R , 0 ) , where P C M* 
and O C p'(M*) x p'(M*) are finite nonempty sets representing the set of desired 
products and that of available operating units, respectively, and R C M* is a finite 
set representing the set of raw materials. Moreover, PILR = 0, and A, /3 are finite 
sets for all operating units u = (a, /3) £ 0 . 

Now, let M = ( P , R , 0 ) be a structural model of PNS; then, we can assign 
a P-graph to M as follows. Let M' denote the set of materials belonging to the 
operating units from 0 and M denote set M' U P U i i . It can be seen that M and 
0 are nonempty finite sets and that 0 C p ' ( M ) x p ' ( M ) and M n O = 0. Thus, 
(M, O) is a P-graph representing the interconnections among the operating units in 
set 0. Since M f i O = 0, the vertices which are the points in ( M , 0 ) can be divided 
into the two disjoint sets, M and 0. The elements of M are called material points 
and those of O, unit points of (M, 0) . A subgraph of (M, O) can be assigned to 
each feasible process of the PNS problem; such a subgraph represents the structure 
or network of the process under consideration. If additional constraints, e.g., the 
material balance, are disregarded, the subgraphs of (M, 0 ) , which can be assigned 
to the feasible processes, have common combinatorial properties. Such properties, 
explored in [5], are given below. 

Subgraph (m, o) of (M, O) is called a feasible solution of M = (P, R, O) if the 
following properties are satisfied: 
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(Al) P Cm, 
(A2) MX G m, X G R O- there exists no (Y, X) arc in (m, o), 
(A3) VF0 € o, 3 path [Y0,Yn] .with Yn G P, 
(A4) VX G m, 3(a, /3) G o such that X G a U /3. 

Let us denote the set of the feasible solutions of M by S(M). It is easy to see that 
S(M) is closed under the finite union. Consequently, 

U{(m,o) : (m,o) G S(M)} 

is also a feasible solution provided that S(M) ^ 0; it is the greatest feasible solution 
with respect to the relation, subgraph ordering. This distinguished graph is called 
the maximal structure of M. 

Now, a simple class of PNS problems can be defined, a class of such PNS 
problems in which each operating unit has a positive fixed charge. We are to 
find a feasible process with the minimum cost; by the cost of a process, we mean 
the sum of the fixed charges of the operating units belonging to the process of 
interest. Each feasible process in this class of PNS problems is uniquely determined 
from the corresponding feasible solution and vice versa. Hence, the problem under 
consideration can be formalized as follows: 

Let a structural model of PNS problem M = ( P , R , 0 ) be given; moreover, let 
z be a positive real-valued function defined on O. The basic model is then 

(i) min{]T z(u) : (m, o) G S(M)}. 
u£o 

It has been proved [1] that this PNS problem is NP-hard; therefore, the branch-
and-bound technique may be a possible tool for its solution (see [7] and [9]). 

2 Consistent decision-mappings 
In the branch-and-bound procedures for solving PNS problems, the notion of the 
decision-mapping (see [6]) has been applied. Let M = ( P , R , 0 ) be a structural 
model of PNS. Then, P-graph (M, O) of M determines a function A of M\R into 
p'(O) as follows. For any material X G M \ R, let 

A(X) = {(a,/3) :(<*,/?) GO & X G/?}. 

Let to be a subset of M \ R; furthermore, let S(X) be a subset of A(X) for each 
X G m. Mapping S from set m into the set of subsets of O, 8[m] = {(X, <5(X)) : X G 
to}, is called a decision-mapping belonging to M; 8[m] is said to be consistent when 
i ( J ) n A ( y ) C <5(Y) is valid for all X,Y G m, and the set of all consistent decision-
mappings of M is denoted by J~2m- In particular, if 8[m] G Am and to = M \ R, 
then sometimes we use the shorter notation 8 instead of 8[M \ i?]. 

A decision-mapping can be visualised as a sequence of decisions, each of which 
is concerned with a single material involved in the process being synthesized; it 
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identifies the set of operating units to be considered for producing directly the 
material of interest. The meaning of the consistency can be presented as follows. 
Material X is to be produced by operating units included in ¿(X). Then, those 
operating units of <5(X) that also participate in the production of material Y, i.e., 
S(X) D A(y) , must be considered for the production of material Y, and thus, 
6{Y) D<5(X)nA(F). 

We define function op on Qm for selecting the set of those operating units that 
are decided to produce any of the materials in set m based on consistent decision-
mapping 5[m]. Formally, for any 8[m\ £ Am, 

op{S[m]) = U{<5(X) : X £ m}. 

In what follows, we need the following functions. For any finite set of operating 
units o, let 

matin(o) = U{a : (a, ¡3) £ o}, mat.out{o) = l){(3 : (a, /3) £ o}. 

Let <5i[toi] and 52[m2] be arbitrary consistent decision-mappings. Then, S2[rn2} 
is called an extension of ¿i[mi] if mi C m2 and ¿i(X) = S2(X) for all X £ rrii; 
this is denoted by ¿i[rrti] < Relation extension is reflexive, antisymmetric 
and transitive; hence, it is a partial ordering on Qm- Let us denote the set of all 
maximal elements of this partially ordered set by fi}^. Regarding the number of 
the consistent decision-mappings over a nonempty set to, the following statement 
is valid. 

T h e o r e m . For every 0 ^ m C M \ R, the number of the consistent decision-
mappings defined on m is 2lu{A№:;!<:eT,l}l. 

Proof. We proceed by induction on \m\. If |m| = 1, then X —» Q is a consistent 
decision-mapping for every subset Q of A(X) where X denotes the single element 
of rn. Therefore, the required number is 2'A 'X". 

Now, let 1 < i < |M \ i?| be an arbitrary integer, and let us suppose that the 
statement is valid for all m C M \ R with |?n| = i. Let us consider an arbitrary 
subset TO' (C M\R) consisting of i + 1 elements. Without loss of generality, it can 
be assumed that TO' = {X1:... ,Xi,Xi+1}. Let W = A ( X i + j ) \ (U{A(A^) : t = 
1, . . . ,«}) . The following two cases are distinguished depending on W. 

Case 1. W = 0. From the definition of the consistent decision-mapping, the fol-
lowing observation can be directly obtained. For each consistent decision-mapping 
5[rn'}, the restriction of <5[TO'] to set is .also consistent decision-
mapping. On the other hand, if two consistent decision-mappings defined on the 
same set are different, then their extensions constitute two disjoint sets. In the 
light of these observations, it is enough to prove that consistent decision-mapping 
¿[{Xi , . . . , Arj}] has one and only one extension to { X i , . . . , Xi, Xi+1}. 

First, we construct an extension of <5[{Xi,..., Xf}] to { X i , . . . , Xj, X; + i} . The 
new decision-mapping is defined as follows. Let 
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5'(Xi+1) = {(a,p) : (a,/3) G A(Xi+1) & (a,/3) G 6(Xj) for some j G {1,. . . ,»}}, 
and 

S'(Xt) = S(Xt) for all t, t = 1 , . . . , i. 

Regarding the consistency of <5'[{Xi,... ,Xi,Xi+i}], we have to prove that 

(1) S'(Xt)nA(Xi+1) CS'(Xi+1), 
and 

(2) 5'(Xi+i) n A(Xi) C S'(Xt) 

are valid for all Xt G { X i , . . . ,Xi}. The validity of (1) follows from the definition 
of 5'. For verifying (2), let (a, ¡3) G. 8'{Xi+1) n A(Xt) for some t G {1 , . . . , i}. Since 
(a,(3) G 8'{Xi+1), there exists a j G {1 , . . . , i} with (a,/?) G ¿(A'3-)nA(X i+i). Then, 
(a,(3) G S(Xj) n A(A'.t). On the other hand, j,t G {1, . . . , i} and the consistency 
of <5 results in S(Xj) D A(Xt) C 8(Xt) = S'(Xt). Consequently, (a,/?) G 8'{Xt) 
yielding the validity of (2). 

Now, let us suppose that decision-mapping ¿*[{Xi , . . . ,X , ,X i + 1 }] is an ex-
tension of ¿ [ { X i , . . . , ^ } ] . We show that S'(Xt) = S*(Xt) is valid for all t, 
t = 1,... ,i + 1. If 1 < £ < i, then the required equality obviously holds. Therefore, 
it is enough to prove that <5'(Xj+i) C 6*(Xi+i) and D <5*(Xj+i). To do 
so, let (a,(3) G ¿'(Xj+i) be an arbitrary operating unit. By the definition of 8', 
(a,/3) G 5{Xj) n Apf i+ i ) for some Xj G { X j , . . . , ATJ. But 5(Xj) = 8*(Xj) and 
J* is consistent. Consequently, 

{a,¡3) G 8*(Xj) n A(Xj + i ) C 8*(Xi+1). 

Conversely, let (a,(3) G <5*(A'"i+i). Since W = 0, there exists a j G {1, . . . , z} such 
that (a,P) G A(Xj), and thus, (a,/3) G ¿ * ( X i + i ) n A ( I j ) . Now, by the consistency 
of <5*, <J*(Xi+i) n A(Xj) C 8*(Xj) = 8{Xj). Therefore, (a,0) G A(X i + 1 ) n 8(Xj), 
but then, (a,P) G 8'{Xi+\) from the definition of 8'. 

Case 2. W ^ 0. Using the observations of Case 1 again, it is sufficient 
to prove that consistent decision-mapping 8[{Xi,... ,Xi}] has 2lvvl extensions to 
{A^i,..., Xi, Xi+x}. For this purpose, let 

T = {(a,p) : (a,P) G A(X i + 1 ) & (a,p) G 8(Xt) for some t G { l , . . . , i }} -

From the definitions, T f)W = 0. Now, we show that decision-mapping 5' defined 
by 

, $ 8{X) MXz{X1,...,Xi), 
1 j " l T u Q iiX=Xi+u 

is consistent for every subset Q of W. Since <5[{Xi,..., Xi}\ is consistent, we have 
to prove that the following inclusions 

(3) ¿ ' ( A ' 3 ) n A ( I i + 1 ) C i ' ( I i + 1 ) , 
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and 
(4) ¿ ' ( A V O n A f A ^ C f f t ) , 

are valid for all j, j = 1 , . . . , i. 

To prove these inclusions, let j G {1, . . . ,«} be an arbitrary index. First, let 
(a,/3) € í ' № ) n A № + i ) - Then, (a ,p ) G T, and thus, (a,/3) G S'(Xi+1) resulting 
in (1). Now, let (a, /3) G 5'(Xi+i) n A(Xj). Then, (a,P) G ( T u Q ) n A ( I 3 ) = 
TnA(A rj). Inclusion (a,0) G T implies that (a,P) G S(Xt) for some t G {1 , . . . ,i}. 
Consequently, (a,P) G 5{Xt) fl A ( X j ) . Since 6 is consistent, 5(Xt) n A(Xj) C 
5(Xj) = Ó'(XÓ) which yields (4). 

By the construction above, different extensions of <5[{Xi,..., Xi}] are 
presented. To complete the proof, it is shown that the decision-mapping un-
der consideration has no further extensions to { A i , . . . , Xi, Aj+i}. Indeed, let 

... ,Xi,Xi+i}] be an arbitrary extension of S and (a,P) G T. Then, 
(a,p) G S(Xt) n A(A i + i ) = S'(Xt) n A(X i + i ) for some t G {1, . . . ,»}. Since Ő' 
is consistent, { ' ( A ' ( ) n i ( I i + i ) C <5'pQ+i), and thus, (a,P) G S'(Xi+1). Con-
sequently, T C <5'(Ai+i). On the other hand, (a,P) G <J'(Xi+i) \ T implies 
(a,P) G W. In the opposite case, (a,P) G A(Xt) for some t G { l , . . . , i } , and 
then, (a,P) G S'(Xt) = 5(Xt) because of the consistency of 6' which is a contradic-
tion. Then, <5'(Xj+i) CTÖW, and thus, 5' is equal to one of the given extensions 
of 6. 

Now, by the induction hypothesis, we obtain that the number of consistent 
decision-mappings defined on { X i , . . . , } is 

2 | U { A ( X 1 ) : i = l , . . . , i } } | 2 l ^ l = 2 l U { A № ) : t = 1 . — i + 1 } l 

which completes the proof. 

R e m a r k 1. In particular, if m — M\R, then from our Theorem it follows that 
the number of the maximal consistent decision-mappings is This shows that 
there is a strong relationship between the maximal consistent decision-mappings 
and the subsets of 0 . Indeed, it can be proved that mapping 7 defined by 7(<i) = 
op(S) is a one-to-one mapping of fi}^ onto p(0) where p(O) denotes the set of all 
subsets of O. 

Regarding the relationship between the maximal decision-mappings and the 
feasible solutions, let us define mapping p in the following way. For any (m, o) G 
S(M), let p(m,o) = 8 where 6 is defined by 

S(X) = {u-.u = {a,P)eokXeP} 

for all X £ M \ R. It can be easily proved that p is a one-to-one mapping of S(M) 
into fi'M. Therefore, 

is a trivial upper bound for |S(M)|. Taking into account 
property (A2), this bound can be improved as follows. 
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3 Bound calculation 
Let (m,o) G S^M) be an arbitrary feasible solution and p(m,o) = 6. Then, (A2) 
implies the following inclusion: 

(ii) matin(op(8)) C matoui(op(5)) U R. 

Indeed, if X G jnatm(op(6)), then there exists a u = (a, (3) e op{6) with X G a. 
By the definition of 5, u G o, and thus, X G TO from the definition of the P-
graph. Now, (A2) implies that X G matcut(op(8))\jR, i.e., inclusion (ii) must hold. 
Consequently, the number of the maximal consistent decision-mappings satisfying 
(ii) is not less than |S(M)|. 

Now, we are going to determine the number of the maximal consistent decision-
mappings satisfying (ii). It can be done by the Inclusion-Exclusion Formula. For-
tius purpose, let us denote by (M, O) the P-graph of PNS problem under consid-
eration and let O = {u i , . . . ,un} and M = {Xx,..., Xk}. Furthermore, let O(Xj) 
denote the set, {u : u = (a,/3) G 0 & Xj G a}, for all Xj G M. Let j G {1 , . . . , k} 
be an arbitrary index and let us define set Aj by 

A,- = {<J : $ G i l ^ & Xi e matin(op(S)) \ (matout(op(8)) U R)}. 
Then, (ii) is not satisfied by S G Aj and the reason is that X j G mattn(op(d)) and 
Xj 0 matout(op(S)) U R. For every 0 ^ I C {1,...,A:}, let us define set Af by 
Ai = flig/Ai, and in particular, let A@ = f i ^ . Then, the required number is 

\ (¿ i U A2 U ... U Ak) | = S/c { i , . . . , / t }(- l ) | / | • \Af\. 

Obviously, if I — {i\,... ,ii}, then 

A/ = {<5 : (5 G Q'M & {Xu ,...,Xi,}C matin(op(S)) \ (matout (op(S)) U R)} 
R e m a r k 2. It is worth noting that the bound presented above is independent 

of the set of the required products. It is valid under arbitrary P C M \ R. 

Unfortunately, to count |A/| is a difficult problem. In general case, we have to cover 
{ X j j , . . . , Xi,} with such a system, a ^ , . . . , aj a for which there are operating units 
(an,Pjt) G 0 , t — 1 , . . . , s, with {Xil,...,Xil}r\f3jt = 0, t = l , . . . , . s , and |A/| 
is equal to the number of the such covering systems. The determination of \Aj\ is 
easier if we restrict ourselves to special classes of PNS problems. An interesting-
special case is the class containing separator type operating units, i.e., |a | = 1 is 
valid for all u = (a,/3) G O. In what follows, we deal with this class. 

Let us consider set I = {¿i, . . . again. Let 0*(Xij) = 0(Xij)\ (U iG/A (A^)). 
Then, 0*(Xij) is the set of operating units such that they do not produce any 
material from { X t : t G 1} and each of them has Xl} as input material. Now, it is 
easy to check that 

. 2 |0\(U{A(X i ) : i 6 / } )\ (U{0 (X l ) : i e / } )| 
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4 Illustration 

For illustrating the calculation of the bound in general case, let us consider the 
following example. Let M = {Xi,... ,Xi2}, 0 = { u i , . . . , u 7 } , P = {A'g}, and 
R = {Xio, A'n,Xi2}. The input and output materials of the operating units are 
given in Table 1 and the corresponding P-graph is shown in Figure 1. 

Table 1: Operating units 
unit inputs outputs 
Ui -X̂ io Xi,X2 

W2 Xn A3, X4 , A5 

u3 XV2 X5,Xß 
U4 Xx • x2,x$ 
U5 X2, X3 Xt, Ag 
u6 X5, x6 
U-j X6 X5, 

Using the relationship between the maximal consistent decision-mappings and 
the subsets of 0 provided by Remark 1, set A\ contains <5 if and only if op(6) 
satisfies the following properties: u\ op(S) and U4 £ op(S). The number of such 
maximal consistent decision-mappings is 25. Therefore, = 25. In a similar 
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way, we obtain that \A2\ = 24, \A3\ = 25, \A5\ = 23, \A6\ = 3 • 24, and \Aj\ = 0 for 
the remaining indices. Consequently, 

£ = 136. 
/C{l , . . . , fc } & |/|=1 

Regarding the subsets of two elements, -̂{1,2} contains ő if and only if m,U4 £ 
op(5) and u4,u5 G op(6), and thus, ^{1,2} = 0- Similarly, ^{1,3} = 23 since 
A{i,3} contains 5 if and only if ui,u2 0 op(S) and 1/4,u5 G op(S). Determining 
the corresponding values for the all subsets of two elements and summarizing, we 
obtain that 

£ 1^1 = 60. 
JC{l,...,fc} & |/|=2 

Continuing the procedure, we obtain 12 for the subsets of three elements. Finally, 
it can be seen that \Ai\ = 0 if | / | > 3. Consequently, the required number is 

27 - 136 + 60 - 12 = 40. 

We note that = 128 and |S(M)| = 19 in this example. 
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