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On minimal and maximal clones_ 1

Lészl6 Szabd *f

Abstract
Two minimal clones which generate all operations, and two maximal clones
with trivial intersection are given on 2p-element sets where p > 5 is a prime
number.

1 Intrbduc_tion

Let A be a fixed universe with |A| > 2 and let O4 denote the set of all finitary
operations on A. For 1 < ¢ < n let e} denote the n-ary i-th projection (trivial
operation). Further let J4 = {e}|1 <i < n < oo}. The operations in O4 \ J4 are
called nontrivial operations. By a clone we mean a subset of O 4 which is closed
under superpositions and contains all projections. The set of clones, ordered by
inclusion, forms an algebraic lattice L 4 with least element J 4 and greatest element
O4. For A finite L4 is an atomic and dually atomic lattice with finitely many
atoms and coatoms. The atoms and the coatoms of L4 are called minimal clones
and maximal clones, respectively.

In [4] we showed that for an at least three element finite set A there are three
maximal clones with intersection J 4, and there are three minimal clones with join
O4. If |A] is a prime number then there are two maximal clones and two mini-
mal clones with the above properties. Moreover, we formulated the following two
problems:

Problem 1 Find all natural numbers k for which there ezxist two mazimal clones
on a k-element set A such that their intersection is J 4.

Problem 2 Find all natural numbers k for which there exist two minimal clones
on a k-element set A such that their join s O 4.

This short note is a modest step to answer these problems. Namely, we give
two maximal clones with intersection J4 and two minimal clones with join O 4 on
a 2p-element set A where p is a prime number with p > 5.
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2 Results

We need some more notions. A ternary operation f on A is a majority operation
if for all z,y € A we have f(z,z,y) = f(z,y,z) = f(y,z,z) = z; f is a Mal’cev
operation if f(z,y,y) = f(y,y,z) = z for all z,y € A. An n-ary operation ¢ on A
is said to be an i-th semi-projection (n >3, 1 <i<n)ifforall zy,...,z, € A we
have t(z1,. .., %) = z; whenever at least two elements among z,, .. ., z, are equal.

For a finitary relation p on A the set of operations preserving p forms a clone,
and is denoted by Pol p. ’

Theorem 1 Let A= {0,1,...,2p — 1} where p is a prime number with p > 5 and
put C = {0,1,p,p+ 2}. Let us define a binary relation p and a permutation 7 on
A as follows:

p=1{{a,a)a€ A} U(Cx A U(AxC(C)

and
7=01...p—-Dpp+1 ... 2p-1).

Then Pol p and Pol7 are mazimal clones and Polp N Polw = Pol {p,7} = J 4.
Proof: Taking into consideration the list of maximal clones given by I. G. Rosen-

berg (see e.g. [3]) we have that Pol p and Poln are maximal clones. We need the
following fact which follows immediately from the definitions of C' and =: (*)

For any 7,y € A, = # y, there is a k € {0,...,p = 1} such that zz* € C and
yr* ¢ C. First we establish some properties of the operations in Pol {p,7}. Let

fePol{pn} be. an arbitrary n-ary operation, n > 1.
Claim 1 f(A™) D {0,1....,p—1} or f(A™) 2 {p,p+1....,2p~1}.
This claim follows immediately from the fact that f € Polx.
Claim 2 f(C") CC.
Let ¢1,...,¢, € C. By Claim 1, there are a;,...,a, € A such that

flar,...,a,) € CU{f(c1,-..,cn)}-

Then (ci,a1),...,(¢n,an) € p, and therefore (f(ci,...,cn), flar...,a,)) €
p. From this, taking into consideration the definition of p, it follows that

fler,.-.,en) € C.

Claim 3 f is an idempotent operation.
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Consider the unary operation g(z) = f(z,...,z). If g(0) = 0 and g(p) = p then
g(z) = z for all z € A and f is an idempotent operation. Indeed, in this case for
k=0,...,p—1 we get that '

g(k) = g(07*) = g(0)n* = 0n* =k
and
: 9(p + k) = g(pr*) = g(p)m* = pn* =p+ k.

Therefore we have to show that g(0) = 0 and g(p) = p. By Claim 2,
9(0),9(1) € C ={0,1,p,p+ 2}.
It follows that |
g0 =g(lr ) =g()r ' e Cr ' = {p-1,0,2p—1,p+ 1}
and g(0) = 0. Similarly,

9(p),9lp+2) € C ={0,1,p,p+2}

implies that _ | _
9) =9((p+2)n7%) = glp+2)n* € Cn? = {p-2,p—1,2p - 2,p}
and g(p) = p, completing the proof of Claim 3.
Claim 4 If f is binary then f(z,y) € {z,y} for all z,y € A.

_Let_f be binary and suppose that f{(a,b) = c & {a,b} for some a,b € A. Then,
by (*), ar* € C and cn* ¢ C for some k. Put u = an*, w = cr* and v = brF.
Then

f(u,v) = flan® b7®) = fa,b)7* =cn* =w ¢ C,

and therefore, by Claim 2, we have that v ¢ C. Now ¢ # b, (u,v), (v,v) € p imply
that w # v and (w,v) = (f(v,v), f(v,v)) € p which is not valid.

Claim 5 If f is binary then the restrictions of f to {0,1,...,p—1} and to {p,p+
1...,2p — 1} are projections.

By Claim 4, f(0,1) € {0,1}, and without loss of generality we can suppose that
7(0,1) = 0. Then

flp—-1,00= f0r L, 1n7 )y = fO, )7 ' =0nt =p—1

and
fo~-2,p-1)=f(0r 2177 = f(0,)n 2 =0r 2 =p-2.

Let i € {2,...,p—2}. From
(p—l,O),(O,’L)Ep, (p——177’)¢p a'nd f(O,’L)E{O,'l}
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it follows that
(p—1,£(0,9) = (f(p - 1,0), f(0,4)) € p and [(0,7) = 0.
Similarly, from
(p—2,0),(p—Lp-1)€p (p-2,p-1)¢p and f(0,p—1)€{0,p-1}
it follows that -
(P-2,f0p-1))=(fp-2p-1),f(0,p-1) €p and f(0,p—1)=0.

Hence for any z € {0,1,...,p — 1} we have that f(0,z) = 0, which together with
the fact that f € Polw imply that the restriction of f to {0,1,...,p—1} is the first
projection. One can show by a very similar argument that the restriction of f to
{p,p+1,...,2p— 1} is also projection. '

Claim 6 If f is binary then f is a projection.

Taking into consideration Claim 5, we can suppose without loss of generality
that the restriction of f to {0,1,...,p — 1} is the first projection. First we show
that the restriction of f to {p,p+1,...,2p—1} is also the first projection. In deed,
if the restriction of f to {p,p+ 1,...,2p — 1} is the second projection then from
(2,p),(0,p+ 1) € p we obtain that (2,p+ 1) = (f(2,0), f(p,p + 1)) € p which is
not valid. ‘

If f is not the first projection then for some a € {0,1,...,p — 1} and b €
{p,p+1,...,2p — 1} we have that f(a,b) = bor f(b,a) = a. If f(a,b) = b then
choose a positive integer k such that ar® € C and v = br* ¢ C. Put v = an® and
v = br*. Now

flu,v) = flam® ba*) = f(a,b)n* =ba* = v ¢ C.

Since (2,u),(0,v) € p and 2 # v (because of v = bn* € {p,p+1,...,2p - 1}) it
follows that (2,v) = (f(2,0), f(u,v)) € p which is not valid.

‘If (b,a) = a then choose a positive integer k such that ar® € C and v = br* €
C. Putu= a7r’f and v = br*. Now

flv,u) = F(bn*,an*) = fb,a)n* =ar* =u g C.

and p+ 1 # u (because of u = ar* € {0,1,...,p—1}) it

Since (p+1,v),(p,u) € p
=(f(p+1,p), f(v,u)) € p which is not valid. Hence f is the

follows that (p+ 1,u)
first projection.

Claim 7 f cannot be a Mal’cev operation.

Indeed, if f is a Mal’cev operation, then (2,0),(0,0),(0,3) € p implies that
(2,3) = (f(2,0,0), f(0,0,3)) € p which is not valid.
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Claim 8 f cannot be a nontrivial semi-projection.

Let f be a nontrivial n-ary semi-projection (n > 3). We can suppose that f
is a first semi-projection. Observe that f{c,as...,a,) € C for any ¢ € C and
as,...,a, € A. Indeed, if ¢ € C and ag,...,a, € A then for any a € A we have
(c,a), (az,¢),...,(an,c) € p which implies that '

(flc,as...,an),a) = (f(c,a2,...,a,), fla,c,...,¢)) € p

and f(c,az...,an) € C. Since f is not the first projection f(ai,...,an) =a # a;
for some ai,...,a, € A. Then, by (*), a17* € C and an* € C for some k. It

follows that

flarm®, ... an7®) = f(ay,...,an)7" = an®,

a contradiction.

Claim 9 f cannot be a majority operation.

Let f be a majority operation. First observe that f(a,b,c) € C if at least two
elements among a,b,c belong to C. Indeed, if e.g. a,b € C then for any z € A
from (a,z), (b, z), (z,0) € p it follows that

which implies that f(a,b,c) € C.

Now let a,b,¢ € A be pairwise distinct elements. Clearly, f(a,b,c) is different
from at least two of the elements a, b, ¢, say from a and b. Then, by (*), for some
k we have u = an* € C and t = f(a,b,c)n* ¢ C. Put v = br* and w = en*. Thus

fu,v,w) = fan®, br*, cn®) = f(a,b,c)7* = ¢

and, taking into consideration the above observation, we have that v ¢ C. Since
fla,b,c) # b, therefore v # t and (v,t) & p. On the other hand (v,u), (v,v), (0,w) €
p implies that (v,t) = (f{v,v,0), f(u,v,w)) € p. This contradiction implies that f
cannot be a majority operation. Now we are in a position to complete the proof of

the theorem. If Pol{p, 7} # J4 then there is a nontrivial operation in Pol {p, 7}
which is either a unary operation or an idempotent binary operation or a majority
operation or a Mal’cev operation or a semi-projection (see e.g. [4]). Since , by
Claims 3, 6, 7, 8 and 9, these cases cannot occur we have that Pol{p, 7} =J4. O

Theorem 2 Let A= {0,1,...,2p— 1} where p is a prime number with p > 5 and
let (A;V,A) be the lattice given by the following diagram:
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Let us define a ternary opera,tion'd and a permutation ™ on A as follows:
dz,y,2) = (zAY)V(EA2)V(yA2)

and
n=01p+2 ... 2p-22p-D(p+1p2 ... p—-2p-1).

Then d and w generate minimal clones such that the clone generated by d and « is
O4. ’

Proof: Suppose that A, p, d and 7 satisfy the hypotheses of the theorem. Then
it is ‘known that 7 and d generate minimal clones, respectively (see e.g. [2]). We
. have to show that A = (A4;d, ) is a primal algebra, i.e., every operation on A is a
term operation of A. ‘

First obéerv\e that A has no proper subalgebra. Indeed, the proper subalgebras
of (4;7) are {0,1,p+2,...,2p—2,2p—1} and {p,p+1,2,...,p— 2,p — 1} only.
Furthermore,

dp+2,p+3,p+4)=p¢{0,1,p+2,...,2p—2,2p—1}

and
d(2a3:4):0 g{p7p+1)23"'ap_2ap_1}_'

Since d(z,y,0) = z Ay and d(z,y,2p—1) = zVy for any z,y € A, therefore the
congruence relations of A and (A4; V, A, 7) are the same. One can check easily that
(A; V, A) has two nontrivial congruence relations only. One of them has two blocks

B={0,1,...,p-1} and C={p,p+1,...,2p—-1},
and the blocks of the other are
{k,p+k}, k=0,...,p—- 1.

N
It is easy to check that 7 does not preserve these two equivalence relations. Hence
we have that A is a simple algebra.
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Next we show that the identity map is the only automorphism of A. To show
this let 7 be an automorphism of A. Since 7 is also an automorphism of the algebra
(A;d), for any © € Con (A;d) = Con(A4;V,A) we have that O7 € Con (4;d). It
follows that either Br = B or Bt = C. Hence 7|p is either an automorphism of
(B;d) or an i somorphism between (B;d) and (C;d). For any z € BT we have that

d(z,0r,(p— 1)7) = d(zr™,0,p~ V)7 = (z7™ 17 = .
Using this fact it is easy to show that either {07, (p— 1)1} = {0,p— 1} or {07, (p—
17} ={p,2p—1}. f 07 = p—1 then
1lr=0r)r =0(m7) =0(r7) = 0r)r=(p—1)r=p+1 and Br # B, C.
If 07 = p then ‘
It = (0r)r =0(n7) =0(rm) = (Or)r=pr=2 and BT #B,C.
If 07 = 2p — 1 then
17 = (0m)r =0(n7) =0(rm) = (0r)r=(2p—1)m =0 and Bt #B,C.

Taking into consideration that Bt = B or Bt = (), it follows that 07 = 0. Since
the set of fixed points of 7 is a subalgebra of A therefore 7 is the identity map.
No we are in a position to complete the proof. By [5], every finite, simple,
surjective algebra without proper subalgebra is either quasiprimal or affine or term
equivalent to a matrix power of a unary algebra. Since affine algebras and matrix
powers of unary algebras cannot have majority term operations and d is a majority
operation, we obtain that A is quasiprimal (i.e. every operation on A admitting
all isomorphisms beetwen subalgebras of A is a term operation of A). Taking into
consideration that A has no proper subalgebras and nontrivial automorphisms, it
follows that A is a primal algebra. D
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