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Abstract

The present paper discusses multi-continuous grammars and their descrip-
tional complexity with respect to the number of nonterminals. It proves that
six-nonterminal multi-continuous grammars characterize the family of recur-
sively enumerable languages. In addition, this paper formulates an open
problem area closely related to this characterization.
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1 Introduction

The language theory has intensively and systematically investigated the descrip-
tional complexity of grammars (see Chapter 4 in [1] and references therein). This
investigation has achieved several characterizations of the family of recursively enu-
merable languages by various grammars with a reduced number of nonterminals (see
[4] through [6]).

The present paper discusses the descriptional complexity of multi-continuous
grammars (see [3]). It proves that six-nonterminal multi-continuous grammars
characterize the family of recursively enumerable languages. In its conclusion, this
paper points out some open problems closely related to this characterization.

2 Definitions

<

This paper assumes that the reader is familiar with the formal language theory,
including selective substitution grammars (see Chapter 10 in [1] )).

Let 3 be an alphabet: The cardinality of ¥ is denoted by Card(X). L* represents
the free monoid generated by si under the operation of concatenation. The unit of
¥* is denoted by €. Set ¥t = ¥* — X* — {¢}; algebraically, &t is the free semigroup
generated by ¥ under the operation of concatenation. For w € £*, |w| denotes the
length of w and subword(w) is defined as subword(w) = {x : z € V* and z is a
subword of w}.
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The bold symbols have special meaning hereafter. If-a is a symbol, then a
means that the original symbol, a, is activated. Analogously, for an alphabet I,

Y={a:a€T}and {x:z€ 7}
Define the homomorphism, ¢, from (L U X)* to T* as
t(a) =aandifa) =a

foralla € L.
An EOS system is quadruple

E=(%,PST),

where ¥ is an alphabet, T C £, 5 € £ — T, and P is a finite substitution on X + x*.
An EOS-based s-grammar, G, is a quintuple

G=(%,PS5TK),

where £, P, S, and T have the same meaning as in an EOS system, and K C
(BUX)*. Let u,v € B*. G directly derives v from u, symbolically denoted as

u =,
if either u = .S and v € P(S) or there exists a natural number, n, so
l.u=ay...a, witha; €T foralli=1,...,n
2. w=by...bp,we K, and o(w) =u

3.9 =1z ...2, with ; € P(a;) if b; € X, and z; = a; if b; € T for each
1=1,...,n.

Instead of z € P(a), this paper writes a = z hereafter. In the standard manner,
extend =to =", where n > 0. Based on =", define =% and =* . The language of
G, L(G),
is defined as
LG)={weT :S =" w}.

Let m be a natural number, and let G = (Z,P,S,T,K) be an EOS-based s-
grammar. G is an m-continuous grammar if for some n > 1,

K= Kl UUKn
so that for ¢ = 1,... n,
Ki =019 ... Q0 Qnga,

where

Qe{V*:VCXZ}forj=1,....m+1
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e {(WHr . WCZlfork=1,...,m

G is a multi-continuous grammar if G represents an m-continuous grammar for
somem > 1. A queue grammar (see [2]) is a sixtuple, @ = (V,T, W, F, R, g), where V
and W are alphabets satisfying VAW =0, TCV,FCV,FCW,Re (V-T)(W —
F),and g C (V x (W — F)) x (V* x W) is a finite relation such that for any a € V,
there exists an element (a,b,z,c) € g. If there exist u,v € V*W,a € V,r,z € V*,
and b, c € W such that (a,b, 2,¢) € g,u = arb, and v = rzc, then Q directly derlves
v from u, denoted by u = v. In the standard manner, define =", =71, and =*. A
derivation of the form R =* wf withw € T* and f € Fis a successful derivation.
The language of QL(Q), is defined as L(Q) = {w € T* : R =* wf where f € F}.

3 Results

The present section demonstrates that the family of recursively enumerable lan-
guages equals the family of languages g 1 by six-nonterminal multicontinuous gram-
mars.

Lemma 1 Let

Q=(V,T,W,FR,g)
be a queue grammar. Then, there exists a siz-nonterminal multi-continuous gram-
mar, G, satisfying
—{e} = L(Q) — {e}.
Proof: Let
Q = (V’TJW’FJRJg)

be a queue grammar. Without any loss of generality, assume that
(Vvuw)ni{0,1,2,3,X,Y} =0.

Construction:
For some n > 2#(VUW) ‘introduce the following four mappings -3, p, o, and é:

1. Define an injection 8 from (VU W) to ({0,1}{3})™. In the standard manner,
extend B so it is defined from (V U W) to (({0,1}{3})™)*. B~ represents
the inverse of g.

2. Let p be the mapping from ({0, 1}{3})"(({0,1}{3})*UT)* to (({0,1}{3})*U
T)*({0,1}{3})" defined as ‘
plaz) = za

for all @ € ({0,1}{3})" and z € (({0,1}{3})"uT
3. Let o be the mapping from (T"U {0,1,2,3})* to (T U {0,1,3})* defined as

o(a) =aforalla e TU{0,1,3} and 0(2) =¢.
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4. Let 4 be the mapping from {0,1,3}* to {X,Y,3}* defined as

6(0) = X,6(1) = X and 6(3) = 3._

. Set

m = max{|B(z)| : (a,b,z,c) € gand somea € W — F,c€ W, and b€ V} + 6n + 2.
Define the following m-continuous grammar
G =(Tu{0,1,2,3,X,Y},P,2,T,K),

where

g,
It

{2 - B(1)28(a) X 2HPBBI29 . o ¢ V T b e W — F,ab= R}

{a—=a:aeTU{0,1,2,3}}

{3 32,2 ¢}

{i—6(i):i=0,1,3}

{a = e:a€{X,Y,3}}

{22 X92:5=1,...,m—4n—2} -

2= X7:5j=1,...,m—2n—-1)

{22 8(c)2:ceW}

{2 - Blz)xmI8laben)l=29 . 7 € V*, and (a,b,z,¢) € g, where

a,ceW—FandbeV} .

U {2- ﬂ(m)X"‘“w(“b”)yl_22 :z € V*,y € T, and (a,b,zy,c¢) € g, for some
acW —-FceW, andbe V}

u {2- y XM IBlebe)yl=29 . T*, and (a,b,y,c) € g, for some

a€W - F,ceW, andbe V}.

cccccccc

Furthermore,
K:K1UK2UK3UK4UK5UK6

* where K 1 through K are constructed as follows. Initially, set
K, =0

fori=1,...,6. Then, extend K; through Ky in the following way.

A If
(a,b,z,¢) € g, whereb,ce W,a €V, andz € V*
then

Ky :=KU {{b1}+{3}+-"{bn}+{3}+{2}+{al}+{3}+"~>{an}+{3}+
({0,1,3} U T)*H; ... Hn_|g(ba)-212} T},
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where

a;,b; € {0,1} fori=1,...,n

a13...a,3 = fB(a)

b13...5,3 = B(b)

Hy={X}" forallj=1,....m—4n -2

Ky = Ky U {{b}* {3} ... {ba}* {3} {a1}7{3}+ .. {an}T{3}{2}+
({0,1,3}U T)*Hy ... Hy|p(ba)-2{2} 1},

where

ai,b; € {0,1} fori=1,...,n

a13...a,3 = fB(a)

b13...b,3 = (D)

H;={X}*t forallj=1,...,m—4n—2

Ks = K3 U {6{(b0)} {3} ... {6(bn)} {3} {6(a)} H{3}* ...
{0(an)}T {3} {ca}T{3}F. ..
{ea}™{3}1{2}7({0,1,3}*{da } " {3}* ...
{dix 3 {8}t Hy ... Hyjg(bacx)|-2{2} 7},

where

ai, by c,d; € {0,1}, fori=1,...,n

a3...ap3 = f(a)

b13...b,3 = B(b)

c13...¢p3=0(c) for somece V

di3.. .d|m|3 = B(:c)

H;j ={X}* forallj =1,...,m — |B(bacz)| — 2.

2

B. If
z€V*yeTt, and (a,b,zy,c) € g for someb,ce W anda e V
then
Ky = KqU {{8b0)}* {3} .. {d(bu)} {3} {6(ar)}*{3}* ...
{d(an)}* {3} F{ca} {3} ...
{cn}+{3}+{2}+{07 1; 3}*{d1}+{3}+ s
{dx {3} {es}t ...
{ely!}+H1 """ Hm—|ﬂ(bacx)yl—2{2}+}7
where

ai, b€ {0,1},fori=1,...,n

a13...a,3=08(a)

b13...0,3 = B(b)

c1d...cpd = p(c) forsomece V

€1 ...e,yj =y

H;={X}* forall j=1,...,m—|B(z)] - |y| — 6n — 2.
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z € T* and (a,b,z,¢) € g for some b,c € Wanda eV

then
Ky = K3 U {{0(b0)}H {3} ... {8(bm)}* (3} {6(an) } {3} ...
{6(an)}* {8} {c2} {3} .. {ea}*{3}+{2}*{0,1,3}"
T+{e1}+ s {eith*Hl s Hm—lﬁ(bac)xl—ﬁn—3{2}+}a

where

a;,b; € {0,1},fori=1,...,n
a13...a,3 = B(a)

B13...bn3 = B(b)

13...cn3 = B(c) for some.ceV

€1...€z| =T :
H;={X}*,forallj=1,...,m |z} -6n -3

D. If
beF
then
K¢ := Ke U{{d(b1)}T{8}" ... {6(bn)} {3} H1 ... Hmn-20_1TTT*},
where
b; € {0,1},foralli=1,...,n
b13...b,3 = B(b)
H;={X}* foral j=1,...,m—|8(b)| — 1. =

Main Idea:

Observe that G derives no sentential form that contains a subword consisting of two
identical nonterminals. Considering this essential property, examine the construc-
tion of G to see that every successful derivation simulates a successful derivation in
Q. To give an insight into this simulation in greater detail, assume that () makes
this derivation step
' avb = vzc

according to (a, b, z,c) € g. By using selectors constructed in A, G simulates avb =
vze by making the following three steps.

,B(b)2ﬁ(av)Xm—lﬁ(ba]l—22 = ﬂ(ba)Qﬁ(ba)2ﬁ(v)Xm—lﬁ(ba)1—22
= §(B(ba))B(c)2B(vz) X ™I Gacz)| =29
> A(Q2B(va) X2,

By analogy with these steps, G uses selectors constructed in B and C to simulate
Q's derivation steps that produce terminals appearing in the génerated word. Fi-
nally, it uses a selector constructed in D to complete the simulation. As a result,

L(Q) = L(G).
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Formal Proof (Sketch):
Hereafter, by
u=>v [i
in G, where 7 € {1,...,6}, this proof symbolically expresses that G makes u = v by
using a component from K;. For brevity, the rest of this proof omits some details,
which the reader can easily fill in. Examine K to see that in G, every successful
derivation, 2 = v with v € T, has this form

2 = 1z i :
= z, [1] = =z, : 2] = -5”13: B
= Iy [1] o o ‘
> on [ = z, 2 = o [
=y (1] = v 2 = y [4
= oz, [ = 2z, [2] = =z, [§
= 2y {1]

- zhy (1 = 2, [2] = oz, [5]
= T [1] = v [G]a

where

(i) zo = B(b)28(a) X™O®2)=22 with ab= R

(ii) t is a non-negative integer, and for all 4 = 0,...,t, there exist (a,b,v,¢) € g
and u € V* so that -
ziy, = B(ba)2B(u) X 18(0ba)-29
2, = 6(B(ba))B(c)2B(uv) X IAbecv)I=27
zi, = PB(c)2B(uv)Xm 28129

(ili) there exist w € V* and (a,b,vu,c) €' g where v € V* and u € T, so that

B(ba)2B(w) X~ 18(ba) =29

h =
Yy = (S(ﬂ(ba))ﬂ(c)Qﬂ(wv)uXm—|ﬂ(bacv)u|_22
y3 = Be)2B(wv)uXx™2B(1-29
(iv) h is a non-negative integer, and for all ¢ = 0,..., h, there exist u € V* w €
T+, and (a,b,v,c) € g with v € T* so that LW €
zi, = B(ba)2B(u)wX™18be)l-29
zi, = 0(B(ba))B(c)2B(w)wv X ™ IBback=29

B(c)28(uw)wv X ™28 -2

N
Ih
@

!

(v) r=38(8(b))eX™ 1A= with b € F.
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Observe that there also exists the following derivation

R = p(fHo(z1,))) ... = p(B7 (0(2h,)))
= p(B7'(o(y3)))
= p(B7 (0(215))) - = p(B7 (o(xhs)))
= p(B7(a(r)))
in Q. Notice that p(8~*(o(r))) = v. Thus, if in G,2 =* v with v € T, then

v € L(Q); therefore,
L(G) — {e} C L(Q) — {e}-
Notice that in @, every successful derivation, R =* vf with v € T* and f € F,
has this form ,
R =* didy... dnylcl
= dy...duy1pco

=  da1¥s - - - YnCn
> yiy2...Ynlf,

where

n is a natural number
dpeV,fork=1,...,n
VvV=MNY2-. - Yn

N Fe

y, €ET*, fori=2,...,n
GEW-Fforj=1,...,n
fEF

Consider any derivation expressed in this way in @, and demonstrate that there
also exists
231w

in G (a detailed version of this demonstration is left to the reader). Thus
L@ - {e} S L(G) - {e.
As L(G) — {e} € L(Q) — {e} and L(Q) — {e} € L(G) - {e},
L(Q) — {e} = L(G) — {e}.
Because G has only the six nonterminals 0,1,2,3, X, and Y, Lemma 1 holds. DO

Theorem 1 The family of langueges generated by siz-nonterminal multi-
continuous grammars coincides with the family of recursively enumerable languages.
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Proof: Obviously, every language generated by a six-nonterminal multi-continuous
grammar represents a recursively enumerable language. The rest of this proof
demonstrates that every recursively enumerable language is generated by a six-non
terminal multi-continuous grammar. :

Let L be a recursively enumerable language. Then, there exists a queue gram-
mar, Q, such that L(Q) = L (see Theorem 2.1 in [2]). By Lemma 1, there exists a
six-nonterminal multi-continuous grammar, '

G=(Tu{0,1,2,3,X,Y},P,2,T,K),

satisfying L(Q) — {€} = L(G) — {&}. Consider the six-nonterminal multi-continuous

grammar, G', defined as
G'=(Tu{0,1,2,3,X,Y},PUP 2T K)
with
P ={2-c¢c}lifece L(Q), and P' =0if e ¢ L(Q).

Observe that L(G) — {e} = L(G") — {¢}. Because L(Q) — {e} = L(G) — {e}, L(Q) —
{e} = L(G') — {e}. Furthermore, by the definition of P',¢ € L(Q) if and only if
g € L(G"). Therefore, :

L(G) = L(Q)
As L(Q) = L,
L=L(G").
Therefore, this theorem holds. O
Consider i-nonterminal multi-continuous grammars, where ¢ = 1,...,5. What

is their generative power?
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