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On the reformulation of some classes of 
PNS-problems as set covering problems 

J. Fülöp * B. Irareh t F. Friedler 1 

Abstract 
Process network synthesis (PNS) has enormous practical impact; however, 

its solution is difficult in general. This experience has been recently reasoned 
by Blázsik and Imreh who pointed out that PNS-problems axe NP-hard. T h e y 
proved that a simple subclass of PNS-problems is equivalent to the class of 
set covering problems. In the present paper, it is shown that more general 
classes of PNS-problems can also be reformulated as set covering problems. 
This enables the sophisticated techniques developed for solving set covering 
problems also to be applied for solving some PNS-problems. 

1 Introduction 
The importance of process network synthesis (PNS) and the background of the 
combinatorial model studied here can be found in [5], [6], [7], [8], [9], and in the 
work [2] of this journal. Therefore, we shall confine ourselves only to the recall 
of the definitions. The combinatorial approach makes possible to show that the 
search of an optimal solution is difficult in general. This experience has been 
recently reasoned by Blázsik and Imreh [2] who pointed out that PNS-problems 
with weights are NP-hard. They proved that a simple subclass of PNS-problems 
with weights, to be discussed in Section 4, is equivalent to the class of set covering 
problems. Also in [2], it was raised as an open problem if there exist equivalent 
known optimization problems for more general classes of PNS. 

In this paper, it is shown that the optimal solutions for a larger subclass of PNS-
problems than the subclass presented in [2] as well as the optimal solutions of PNS-
problems with nonnegative weights can be obtained by solving suitably constructed 
set covering problems. This enables the sophisticated techniques developed for 
solving set covering problems (see, e.g., [1, 4, 10] and the references therein) also 
to be applied for solving these special classes of PNS-problems with weights. To 
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present our results, first we discuss the conjunctive normal form (CNF) proposed in 
[3] for describing the solution-structures of PNS-problems in Section 3. Some special 
classes of PNS-problems with weights, and the connection between the optimal 
solutions of these PNS and CNF-problems with weights are detailed in Section 4. 
The reformulation of a CNF with weights as a set covering problem is presented in 
Section 5. 

2 Notions and notations 
In the combinatorial approach, the structure of a process can be described by the 
process-graph (see [7] and [8]) defined as follows. 

Let M be a finite nonempty set, the set of the materials. Furthermore, let 0 ^ 
O C p ' (M) x p '(M) with M f | O = 0 where p'(M) denotes the set of all nonempty 
subsets of M. The elements of O are called operating units and for an operating unit 
(a, P) 6 O, a and /3 are called the input-set and output-set of the operating unit, 
respectively. Pair (M, O) is defined to be a process graph. The set of vertices of this 
directed graph is M{JO, and the set of arcs is A = Ai U A2 where A\ = {(X, Y) : 
Y = (a,0) £ 0 and I 6 a} and A2 = {(Y,X) : Y = (a,p) € 0 and X e P}-
If there exist vertices Xi:X2,...,Xn, such that (Xi, X2), (X2,X3),..., (Xn-i, Xn) 
are arcs of process graph (M, 0), then the path determined by these arcs is denoted 

Let process graphs (m, o) and (M, O) be given, (m, o) is defined to be a subgraph 
of (M, O), i f m C M a n d o C O . 

Now, we can define the structural model of PNS for studying the problem in 
structural point of view. For this reason, let M* be an arbitrarily fixed infinite set, 
the set of the available materials. By structural model of PNS, we mean a triplet 
(.P, R, 0) where P, R, 0 are finite sets, I / P C M* is the set of the desired 
products, R C M* is the set of the raw materials, and O C p'(M*) x p'(M*) is the 
set of the available operating units. It is assumed that P f) R = 0 and M* |~) O = 0. 

Then, process graph ( M , 0 ) , where M = U { a U P '• (a,P) € O}, presents 
the interconnections among the operating units of 0. Furthermore, every feasible 
process, producing the given set P of products from the given set R of raw materials 
using operating units from O, corresponds to a subgraph of (M , 0 ) . Examining the 
corresponding subgraphs of (M, 0) , therefore, we can determine an optimal process 
in principle. If we do not consider further constraints such as material balance, then 
the subgraphs of (M, 0 ) which can be assigned to a feasible process have common 
combinatorial properties. They are studied in [7] and their description is given by 
the following definition. 

Subgraph (m,o) of ( M , 0 ) is called a solution-structure of ( P , R , 0 ) if the fol-
lowing properties are satisfied: 

(51) P C m, 
(52) \/X € m, X £ R no (F, X) arc in the process graph (m,o), 
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(53) Vy0 € o , 3 path [K0, Yn] with Yn £ P, 
(54) MX £ m, 3(a, (3) £ o such that X£a[jp. 

Let us denote the set of solution-structures of ( P , R , 0 ) by S(P,R,0). In the 
sequel, we shall assume that S(P,R,0) 0. This can be checked in polynomial 
time by using the algorithm presented in [9] for generating the maximal structure 
of (P, R, O). 

Let the set of the operating units be given by O = { ( a i , f t ) , . . . , ( a / , f t )} , 
and let I = {1, . . . ,?}. Then, for any subgraph (m,o) of (M,O), an /-vector of 
logical values iti, i £ I, can be associated with such that Ui is true if and only 
if ( a j , f t ) £ o. It is easy to see that this is a one-to-one mapping between the 
subgraphs of (M, 0) fulfilling (54) and the /-vectors of logical values. For logical 
/-vector u, subgraph (m, o) associated with u is determined by m = UieT(u) Q« U Pi 
and o = {(a,, ft) : i £ T(u)j where T(u) = {i £ I: Ui is true}. 

3 C N F related to P N S 
In [3], a logical expression given in CNF (v41)-(A4) below was used to describe some 
structures of (M, 0). 

(Al) A V "i , 
xeP 

(.A2) A -W, 
<€/ 

(A3) A ( - "¿V V UH), 
i gi he/ 

(A4) A U V V Ufc)-
• €/ »16/ 

In this section, the relationship between (S1)-(S4) and (AL)-(AA) will be dis-
cussed. 

Proposition 1. For any solution-structure (m,o), the logical vector, u, associated 
with (m,o) fulfills (AL)-(AA). 

Proof. Let u be the logical vector associated with solution-structure (m,o). From 
(Sl)-(S2) and P fl R = 0, we obtain that any X £ P is in the output-set of an 
operating unit of (m,o). This gives (Al). (A2) follows directly from (52). 

Concerning (A3), we have to show that if m is true for some i £ I and X e ai\R, 
then there exists an h £ I such that u^ is true and X £ ft, i.e., X is in the output-
set of an operating unit of (m, o). This follows however immediatly from (52). 

To prove (A4), it is sufficient to consider the case when u^ is true and P f l f t = 0. 
From (53) we get that there exists a path in (m, o) from (qj, ft) to an element of P. 
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Since P C\ PI = 0, the vertex second to (AI,PI) in the path is an (AU>,PH>), h' £ I, 
such that PI Pi A/,< ^ 0. This implies (AA) immediately. • 

Proposition 2. For any logical vector u fulfilling (/ll)-(/14), the subgraph, {in, o), 
associated with u satisfies (51), (52), and (54). 

Proof. (,41) states that for every A £ P, there exists an i £ I such that ui is true 
and X £ Pi. This gives X e m, and thus, (51) holds. 

To prove (52), consider an J 6 m f l R From (/12) we get that Ui is false for 
every i £ I with X £ Pi. The way of construction of (m,o) from u implies that 
there exists no (Y,X) arc in (m,o). 

Conversely, consider an X £ m\R. We show that there exists an arc (Y, X) 
in (m,o), i.e., X is in the output set of an operating unit associated with a true 
component of u. Since X £ m, there exists an i £ I such that Ui is true and 
A' £ ai U Pi. If X £ pi, we are done. Otherwise, X £ a.i\R and (/13) implies that 
there exists an h £ I such that uu is true and A £ Ph. 

Finally, (S4) follows from the way of construction of (m, o) from u. • 

It is worth noting that (/ll)-(/14) does not imply (53). Namely, considering a 
general process graph, (M, O), there may exist an operating unit lo 6 o in subgraph 
(7/1,0) constructed from u fulfilling (Al)-(AA) such that there is no path from Y0 

to any element of P. However, for special PNS-problems, (53) is also implied by 
(/ll)-(/14), thus, (S1)-(S4) and {Al)-{AA) are equivalent. 

Proposition 3. If process graph (M,0) does not contain circuit, then (S1)-(S4) 
and (/11)-(/14) are equivalent . 

Proof. By Propositions 1 and 2, it is sufficient to show that (/14) implies (53) in 
this case. Consider a Yio = (cti0,Pi0) £ o. If P f l f t 0 ^ 0, we can construct a 
path from Yi0 to an element of P<iPi 0 . Otherwise, by (/14), there exists another 
operating unit V',, = , p^) such that Yix £ o and Pi0 D ^ 0. We have now 
path [ l ' " , 0 , ] in (771,0), and we can repeat the investigation above now for YXi 
instead of Yi0. 

In a general step, we have operating unit Yik = (a i k , p i k ) and path [Yio,Yik] in 
(m,o). If P fl pih 0, we are ready. Otherwise, we can extend the path from Yik. 
Since (M, ()) contains no circuit, every vertex of the path is different. However, 
(M,0) is finite, thus, after constructing a finite number of arcs, the path has to 
terminate in an element of P. • 

Assume that in process graph (M, O) of a PNS- problem, with a suitable positive 
integer k, we have M = Mi U. . . UM k+i where the sets, M\,..., Mk+1, are pairwise 
disjoint nonempty sets. Furthermore, let 0 = 0\ U . . . U Ok with Oi C p'{Mi U . . . U 
Mi) x p'(Mi+1), i - 1 , . . . , k. Let us call such a PNS-problem a PNSk-problem. 
Then, it is easy to see that for any PNSfc-problem, there exists no circuit in its 
process graph, and consequently, we have the following corollary. 

Corollary 1. (S1)-(S4) and (Al)-(AA) are equivalent for PNSk-problems. 
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4 PNS-problems with weights 
Let us consider PNS-problems in which each operating unit has a weight. We are 
to find a feasible process with the minimal weight where by weight of a process we 
mean the sum of the weights of the operating units belonging to the process under 
consideration. Every feasible process in such a class of PNS-problems is determined 
uniquely from the corresponding solution-structure and vice versa. Therefore, the 
above problem can be formalized in the following way. 

Let a structural model of PNS-problem (P, R, O) be given. Moreover., let w be 
a real-valued function defined on O, the weight function. The basic model is then 

min {Y^w{U):(m,o)eS(P,R,0)}. (1) 
ueo 

We refer (1) as a PNSw-problem\ we denote the class of such problems by PNS,„. 
PNSfc-problems with weights are referred as PNS^-problems, their subclass is 
denoted by PNS,„fc. These latter problems were introduced, and the connection 
between PNSMi-problems and set covering problems was also discussed in [2]. 

The feasible set of the optimization problem (1) is the set of the subgraphs (m, o) 
fulfilling (S1)-(S4). According to the discussion of the relation between (Sl)-(S4) 
and (A1)-(A4), another optimization problem based on the CNF (A1)-(A4) can 
also be considered: 

min { Y^ w i ' u f u l f i l l s O 4 1 ) - ^ 4 4 ) } (2) 
i£T(u) 

where Wi = w((ai, Pi)),i G I. We refer (2) as a CNF^-problem associated with 
PNSW- problem (1), and denote the class of such problems by CNF.^. 

By Propositions 1 and 2, CNF,„ can be considered as a relaxation of PNS„;. 
This gives rise to the following statements. 

P ropos i t ion 4. Both (1) and (2) have finite optimal value. The optimal value 
of (1) is greater than or equal to that of (2). Furthermore, if (S3) holds in the 
subgraph (m*,o*) associated with an optimal solution of (2), then (m*,o*) is mi 
optimal solution of (1). 

In the case of PNSfc-problems, the equivalence between (S1)-(S4) and (Al)-(A4) 
implies a similar equivalence between the relating problems of PNS^fc and CNF^^. 

Corollary 2. Consider problems (1) and (2) generated by a PNSk-problem. Then, 
the subgraph, (m*,o*), associated with an optimal solution of (2) is optimal to (1), 
and conversely, the l-vector of logical values associated with an optimal solution of 
(1) is an optimal solution to ( 2 ) . 

The following statements relate to special subclasses of PNS№. 
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Pro posit, in 11 5. If t.lie WC.ll/ll.l.S, 71!;, i £ I , arc ]IOS ¡.title., t.he.ll SilJll/iapll. (ill.' . I)' ) 
associated with, an optimal solution of ( 2 ) is ojit.iiaal l.o (I). anil, conne.rse.ly, t.h.e 
I,-vector of logical values associated wit.h an. optimal solution, of ( I) is an, iiptiiii.n.1 
solution. In (2). 

I'roof. Let n' I>c. an o p t i m a l so lut ion of (2) , and let (m*,(t*) b e t h e s u b g r a p h 
a s s o c i a t e d wi 1.11 it*. Ity Propos i t i on 4, it is su l l i e ient to s h o w t h a t ( S 3 ) h o l d s for 
(•///*, / / ' ) . hot 

b ---- \U e <>*• •• 3 path in (m*,o*) from U to a Y € P}, (3 ) 

•in. = ^ r « ; U f t . (4) 

.£/ 

Clearly, (•HI., i>) is a. s u b g r a p h of (in,*,a*). If o = <t*, we art; d o n e . O t h e r w i s e , wo 
shall s h o w be low t h a t (vi.,o) is a s o l u t i o n - s t r u c t u r e of (P, R.,()). T h e n , the. logical 
vec tor , it, a s s o c i a t e d wi th ( m , o ) is feasible to (2) . However , s ince w(U) > 0 for 
every IJ € o:l \ it, the o b j e c t i v e funct ion value, of u is less t h a n that, of?/,*, a n d th i s 
c o n t r a d i c t s the opt in ia l i ty of it* in (2) . Consequent ly , <>* = o m u s t hold . 

We show now that ( S 1 ) - ( S 4 ) ho lds for (ill,, a). B y P r o p o s i t i o n 2, (vi*,<>*) fulf i l ls 
( S I ) , ( S 2 ) , and (S' l ) . T h u s , from ( 3 ) - ( 4 ) , w<; g e t i m n i e d i a t e l y t h a t ( S i ) , ( S 3 ) , a n d 
(S' l ) hold for (iTi.,o). 

T o prove ( S 2 ) for (iii,,d), cons ider a n A' £ m f l R. Sincc; there e x i s t s 110 (V, A') 
arc in ('///.',/>*), and (in, d) is a, subgraph of (in,*,<>*), there e x i s t s (Y, X ) a n : n e i t h e r 
in ( i / t , « ) . Converse ly , cons ider ail A" £ ih\R. In (in,*,<>*), there e x i s t s a, (V, A") arc. 
hi add i t i on , s ince X £ n U ft for an (<v,(~t) £ it, there e x i s t s a. p a t h ill (ill, it) from 
(<\ , f i ) to an e l e m e n t of P, thus, a lso from Y to the saint! e l e m e n t of P. T h e r e f o r e , 
) ' £ o and ()', A ) is an arc. in (ilk, it). 

T h e s e c o n d pari, of the statement , can 1«! eas i ly proved by us ing P r o p o s i t i o n I 
and the first part of the s t a t e m e n t . • 

P r o p o s i t i o n G. if I.Iic. weights, w,_, i £ I, arc. nonncyal.ivc, then subgraph (iii.,d) 
<le./iiicd by ( 3 ) - (4 ) for (in* , a*) associated with an optimal solution of (2) is optimal. 
lo( I ) . 

I'roof. A c c o r d i n g l.o the. proof of P r o p o s i t i o n 5, (ih, it) is f eas ib le to ( I ) . II; m a y 
h a p p e n now t h a t o' \ o ^ 0 but. from the l i on i i cga t iv i ty of the w e i g h t s ani l u s i n g 
l.he s a m e reasoning as in the. proof of P r o p o s i t i o n 5, wo o b t a i n t h a t w(LJ) = 0 for 
every (I £ o* \ it. T h e o b j e c t i v e funct ion va lues of (ih.o) ami (ill.*,a*) c o i n c i d e in 
( I ) . 'Therefore, (ih.it) is o p t i m a l to ( I ) . • 

T h e sol. i> tleiiiie<I in (3) can eas i ly be .generated by us ing the c lass ical l a b e l i n g 
t echn ique of graph theory [13]. A s imilar t echn ique is used a l so in [9] for g e n e r a t i n g 
l.he. m a x i m a l s t r u c t u r e of a. process graph. It c a n bo s h o w n t h a t ( i h , d ) is the. u n i o n 
of all s o l u t i o n - s t r u c t u r e s u b g r a p h s of (in*, it*). Soo [9] for m o r e deta i l s . 
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5 Reformulation of a C N F with weights as a set 
covering problem 

By the results presented in the previous section, the optimal solution of some 
important classes of PNS,„-problems, such as problems with nonnegative weights 
and PNS,„A--1)1'<>1)1ciiis, can be obtained by solving the appropriate C N F , , , - problems 
of form (2). However, it has not been discussed yet how to solve (2). In this section, 
wo show that; (2) can be transcribed into the form of an equivalent set covering 
problem. This can also be considered as an extension of the results presented in [2] 
for P N S „ , i-problems. 

For every Uj,t £ I, we introduce two 0-1 variable«, zf and z~, such that zf = 1 
if and only if Ui is true, and z~ = 1 - zf. Then, at the expense of doubling the 
number of variabilis and introducing some appropriate new constraints, (2) can lie 
written into the equivalent form 

mil. (5) 
iei 
£ zf > 1 for all X £ P, (G) 

-ve i<i 
z~ = 1 for all i £ I, R n ft ^ 0, (7) 
z-r + Y^ 4. > 1 f o r a 1 1 6 ] < X e a' \ R> (8) 

•V£ ft i, 

z- + £ z+ > 1 for all i £ I, P n ft = 0, (9) 
net 

/J.n,,,, 

zf + zr = 1 for all i £ I, (10) 
zf,z~ £ {0,1} for all i £ / . ( I I ) 

In (5)-( l l ) , (5) and (G)-(9) are the direct transcription of the objective function 
in (2) and the constraints (,41)-(/14), respectively. Constraints (10)-(11) describe 
the relation among it,-, zf and z~. Since we have assumed that S(P,R.,0) y£ 0, 
problems (1), (2), hence (5)-(l l) , too, have feasible solution and finite optimal 
value. 

Problem (5)-( l l ) is a. set covering/partitioning problem for which efficient solu-
tion methods have been developed, see [4] and the references therein. Constraint 
(7) means to fix z~ = 1 and zf = 0 for all i £ I, Rnfa ± 0, and these can entail the 
possible fixation of further variables and the deletion of some constraints [1, 4, 10]. 

By using the well-known trick of converting sot partitioning constraints into soit, 
covering ones (cf. e.g. [10]), we obtain the following statement. 

P r o p o s i t i o n 7. Choose, any L > 52/g/ wi> consider the set. covering problem 

mil. £ [(•„,; + L)z+ + Lz~] , (12) 
iei 
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£ zf > 1 for all X eP, (13) 

xe/j; 
z¡~ > 1 for all i £ J, R n ft / 0, 

zt
_ + £ > 1 for all i £ I,X e cti\R, 

(14) 

(15) 
<>6/ 

ZÍ + z t > 1 f o r all i € J, P fl ft = 0, h (16) 

^ + > 1 for all i € I, 
z t

+ > 2 ~ e { 0 ] l } for all i £ I. 
(17) 
(18) 

Then, problems (5)-(ll) and (12)-(18) have the same set of optimal solutions. 

Proof. It is easy to see that any feasible solution of (5)-(ll) is feasible to (12)-(18) 
as well, and the difference of the two objective function values is the constant, IL. 
As a consequence, since the optimal value of (5)-(ll) is less than L, the optimal 
value of (12)-(18) is less than (Z + 1 )L. 

Conversely, consider a feasible solution of (12)-(18) and assume that it is not. 
feasible to (5)-(ll). Then, its objective function value in (12) is greater than or 
equal to (I + 1 )L. Thus, any optimal solution of (12)-(18) is feasible to (5)-(ll) , 
and this implies the statement. • 

In set covering problem (12)-(18), as well, constraint (14) entails the possible 
reduction of the problem size. For further size reduction techniques and for recent 
sophisticated methods for solving set covering problems, see [1, 4] and the references 
therein. 
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