
Acta Cybernetica 13 (1998) 339-358.

*»

Grammars Working on Layered Strings

Paolo Bottoni, * Giancarlo Mauri, t Piero Mussio, *

Gheorghe Páun §

Abstract
We consider first an operation with strings and languages suggested by

superposed windows on the computer screen (as well as by cryptographic
systems of Richelieu type): we assume that the strings contain usual symbols
as well as a transparent symbol. Superposing two strings (justified to left),
we produce a new string consisting of the symbols observable from above.
This operation is investigated as an abstract operation on strings, then it is
used in building a variant of grammar systems with the component grammars
working on the layers of an array of strings. Each grammar can rewrite only
symbols in its layer which are observable from above. The language generated
in this way consists of strings of the observable symbols, produced at the end
of a derivation. The power of several variants of these generative mechanisms
is investigated for the case of two layered strings. When a matrix-like control
on the work of the component grammars is considered, then a characterization
of recursively enumerable languages is obtained.

s
1 Introduction
Recent work in the study of algebraic features of pictorial languages has shown
how a natural operation between pictures is that of superposition. This operation
is informally understood as the placing of one image (which can contain some
transparent symbols) above another, so that only pixels in the second image which
appear immediately below transparent pixels in the first image are observable and
can contribute to the resulting image [2]. Actually, superposition of structures on
the screen is continuously used in visual interactive systems. Consider for example
windowing systems in which windows are allowed to overlap, as in the MacOs™
and Windows™ operating systems. In these cases what is actually observable by a

'Department of Computer Science, University of Rome "La Sapienza", Via Salaria 113, 00198
Roma, Italy, e-mail:bottoni@dsi.uniromal.

^Department of Computer Science, University of Milano, Via Comelico 39, 20135 Milano, Italy,
e-mail:mauri@dsi. unimi.it.

^Department of Electronics for Automation, University of Brescia, Via Branze 38, 25123 Bres-
cia, Italy, e-mail:mussio@bsing.ing.unibs.it.

^Institute of Mathematics of the Romanian Academy, P O Box 1 - 764, 70700 Bucure§ti,
Romania, e-mail:gpaun@imar.ro.

339

mailto:mussio@bsing.ing.unibs.it
mailto:gpaun@imar.ro

340 Paolo Bottoni, Giancarlo Mauri, Piero Mussio, Gheorghe Páun

user results from the spatial relations among the windows currently on the screen. If
one considers that each window contains a sentence in a language, the screen defines
a sentence which results from the superposition of several such partial sentences.
The study of the characteristics of such languages, and hence of the properties of
the superposition operation becomes interesting if one wants to avoid situations
which may generate disorientation in the user [3].

The idea of employing transparency as a language-defining tool predates the
appearance of computers of a long time. It can be traced back to the Richelieu
code, an elementary form of cryptography in which a message is embedded in a
random text, and can be recovered by superposing the whole text by an opaque
sheet with holes in it. The letters reading through the holes form the original
message [1]. On the other hand, non-transparent pixels are those on which the user
can interact, hence are those from which the transformations of the current sentence
may originate. This suggests a notion of control in which the activation of symbols
in a rewriting process is possible only if such symbols are visible, i.e., observable and
non-transparent. Such a form of control appears to be very frequent in natural and
artificial systems, in all cases in which layers may be defined and the development of
a phenomenon depends on the characteristics both of the layer at which it occurs
and of the above layers (e.g., rain permeability of a terrain, the growth of films
in VLSI chips, competition for light in chlorophylliac plants, radiology methods
based on differences in tissue absorbing properties, etc.). The notion of layer is
also useful in defining systems in which different agents may cooperate to define
the evolution of a substrate. Different systems may have different roles and be
allowed to operate only on parts left undefined by prominent agents. A similar
model was also at the basis of the proposal of Parallel Communicating Grammar
Systems, where query symbols are used by a master agent to mark the places
where other, specified, ageqts may contribute strings of unknown length [9]. In
the notion of layered grammar proposed in this paper, instead, agents can operate
autonomously and independently, but their contribution to the final result is limited
to fill transparent "holes" left by an agent in an upper position. Which agent will
contribute in which zones of the substrate to the final result cannot be established
a priori, depending on the ability of an agent to synchronize its activity with that
of agents at an upper layer.

Hence, two problems appear worth studying related to the notion of layer.
First, what are the properties of the superposition operation and which properties
and families of languages it preserves. Second, which is the expressive power of
layers as a modelling tool. We start this study by considering closure properties
of the operation and by exploring the generative power of context-free grammars
with only two layers. It results that by such simple tools, more precisely by using
layered right-linear grammars with a specific form of synchronization, we can pro-
vide a characterization of recursively enumerable languages. Further study can be
performed on the characteristics of systems with more than two layers and on an
extension of the notion of transparency (for instance by considering symbols with
different levels of opacity).

Grammars Working on Layered Strings 341

2 Formal Language Theory Prerequisites
In this section we recall only a few notions, notations, and results needed below.
Further details can be found in [11] and in references therein. For an alphabet
V, we denote by V* the free monoid generated by V; A is the empty string, |x|
is the length of x G V*. The language of the non-empty strings over V, that is
V* - {A}, is denoted by V+. A morphism h : V* —> U* such that h(o) G U U {A}
for all o G V is called a weak coding; it is called a coding when h(a) G U for all
a £ V and a projection when h(a) G {a, A} for all a G V. A string x G V* can be
seen as a mapping x : { 1 ,2 , . . . , oo} —> V U { # } , where # is the blank symbol,
with the following properties: there is i > 1 such that x(i) = # ; moreover, if
x(j) = # , then x(j -f 1) = # , j > 1 (this means that x(j) G V for 1 < j <
and x(j) = # otherwise). Sometimes, we shall use below such an interpretation
of a string. A Chomsky grammar is a construct G = (N,T, S, P), where N,T are
disjoint alphabets, S G N, and P is a finite subset of (NUT)*N(NUT)* x (NUT)*.
The elements of N are called nonterminal symbols, those of T are called terminal
symbols, 5 is the axiom, and the elements (u, v) G P, written in the form u —¥ v, are
called rewriting rules (for short, rules). The language generated by G is denoted
L(G). When all rules in P are of the form A x,A G N,x G (N UT)*, then
the grammar is said to be context-free; it is linear if x above contains at most
one nonterminal symbol. A context-free grammar whose rules are of the forms
A —> xB,A x, for A,B G N, x G T*, is said to be right-linear; when x above
is a single symbol in T, then the grammar is said to be regular. We denote by
FIN, REG, LIN, CF, CS, RE the families of finite, regular, linear, context-free,
context-sensitive, and recursively enumerable languages, respectively.

For x,y G V*, we define the shuffle of x,y by

x til y = {xiy1x2y2---xnyn\n>l,x = xix2...xn,
V = 2/2 • ••yn,xi,yi G V*,l < i < n).

The concatenation has priority over shuffle: L1L2 ill L3 should be read as
(LiL2) 111 L3.

Convention. Two language generating mechanisms are considered equivalent
if they generate languages which differ at most by the empty string.

3 The Operation of Superposition
In what follows, t is always a special symbol, which is considered transparent. Let
V be an alphabet. Two strings x,y G (V U {t})* can be superposed, producing a
third string z which is constructed as follows:

1. the shortest of x, y is completed to the right with occurrences of t such that
two strings of the same length are obtained; let us denote by x',y' the strings
obtained in this way (at least one of them is not modified);

342 Paolo Bottoni, Giancarlo Mauri, Piero Mussio, Gheorghe Páun

2. then, for i > 1, we set

y'(i), otherwise.

(Clearly, \z\ = max{|a;|, |j/|}.) We denote the string z by x oy and we say that
it is obtained by the superposition of x and y. We can imagine that x o y is
obtained by writing the strings x,y one over the other, with x above, aligned to
left, and looking from above to the "layered string" obtained in this way. Through
transparent symbols we observe the corresponding symbols of y (maybe also the
transparent symbol), otherwise we observe the symbols of x.

For example, for

Note that every string from Li is superposed with every string in L2, irrespective of
their length, because of the completion with occurrences of t of the shortest string
in each pair.

We now investigate the operation of superposition as an abstract operation on
languages, relating it to other operations on languages. In this way, the closure
properties of families in the Chomsky hierarchy under this new operation will be
settled.

Since our goal is the study of the closure properties of language families in the
Chomsky hierarchy, all families we consider below are supposed to contain at least
all regular languages (but this is not stated again and again).

Lemma 1. If F is a family of languages which is closed under superposi-
tion, shuffle with regular languages, weak codings, and intersection with regular
languages, then it is closed under intersection.

Proof. Consider two languages L\,L2 Ç V*. Denote V1 = {a' \ a G V"},
where a' is a new symbol associated with a G V, and define the weak coding
/ii : (VU V')* —> V* by /u(a') = A,a' 6 V', and /ii(a) = a, a G V, and the coding
h2 : (V U {it})* —> (V1 U {£})* by h2(a) = a', a G V, and h2(t) = t. Consider also
the regular languages

we obtain

x = abttabt, y = tabttbbabt,

J
x o y = abbtabbabt,

where the underlined symbols are taken from y.
Obviously, the operation o is associative, but not commutative.
For LI,L2 C {V U {t})* w e p u t

Li o L2 = {xoy I x e Li,y e L2}.

Ri = {at I o G V}*,
R2 = {ta I a G V}*,
R3 = {aa' I a G V}*.

Grammars Working on Layered Strings 343

Then the following equality holds

Li fl L2 = hi{{L\ o L2) Pi R3),

where

L\ = (Lx 111 t*)nRu

L'2 = h2((L2 111 t*)DR2).

(The intersection with R\, R,> forces the shuffling with t* to pair symbols of strings
in Li,L2 with symbols t, then the intersection with R3 selects only those strings
coresponding to equal strings from LI,L2. Finally, the weak coding HI discards
symbols in V .) In view of the closure properties of the family F, it follows that F
is closed under intersection. •

Corollary 1. The families LIN, CF are not closed under superposition.

Lemma 2. If F is a family of languages which is closed under intersection with
regular languages, shuffle, codings, and inverse morphisms, then F is closed under
superposition.

Proof. Consider two languages LI,L2 C f F u {£})*, denote as above V' = {a' |
a G V } , consider the new symbols c,c',t' and the new alphabet

U = {[ab'],[at'],[ac'},[ca'],[ta']\a,beV}
U {[tt'},[ct'},[tc'}},

and define the following morphisms:

/11 : U* —>• V*,
by hi ([ah']) = M[ai ']) = M M) = hi([ca']) = M[ac ']) = a> f o r a,beV,
and /11 ([«']) = M[c i ']) = hi([tc']) = t,

h2 : U* —> (VU V" U{ i , i ' , c , c ' }) * ,
by h2([ap\) = a/3, for [a/?] G U,

/ i 3 : (V U { i } r - > (V ' U { i ' } r ,

by / 13 (a) = a ' , a G V, and / 13 (f) = t!.

With the regular language

R. = [(V U {t})(V' U { f })] * [((y U {t}){c'})* U ({c}(V' U {t'}))*}

we obtain LXOL2 = h1(h;1((L1{c}* LLL h3(L2){c'r)^R)).

The intersection with R selects, from the strings produced by shuffling, those strings
which are obtained by interleaving the symbols of strings in L i ,L 2 , maybe pro-
longed with occurrences of c, c', but not containing superfluous occurrences of c, c';

344 Paolo Bottoni, Giancarlo Mauri, Piero Mussio, Gheorghe Páun

then, /¿.71 replaces blocks afi by symbols [a(5} which are "interpreted" by /¿1 in the
same way as when constructing the superposition of the two strings in LI,L2. The
use of symbols c, c' prevents the addition of superfluous symbols t in the right end
of strings. From the closure properties of F, we get LX © L2 G F.

Note that, by our convention above, {c}* G REG C F and L{C}* =
(L 111 {c}*) fl V*{C}*, that is, F is closed under concatenation with {c}*. (In fact,
by the closure properties of F, we can get the closure of F under concatenation
with any regular language, but we do not need here this general property.) •

Corollary 2. The families REG, CS, RE are closed under the superposition.

Corollary 3. If F is a family of languages which is closed under intersection
with regular languages, shuffle with regular languages, codings, and inverse mor-
phisms, then F is closed under superposition with regular languages, in the following
sense: if LI G F, L2 G REG, then LX o L2 G F and L2 o ¿1 € F.

Proof. If one of the languages LI,L2 is regular, then in the proof.above we use
a shuffle with regular languages. •

The families LIN, CF are closed under shuffle with regular languages, hence
they are closed under superposition with regular languages.

4 Grammars Working on Layered Strings
For two strings x,y € (VU{t})* we denote by \x, y] the two-level sequence obtained
by placing x over y, justified to left and completing the shortest string with occur-
rences of t; [x, y] is called a layered string. Given a layered string [x, y], any symbol
x(i) G V is said to be observable. A symbol y(i) £ V U { i } is observable if and only
if x(i) = t. If y(i) G V, then y(i) is also visible. Therefore, the observable symbols
in [x,y\ correspond to the symbols appearing in the string x oy defined as in the
previous section. In the sequel, for simplicity, we will only use the term observable.
We can now define the main notion investigated in this paper.

A layered grafnmar is a construct

7 = (N,T,t, (S1,P1),(S2,P2)),

where N, T are disjoint alphabets, t is a special symbol not in N U T, SI, S2 G N,
and PI,P2 are finite sets of context-free rules over N U T U { t } (t is considered a
terminal symbol); N is the nonterminal alphabet, T is the terminal alphabet, t
is the transparent symbol, (Si, Pi) are the components of the grammar; Sj is the
axiom and PI is the set of rules of component i,i = 1,2. We also say that (SI, PI)
is the upper component and (S2,P2) is the lower component of 7 .

For xi,x2,yx,y2 G (N U T U {i})* we write \xi,x2] =$s [3/1,2/2] if and only if
both the following conditions hold:

(1) xi = x[Ax",yi = x[uix",A —> MI G Pi, or

Grammars Working on Layered Strings 345

Xl =yi e (Tu{t}y,
(2) X'2 = x'2Ax'2,y2 = X'2U2X2,A —¥ u2 £ P2, A is observable, or

x2 = y2 and no nonterminal symbol is observable in x2.

The relation = > s is called a synchronized derivation in 7 : each component has to
use a rule, except the case when the corresponding string is terminal, or, in the
case of the lower component, no nonterminal is observable. Therefore, only the
observable symbols of the lower level are active and can be rewriten. A variant of
the relation = > s is = > n s , the non-synchronized derivation step: for xi,x2,yi,y2 €
(]VUTU {f})* we write [x\,x2] =>ns [2/1,2/2] if and only if one of the following
cases holds:

(1) x\ = x[Ax",yi = x[uix",A - H i ! 6 Pi, and
X2 = 2/2,

(2) a;i = 2/1 and
x2 = x'2Ax2,y2 = X'2U2X2,A —• u2 £ P2,A is observable.

Only one of the two components works, rewriting any symbol in the upper level
and an observable symbol in the lower level. By rewriting first in the lower level
and then in the upper level we can simulate in this way a synchronized derivation.
Thus, = » s is indeed a restricted version of => n s- For any ==>a ,a G {s ,ns} we
denote by its reflexive and transitive closure. For each relation we can
consider two languages associated to 7, by considering two stop conditions for a
derivation: when no nonterminal is allowed in the last layered string, we get

LtAl) = E (TU{t}Y I [Si,S2] = » ; [Z I , 2 2] , zltz2 G (T U { I }) * } .

When we allow finishing the derivation with non-observable nonterminal symbols
in the lower level, then we get

LntA7) = {z1oz2e(Tu{t}y\[S1,S2]=^*a[zuz2}, z i e (T u { i }) * ,
z2 £ (JVUTU {t})*, but no nonterminal in z2 is observable}.

In both cases, a € {s,ns}. In this way, we associate with 7
four languages, L M (7), Lt,ns(7), LnttS(7). Lntins(y). We denote by
TSL(X),TNSL{X),NTSL{X),NTNSL(X) the families of languages of these
types generated by layered grammars with rules of type X; for X we consider here
REG,RL,LIN,CF (regular, right-linear, linear, context-free, respectively); we do
not distinguish between grammars allowed to contain A-rules and A-free grammars
(that is, we allow erasing rules). In the proofs in the following section we shall
present several specific layered grammars, hence we do not give here examples.

5 Preliminary Results
Directly from the definitions, we obtain

346 Paolo Bottoni, Giancarlo Mauri, Piero Mussio, Gheorghe Páun

Lemma 3. YL(REG) Ç YL(RL) Ç YL(LIN) Ç YL(CF), for all Y e {TS,
TNS, NTS, NTNS}.

By adding to each set P\,P2 rules A -» A for each A 6 N, we can simulate a
non-synchronized derivation by a synchronized one, hence we get

Lemma 4. TNSL(X) Ç TSL(X), NTNSL(X) C NTSL(X), for each X <E
{RL, LIN, CF}.

The use of chain rules is important here. We shall see below that layered gram-
mars with regular rules generate only regular languages, both in the synchronized
and the non-synchronized modes, hence the result above holds in this indirect way
also for the regular case.

Lemma 5. X Ç YL(X), for all X e {REG, RL, LIN, CF}, Y G {TS, TNS,
NTS, NTNS}.

Proof. For a usual grammar G — (N, T, S, P) we construct the layered grammar

7 = (N U {Si} , T, t, (Si, {Si t}), (S, P)).

Because the upper component generates only one transparent symbol and then
stops, we obviously obtain Lt,a(l) = Lnt,a(l) = L(G),a 6 {s,ns}. •

There is a close relation between the work of layered grammars and the superpo-
sition operation (between the superposition of context-free languages and languages
generated by a layered grammar). The next result illustrates this.

Theorem 1. For all context-free languages L\,L2 Ç (TU{£})* there are a weak
coding h, a regular language R, and a layered context-free grammar 7 such that

L1OL2 = h(LT,NS(~F) D R).

Proof. Let Gi = (Ni,TU {t},Si,Pi) be two context-free grammars with N1 fl
N2 =% such that Li = L(Gi),i = 1,2. Let S[,S'2 and A be new nonterminals and
let ci,c-2 be new terminals. We construct the layered grammar

1^(N',T',t,(S'l,P[),(S'2,P^),

with

TV' = N1UN2U{S[,S!2,A},
T' = T U { c i , c 2 , i ' } ,
P[= {SJ ->iSi , S[- > c i S i } U P i ,
P!2 = {S'2 AS2, A -> t'A, A c2t} U P2.

Consider also the weak coding h : T1* —> (T U {t})* defined by h(a) = a, a G T,
h(t') = h(ci) = h(c2) = A, as well as the regular language

R={t'y{c2Cl}(Tu{t}y.

Grammars Working on Layered Strings 347

We obtain the equality LI<>L2 = /i(Lt,ns(7)ni?). Indeed, the derivations in 7 leading
to strings in R are equivalent (modulo the order of some steps) to a derivation of
the following form:

[S[,S!2] =^*ns [t"Si,S£] =*ns for n > 1,
= > * n s [TNCIWI, $2] , for W! e LU

=>ns [tnc1w1,AS2] =>NS [tnciWi,AIV2], for W-2 € L2,\W2\ < N- 1,

[inci«;i,im-1c2iu;2].

Clearly, (tnc\Wi) o (t'n~1C2W2) = i'n~1c2ci (u>i ow2). With the weak coding h, we
obtain the string wi o w2- Q

C o r o l l a r y 4 . TNSL(CF) - CF ± 0, TSL(CF) -CF^Q.

Proof. The family CF is not closed under the operation ©, but it is closed
under intersection with regular languages and arbitrary morphisms. Moreover,
TNSL(CF) C TSL{CF) (L e m m a 4) . •

We shall strenghten this result in the following section.

6 The Power of Layered Grammars
First, we show that all families of languages generated by layered grammars with
linear rules can generate non-context-free languages. (Note that this does not follow
from the proof of Theorem 1, because we use the non-linear rule S'2 —> AS2 in P2.)

Theorem 2. YL(LIN) -CF^<H, Ye {TS, TNS, NTS, NTNS}.

Proof. Let us consider the following layered grammar

1 = ({S1,S[,S?,S2,S!2},{a,b,c,d,e},t,(S1,P1),(S2,P2)),
P1 = {Si -> tS[, -> S['d, aS'{t, S'{ et},
P2 = {5*2 ttS2, S2 tS2, S2 dS'2, S'2 bS'2c, S!2 -> te}.

A non-synchronized derivation in 7 is equivalent (modulo the order of some steps)
to a derivation of the following form. After using the rule Si —> tS[in the upper
layer, the rule S2 —> ttS2 must be used in the lower one in order to "get free" this
component:

[«Slj-Sy =>ns [¿¿i,-^] =^ns [tS'i,ttS2].

In the second component we can derive freely:

[tS'1,ttS2] =**ns [iS;,imS2], for m > 2,
[tS[,tmdS!2] =^*ns [tS[,tmdbnS'2cn], for n > 0,

— {tS[,tmdbntecn}. RTLS

348 Paolo Bottoni, Giancarlo Mauri, Piero Mussio, Gheorghe Páun

At any time, we can also start deriving in the upper component, where a string
tárettrd, r > 0. can be produced. If we consider also the regular language

B. = ta+edb+dec+,

and we look only for strings in Lt,ns(j) H R, then we have to stop by producing a
layered string

[tarettrd,tmdbntecn],

such that r + 2 = m, r — n. Therefore, the obtained string is
(tarettrd) o (tmdbntecn) = tanedbndecn.

Consequently,
Lt,ns(l) n R = {tanedbndecn | n > 0},

which is not a context-free language. Because the intersection with R asks for
having the terminal rule S2 —> te used, we have Lt,ns(7) l~l R = Lnt¡ris(7) n R.
Therefore, TNSL(LIN) - CF ¿ 0, NTNSL(LIN) - CF ^ 0. With'Lemma 4,
also TSL(LIN) -CF¿<&, NTSL(LIN) - CF ± 0. •

We consider now the case of right-linear layered grammars. When they work in
the synchronized mode, they can generate non-regular languages. (However, we do
not know whether or not also non-context-free languages can be generated in this
way.)

Theorem 3. TSL(RL) - REG ± 0, NTSL(RL) - REG ± 0.

Proof. Consider the layered grammar

7 = ({5 ! , S[, S 2 } , {a, b, c, d},t, (Si, PO, (S2, P2)),
pt = {sx tSi, Si b2tb2s[, s[-> 62í62s;, s[b2tc},
P-2 = {52 ->a3S2yS2 -+a3d},

as well as the regular language

R = a+(bbabb)+bbdc.

In order that a terminal synchronized derivation in 7 will produce a string in R,
it has to proceed as follows. After the first step, S2 is observable; it runs faster
than Si as long as the upper component uses the rule S1 —> tSi\ after starting
to use another rule, the upper component runs faster and eventually it catches up
the lower one. This must indeed happen when looking for strings in R, because
we must obtain a string containing both the symbol c (introduced by the upper
component) and the symbol d (introduced by the lower component), in neighboring
positions. Thus, we have to follow derivations of the form

[Si,S2] = > s [iSi.Sa] [ttnSi,a3nS2], for n > 0,
=>s [¡ttnbbtbbS'1,a3na3S2}
=>*s [ttn{bbtbb)mS[,a3na3mS2\, for m > 0.

Grammars Working on Layered Strings 349

The second component can stop in any moment, but the upper one must derive
until catching up (in order to produce the substring dc). Therefore, we have to
produce a layered string of the form

[ttn(bbtbb)m+pbbtc,a p> 0,

such that

n + l + 5(m + p) + 3 = 3(n + m) + l (1)

(in order to have d adjacent to c). This implies that 2m + 5p + 3 = 2n; because
p > 0, we obtain

2m + 3 < 2n. (2)

Consequently, we get

Lt,s(l) n R = {an+1(bbabb)mbbdc | n > 0,2n > 2m + 3}.

The intersection ¿4,5(7) D R is infinite. More precisely, this intersection contains
strings an+l (bbabb)mbbdc with arbitrarily large m: consider the values

n = 3s + 3, p = 1, m = 3s — 1,

for any integer s > 1. Conditions (1), (2) are fulfilled, hence the strings
a3s+3+1(bbabb)3s-1bbdc are in L M (7) f\R for all s > 1. This means that L M (7) Di?
(hence Lt,s(7), too) is not a regular language: by pumping a substring of the suffix
(1bbabb)3s~1bbdc we get strings not in LttS{7) H R.

Because the occurrences symbols c, d are introduced by the terminal rules of
Pi, P2, respectively, it follows that the strings in R are obtained by terminal deriva-
tions, that is, Lt,s{i) H R = Lnt,s(7) C\.R. Therefore, Lnt,s(7) n R g REG, which
implies that LntiS(7) 0 REG either. •

The synchronization is essential in the result above:
Theorem 4. TNSL(RL) C REG, NTNSL{RL) C REG.

Proof. Consider the layered grammar 7 = (N,T, t , (5 i ,Pi) , (5 -2,/2)) and exam-
ine the derivations performed in the terminal non-synchronized mode. In each layer
there is one nonterminal only, which moves from left to right. If the lower nonter-
minal is behind the upper one, then the derivation in the lower level depends on the
transparent symbols in the upper layer (the lower level is blocked if its nonterminal
is placed under a terminal symbol in the upper level). If the lower nonterminal goes
ahead the upper one, then no restriction on the derivation is imposed. The two
nonterminals can work freely, but the result is obtained by superposition. Because
of the non-synchronization, we can apply a rule in any of the two layers. Therefore,
(1) only the relative-position of the two nonterminals is important, and (2) as long
as both nonterminals are present we can keep them at a bounded distance. The *
distance between the two nonterminals can be bounded by 2m, where

m = max{|u| | A ->• u £ Pi U P2}.

350 Paolo Bottoni, Giancarlo Mauri, Piero Mussio, Gheorghe Páun

(If the distance between the two nonterminals is smaller than m, then we rewrite the
nonterminal which is ahead; if the distance is between m and 2m, then we rewrite
the nonterminal which is behind. Note that we cannot bound this distance by m
by always rewriting the nonterminal which is behind: if the upper nonterminal is
behind, by rewriting it we can cover the lower nonterminal, which can modify the
language, because the derivation is not synchonized. By first rewriting the lower
nonterminal, we go at a distance at most 2m, and the lower nonterminal continues
to be observable after one more rule used in the upper layer.)

Therefore, the work of 7 can be controlled by a "window" of length at most
2m. Initially, this is [Si,52], it possibly grows to some [w\A\,A2] or [Ai,w2A2],
with jit>x | > \W'A-, terminal strings of length at most 2m— 1, and continues in this way
until ending the derivation in one component; after that, only one nonterminal is
enough in order to control the derivation.

We construct a right-linear grammar

G=(N',TU{t},(S1,S2),P)

with

N' = {(wltw2) | wi 6T*(7VU{A}),W2 e T * (W u { A }) ,
0 < |iui|, |w2| < 2m, at least one of w\,w2 contains a nonterminal
and at most one of them contains terminal symbols}

and with the following rules.
We distinguish several cases, according to the type (terminal or nonterminal)

of the strings in the two layers and to the length of these strings.

1. Both layers contain a nonterminal symbol and these symbols are superposed,
that is, the sentential form ends with (A,B) and only A can be rewritten.

(a) If A uC is in Pi,u £ (TU {t})*, then

(A, B) (uC, B)

is a production in P.

(b) If A u is in PI,M £ (T U {i})*, then

(A,B)->(u,B)

is a production in P.
2. Both layers contain a nonterminal and the nonterminal in the second layer

is behind, that is, the sentential form ends with a nonterminal (uA,B). The
string u must be of the form u = tu' in order to be able to apply a rule in
the second layer. Note that it is not necessary to rewrite in the upper layer
before rewriting the lower string and getting a longer string in the lower layer
(the rewriting in the upper layer does not depend on the contents of the lower
layer). Thus, we do not consider rules for modifying the symbol A in (uA, B).

Grammars Working on Layered Strings 351

(a) If B vD is in P2, v G (T U {«})*, and |u| < M, then

(•uA,B) ->• UOVI(A,V2D),

for v = ViV2 with |M| = is a production in P.

(b) If B ->• vD is in P2, v G (T U {£})*, and |M| > H, then

(uA, B) -»• mi o v(u2A, D),

for u = u±u-2 with |ui| = |u|, is a production in P.

(c) If B v is in P2, v e (T U {£})*, and |M| < H, then

(uA,B) UOV1{A,V2),

for v = V1V2 with |M| = is a production in P.

(d) If B v is in P2, v G (TU {£})*, and |u| > H, then

(uA,B) MI ov(u2A,X),

for u = Mi u2 with |ui| = |i>|, is a production in P.
3. Both layers contain a nonterminal and the nonterminal in the first layer is

behind, that is, the sentential form ends with a nonterminal (A,vB), with
v € (T U {¿ })+ - (This time we need rules for modifying both symbols A and
B - see again the mode of obtaining the bound 2m as a maximal distance
between nonterminals in the two layers.)

(a) If A uC is in Pi, u G (T U {£})*, and |M| < |u|, then

(A, vB) -»• uov1(C,v2B),

for v = vxv-2 with |M| = |T>i|, is a production in P.

(b) If A -)• uC is in Pi, M E (T U {£})*, and |M| > then

(A,vB) ->• mi o v(u2C,B),

for u = U1U2 with |«i| = is a production in P.

(c) If B -> wD is in P2, and \vwD\ < 2m, then

(A,vB) ->• (A,vwD)

is a production in P.

(d) If A M is in Pi, M G (T U {£})*, and |u| < M, then

(A,vB) u'ov(X, B)

is a production in P.

352 Paolo Bottoni, Giancarlo Mauri, Piero Mussio, Gheorghe Páun

(e) If A -4 u is in Pi, u 6 (TU {<})*, and |u| > |u|, then

(.A,vB) ui ov[u2,B),

for u = U\U2 with |ui| = |w|, is a production in P.

(f) If B w is in P2 and |uio| < 2m, then

(A,vB) -¥ (A,vw)

is a production in P.
4. Only the first layer contains a nonterminal, that is, the sentential form ends

with a nonterminal (A,v).

(a) If A -» uC is in Pi, u G (TU {i})*, and |M| < |v|, then

(A,v) -> uovl(C,v2),

for v = viv2 with |u| = |wi|, is a production in P.

(b) If A uC is in Pi, u € (TU {i})*, and |u| > M, then

(A,v) uo v{C, X)

is a production in P.

(c) If A u is in Pi and u G (T U {«})*, then

(A.v) 4UOU

is a production in P.
5. Only the second layer contains a nonterminal, that is, the sentential form

ends with a nonterminal (u,B); the string u must be of the form u = tu' or
u = A in order to be able to apply a rule in the second layer.

(a) If B vD is in P2, v G (TU {i})*, and |u| < M, then

(u,B) -> uov(\,D)

is a production in P.

(b) If B vD is in P2, v G (TU {i})*, and |u| > |u|, then

(•u,B) ui OV{U2,D),

for u = UiU2 with |ui| = |t;|, is a production in P.

(c) If B -> v is in P2 and v G (T U {f})*, then

(u ,B) -) ! iOD

is a production of G.

Grammars Working on Layered Strings 353

This completes the construction.
One can easily check that we obtain L(G) = Lt^l$(7), which proves the inclusion

TNSL(RL) Ç REG.
For the non-terminal case we can finish the derivation with the lower nontermi-

nal placed under a symbol different from t. The necessary modifications are left to
the reader. •

Theorems 3 cannot be improved by replacing RL by REG: even synchronized,
layered grammars with regular components can generate only regular languages.

Theorem 5. TSL(REG) Ç REG, NTSL(REG) Ç REG.

Proof. Let us consider a layered grammar 7 = (N,T, t , (Si ,Pi) , (S2,P2)) with
the sets Pi,P-2 containing regular rules. Because the work of 7 is synchronized,
whenever the nonterminal in the lower level is observable, it has to be rewritten.
At the first step, when the upper level uses a rule different from A -» tB,A —ï t
(that is a terminal in T is introduced), this will cover the nonterminal in the lower
level, hence it is no longer rewritten. Thus, the derivation of 7 starts by a number of
steps of using rules of the form A tB (this number may be zero). Synchronously,
the lower level nonterminal advances, one step behind the nonterminal in the upper
level, at any step it can be replaced by a terminal, and this ends the derivation
in the lower level. When the upper level introduced a symbol in T, the lower one
should use a terminal rule in the case of terminal derivation, or any rule in the
case of non-terminal derivation and it stops. The upper level can continue without
any restriction. To sum up, a window of length two suffices in order to control
the work of 7 in a way similar to that in the proof of Theorem 4. Consequently,

Corollary 5. YL(REG) = REG for all Y e {TS,TNS, NTS, NTNS}.

Proof. Combine Lemma 5 (it gives the inclusion D) with Theorem 4 (the con-
verse inclusion for the non-synchronized case) and Theorem 5 (the converse inclu-

Thus, the regular layered grammars need no further investigation (in what con-
cerns the generative capacity). The results above deserve to. be emphasized: in the
synchronized case, the regular rules are strictly less powerful than right-linear rules.
This does not happen in many situations in formal language theory (for instance,
in regulated rewriting area, [6]). However, a similar result has been recently proved
for parallel communication grammar systems: in the centralized returning case, the
regular rules are strictly weaker than the right-linear rules [7].

7 A Characterization of RE Languages
We now increase the degree of synchronization in a layered grammar, by specifying
the pair of rules to be used by the two components, at steps when both of them
have observable nonterminals.

Lt,s{j) € REG,Lntts(j) € REG. •

sion for the synchronized case). •

354 Paolo Bottoni, Giancarlo Mauri, Piero Mussio, Gheorghe Páun

A matrix layered grammar is a construct

7 = (N,T,t,SuS2,M),

where N, T, t, Si, S-2 are as in a usual layered grammar (the nonterminal and the
terminal alphabet, the transparent symbol, the axioms of the two layers, respec-
tively), and M is a finite set of pairs (we call them matrices) of the forms

UuA2 u2), (Ai ->• Ui,#), (#,¿2 u2),

where Ai —> ui, A2 u2 are context-free rules over ft'UTU {t}. In a derivation
step [xi,x2] —> [2/1,2/2] we have to use a pair (Ai —> ui,A2 —• u2) if both xi
and x2 contain observable nonterminals (hence xi = x\Aix",y-¡ = x[uix", x2 =
x'2A2x2,y2 = X'2U2X2), a pair (Ai - » ut, #) ifx2 contains no observable nonterminal
and Ai appears in xi (hence xi = x'^Aix'^yi = x[uixi,x2 = y2), and a pair
(#,A2 —> u2) if xi is a terminal string and A2 is an observable nonterminal in x2

(hence xi = yi,x2 = x'2A2x'2,y2 = x'2u2x2). We denote by Lt{7) the language
generated by 7 in the terminal mode and by Lnt{7) the language generated by 7
in the non-terminal mode. The corresponding families of languages are denoted by
TML(X),NTML(X),X e {REG,RL,LIN,CF}.

Remark. Because we may always assume that the nonterminals used in the
two layers are distinct, we can consider matrices as pairs of rules without specifying
where each rule is used: we have just to use the two rules in two different layers.
We prefer here to work with the previous definition because we find it more natural.

Rather surprisingly, the following characterization of recursively enumerable
languages can be obtained.

Theorem 6. For every language L G RE there are a projection h, a regular
language R, and a language L' £ TML(RL)C\NTML(RL) such that L = h(L'nR).

Proof. We use the following variant (proved in [8]) of the characterization of
• recursively enumerable languages by means of equality sets of morphisms (see [5],

[12], [13]). For two morphisms hi,h2 : V* —> U* we denote

EQ{huh2) = { » e V ' | hi(w) = h2(w)}.

For every language L £ RE,L C V*, there are two alphabets VX,V2 such that
V C V2, two A-free morphisms hi, h2 : Vj* —>• V2 , a regular set R C V2 , and a
projection /13 : V2 —> V*, such that L ~ h3(hi(EQ(hi, h2)) OR). Consider also
the alphabet of new symbols VJ = (a' \ a £ V2}. We npw construct the matrix
layered grammar

7= ({Si,S[,S2},V2UV.¡U{c,d},t,Si,S2,M),

Grammars Working on Layered Strings 355

with the following matrices of rules:

(1) (Si -^tS[,#),
(2) (Si -> tbh tbi2 ... tbik tS[, S2 b'h tb'j21... tb'h tS2),
(3) (Si tbhtbi2 ... tbiktd, S2 -)• b'htb'ht... tb'htc),

for hi (a) = bh bis ... bik, k > 1, bis £ V2,1 < s < k,
and h2(a) = b'hb'h ...b'h,l> 1, b'jt € V2', 1 <s< I.

Consider also the regular language

Ro = {b'b\ be V2}*{cd}

and the projection g : (V2 U V¿)* V2 defined by g(b) = b, b £ V2, and g(b') =
A ,b' £ V2. It is easy to see that we have

g{Lt{i) n Ro) = g(Lnt(7) n Ro) = hi{EQ{hu h2)).

Indeed, because the upper component introduces the symbol t in each odd position
and the nonterminal of the lower component appears always in an odd position,
the non-terminal derivations should be terminal. Moreover, the intersection with
R0 ensures the fact that we end in the two layers with two identical strings modulo
the primes appearing in the lower layer, namely the two strings correspond to some
hi(wi) = h-2(w2)\ the matrices in M ensure the fact that wi = w2: after using the
only matrix of type (1), always is S2 observable, and the two components should
stop at the same time, by using a matrix of type (3).

Now, let us consider the morphism h : V2 —> (V2 U V2)* defined by h(b) =
b'b,b £ V2, the regular language R! = h(R)cd, and extend the projection h3 to
K : (V2 U V.¡y V* by h'3(b) = h3(b),b £ V2, and h'3(b') = A,b' £ h'3{c) =
h'3(d) = A. Then we have

L = h'3(Lt(j) n h(R')) = h'3(Lnt(7) n h(R')).

Indeed, R' plays at the same time the roles of both R and Ro, while h3 plays at
the same time the roles of h3 and g. •

Corollary 6. For every family of languages F C RE which is closed under
intersection with regular languages and projections we have TML(RL) — F ^ 0,
NTML(RL) - F ¿ 0.

Proof. An inclusion TML(RL) C F,NTML(RL) C F would imply that the
closure of TML(RL), NTML(RL) under intersection with regular languages and
projections is included into the closure of F under these operations. This implies
the inclusion RE C F, contradicting the strict inclusion F C RE. •

Important families F as above are MATX, of languages generated by matrix
grammars with arbitrary context-free rules but without appearance checking, and
ETOL, the family of languages generated by extended tabled interactionless Lin-
denmayer systems, [10]. The proof of Theorem 5 remains valid also for matrix
layered grammars, that is the next result holds:

Theorem 7. TML(REG) = NTML(REG) = REG.

356 Paolo Bottoni, Giancarlo Mauri, Piero Mussio, Gheorghe Páun

8 Final Remarks; Variants

Several variants of layered grammars can be naturally defined. We only mention
some of them as a proof of the richness of this notion. First, as it is the case
with the icons observable in. windows superposed on the computer screen, we can
assume that some nonterminals are "more active" than others. When several non-
terminals are observable, the "most active" of them is rewritten. This idea can be
implemented, for instance, under the form of a partial order relation on the non-
terminal alphabet of the grammar, or under the form of a leftmost restriction on
the derivation (the first observable nonterminal from the left of the layer should be
rewritten). Note that in the case of linear grammars (hence also of right-linear and
regular grammars) these variants coincide with the one investigated here, hence
all Theorems 1 - 7 from the previous sections remain true also for these variants.
Second, we can consider a variant which removes the apparent contrast between the
parallel character of activating symbols by observability and the sequential mode
of rewriting. That is, it is quite natural to derive all observable symbols at the
same time. This leads to considering parallel derivations, either in a context-free
grammar as here (this reminds the so-called Indian and Russian parallel grammars
in regulated rewriting area, see [6]), or in a pure grammar, where there is no distinc-
tion between terminal and nonterminal symbols (this corresponds to Lindenmayer
systems; in particular, layered OL or DOL systems look attractive). Third, we can
consider layered grammars of any order, not only with two levels as we have done
here. The definition of observability can be obviously extended to n-layered strings;
similarly the definition of a layered grammar of degree n,n > 1, is an obvious ex-
tension of the definition here. Such systems will probably have a rather intricate
behavior. They correspond in a better way to a parallel grammar system, with a
particular type of cooperation among components: they work synchronously, on
their separate sentential forms (this is similar to a parallel communication gram-
mar system, [9], [4]), but they do not communicate by sending messages, rather
they just influence each other through observable symbols; however, the result is
highly integrated: it is the superposition (in the sense of the operation o, extended
to n-layered strings) of the strings generated by the component grammars. Then,
usual derivation, leftmost, parallel derivations can be considered also in this case.
Of course, such a system with n layers can be simulated by a system with n + 1
layers (just add a component which contains only the rule S t). Whether or
not the systems of degree n + 1 are strictly more powerful than those of degree n
becomes a fundamental problem (in general, not solved in grammar systems area,
[4]). By the various motivations of the model, by the results given here (especially
the possibility of generating non-regular languages by layered grammars with right-
linear rules and the characterization of recursively enumerable languages by matrix
layered grammars with rules of the same type — right-linear), and by the wealth of
problem raised by the variants mentioned above, the layered grammars prove to be
a research area of definite interest. Of course, it is however premature to inquiry
about the practical relevance of these grammars.

Grammars Working on Layered Strings 357

Acknowledgements. Gh. Päun was supported by a grant under the program
for visiting professors of the Group for Mathematical Informatics (GNIM) of the
Italian National Research Council (CNR).

Thanks are due to an anonymous referee, who made many comments on an
earlier version of the paper; the structuring of the construction in the proof of
Theorem 4 is also due to him/her.

References
[1] M. Andrajjiu, J. Dassow, Gh. Päun, A. Salomaa, Language-theoretic problems

arising from Richelieu cryptosystems, Theor. Comput. Sei., 116 (1993), 339 -
357:

[2] P. Bottoni, M. F. Costabile, S. Levialdi, P. Mussio, Defining visual languages
for interactive computing, IEEE Transactions on Systems, Man, and Cyber-
netics - A, 27 (1997), 773 - 782.

• [3] P. Bottom, M. F. Costabile, S. Levialdi, P. Mussio, Specification of Visual
Languages as Means for Interaction, Theory of Visual Languages, K. Marriott,
B. Meyer eds., Springer-Verlag, 1997, to appear.

[4] E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. Päun, Grammar Systems. A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach,
London,1994.

[5] K. Culik II, A purely homomorphic characterization of recursively enumerable
. sets, Journal of the ACM, 26 (1979), 345 - 350.

[6] J. Dassow, Gh. Päun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, Heidelberg, 1989.

[7] S. Dumitrescu, Gh. Päun, On the power of parallel communicating grammar
systems with right-linear components, Rev. Fr. Aut. Inform. Theor., RAIRO,
Theor. Informatics, 31, 4 (1997), 331 - 354.

[8] L. Kari, Gh. Päun, G. Rozenberg, A. Salomaa, S. Yu, DNA computing, sticker
systems, and universality, Acta Informática, 35 (1998), 401 - 420.

[9] Gh. Päun, L. Säntean, Parallel communicating grammar systems: the regular
case, Ann. Univ. Buc., Matem.-Inform. Series, 38, 2 (1989), 55 - 63.

[10] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic
Press, 1980.

[11] G. Rozenberg, A. Salomaa, Eds., Handbook of Formal Languages, 3 volumes,
Springer-Verlag, Heidelberg, 1997.

358 Paolo Bottoni, Giancarlo Mauri, Piero Mussio, Gheorghe Páun

[12] A. Salomaa, Equality sets for homomorphisms of free monoids, Acta Cyber-
netica, 4 (1978) 127 - 139.

[13] A. Salomaa, Jewels of Formal Language Theory, Computer Science Press,
Rockville, Maryland, 1981.

Received October, 1997

