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Improving Storage Handling of Interval Methods 
for Global Optimization * 

Csallner A. E. t 

Abstract 
Global nonlinear optimization problems can be solved by interval subdivi-

sion methods with guaranteed reliability. These algorithms are based on the 
branch-and-bound principle and use special storage utilities for the paths not 
pruned from the search tree yet. In this paper the possibilities for the kinds 
of applied storage units are discussed. 

If no ordering is kept in the storage unit then the dependence of the 
number of operations demanded by the storage on the iterations completed 
is quadratic in worst case. On the other hand, ordering the elements as it is 

" necessary for choosing new elements from the storage unit for backtracking, 
the worst case for the number of storage operations done to the fc-th iteration 
has the magnitude k log k. The hybrid method defined in this paper satisfies 
the same complexity properties. It is also proved that the fclogfc magnitude 
is optimal. 

1 Global Optimization and Interval Methods — 
Introduction 

The global optimization problem can be defined in general as follows: 

min f(x) (1) 

where X is a — possibly multidimensional — interval. If we denote the set of real 
intervals by E and / : ]Rn —• 1FL is the objective function of the problem, then 
X 6 ffn. Note, that a great class of real-life bound-constrained global optimization 
problems are covered by (1), e.g., problems where the parameters are given with 
tolerances or if the optimizers are supposed to be inside a parameter region [2]. 

Problem (1) can be solved with verified accuracy with the aid of interval methods 
(see, e.g., [1, 5, 6, 7, 8]). These methods are based on the well-known branch-and-
bound principle. Thus, a search tree is built where the whole search region — the 
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interval X — is the root and the particular levels consist of subintervals which are 
partitions of their parents in the tree. Those branches that cannot be pruned have 
to be stored for later treatment. The kind of the storage method used can be of 
great importance in performance if the increase of the number of intervals to be 
stored is considerable. 

The following outlined algorithm is a model algorithm for interval subdivision 
methods for global optimization. 

Algorithm 1 Model algorithm for interval subdivision methods for global opti-
mization. 

Step 1 Let 5 be an empty storage unit, the actual box A := X, and the iteration 
counter k := 1. 

Step 2 Subdivide A into finite number s > 2 of subintervals Ai satisfying A = UAi 
so that int(Aj) fl int(Aj) = 0 for all i j where 'int! denotes the interior of a 
set. 

Step 3 Let S := S U { A , } . 

Step 4 Discard certain elements from 5. 

Step 5 Choose a new A £ S and delete it from S, S := S\ {A} . 

Step 6 While termination criteria do not hold let k := k + 1 and go to Step 2. 

Steps 3, 4, and 5 are using S, and their running time depends obviously on the 
storage handling of the algorithm. In the following we shall concentrate on these 
parts of the algorithm. 

2 Worst Cases in Storage Handling of Interval 
Subdivision Methods 

Because the efficiency of a branch-and-bound method depends highly on which 
branch, i.e., stored element is chosen as next to be treated, two basically different 
principles can be applied to handle the list. The first is to keep the list ordered 
and always pick up the first (or last) element in that ordering, while the second is 
to let the list be unordered and search for the next element in each step a new one 
is needed. The former saves computational time at picking up the elements, the 
latter at storing them. The time necessary for storage handling can be calculated 
in both cases. 

We shall assume that Step 4 is not involved in the considered algorithm. In 
practice, this is the case in most implementations because cleaning up the stored 
elements is usually done when choosing a new A or before storing the new Ai 
intervals. 
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If the stored elements are unordered then Step 3 consumes some cis operations, 
and Step 5 some c-2151. If there is an ordering present which provides a constant 
time operation for finding the new element A in Step 5 then with a most efficient 
method the newly arisen s subintervals are stored in some C3S log |5|'time and the 
new actual interval A is delivered in constant C4 time. We summarize these results 
in the following lemma. 

Lemma 1 The worst case time complexity of storage handling of Algorithm 1 is 

cis + c2\S\ (2) 

if S is unordered, and 
c3slog|S]+c4 (3) 

if S is ordered. The results apply to a single iteration. 

The algorithm keeps running for some k0 iteration steps, and our goal is now to 
determine the total time consumption of the storage handling for the whole running 
time of the algorithm. 

2.1 Unordered Storage Handling 

If the elements are unordered then we can simply consider the storage unit as a 
sequential list. The next theorem says that in this case the number of storage 
operations depends quadratically on the iterations completed. 

Theorem 2 If S of Algorithm 1 is unordered and the process of finding a new 
actual interval A depends on a certain property of the list elements then the time 
complexity of storage operations up to the ko-th iteration is 

T(s,k0) = O{sk20). (4) 

Proof. From (2) of Lemma 1 it follows that a single iteration step uses c\s + C2|S| 
operations for appending the newly arisen intervals to the list and to find a new 
actual interval, where ci and c-2 are independent constants. The total number of 
storage operations done till the fco-th iteration is hence 

fc0 
T(s, ko) = ^ ( c i s + C2|S|). (5) 

k=1 

Let us check how Algorithm 1 works. After the first iteration at most s elements 
are put onto the empty list, and one of them is picked up as the new actual interval 
in the same iteration. Thus, the number of list elements becomes s — 1. The list 
grows in every iteration by at most s — 1. Hence, at the end of some k-th iteration 
in worst case the number of list elements equals 

\S\=k(s- 1). (6) 
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Now putting (5) and (6) together we have 

T(s, ko) = ¿ ( c i s + c2k(s - 1)) = Clsko + c2(s- (7) 
fc=l 

delivering (4) of the assertion. • 

Note, that the proof does not presume the way of either subdividing or choosing 
a new actual box. Hence, all methods covered by the model Algorithm 1 obey 
Theorem 2. 

2.2 Ordered Storage Handling 

The following result is only sharp if in worst case more than a number of operations 
linear in the storage unit's cardinality is needed to keep the elements in the storage 
unit ordered. 

Theorem 3 If S of Algorithm 1 is kept ordered and the selection of the new actual 
intervals presume considering the elements' ordering then the time complexity of 
storage handling up to iteration ko is 

T(s,k0) = O(sk0{logs + \ogk0)). (8) 

Proof . (3) of Lemma 1 says that storage handling costs C3slog|S| + C4 in each 
iteration, where C3 and C4 are independent constants. Hence, summing this to the 
fco-th iteration we get 

fco 
T(S,fco) = X > 3 s l o g l 5 l + c4)- (9) 

k=1 

On the other hand, from (6) of the proof of Theorem 2 (9) can be extended to 

ko 
T(s,k 0) = £ ( c 3 s l o g ( A ( s - l ) ) + C4)= (10) 

k=1 
ko 

= C3s log fc + c3sk0 l og (s - 1) + c4k0. (11) 
fc=l 

The first term of (11) can be bounded from above using the following inequality: 

/-fco + l "•» rK 0 + i J 
Ylogk < / l og\xdx=-—[zlna ; - i]?0-1"1 = 
r~i 1 l n a 

(12) 
it=i 

^ - { k o + l ) H k o + l ) - p ~ , (13) In a In a 
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where a denotes the base of the logarithm function in question. Note, that its value 
cannot influence the magnitude of the formula. 

Substituting (13) into (11) provides the magnitudes that had to be proved. • 

If s is considered as a constant then till finishing the A:o-th iteration the mag-
nitude of storage handling's time consumption is k0 log ko in worst case, provided 
that any element can be inserted to the ordered storage unit in logarithmic time. 

However, the time consumption's dependence on s is higher by a logs factor 
than in the unordered case (see Theorem 2), though this might not mean heavy 
differences by the usually small values of s. 

2.3 Hybrid Storage Handling 

A further storage handling method can be used which has not been mentioned here 
yet. In reality, this is not a new one but a mixture of those from Subsection 2.1 
and 2.2. The idea is [4] to keep some po elements from the storage unit ordered. 
These elements have to be the first ones regarding to the ordering of the whole. 
Hence, the new actual interval can always be chosen as the first of the ordered part. 
When inserting newly arisen intervals, one of them can supply for the ordered part. 
Otherwise a new element for the ordered part can be searched for in the unordered 
part. In worst case it can occur that for a substantial number of iterations the 
ordered part can only be refilled from the unordered part consuming C(|S| — po) 
time in each iteration. 

Therefore, let us consider the following modification; we shall fix the value of 
po and store oiily the first p (1 < p <Po) elements ordered. The remaining |S| — p 
elements are stored in a simple list. 

Thus, every time a new interval is needed, it can be reached in constant time, 
since the first element of the ordered part does it. The other direction, namely, 
storing new elements is a little bit more difficult. For each new element it is 
checked whether it can be inserted into the ordered part of S. If it is the case, the 
element is inserted. If p = po held before the insertion, the last element is moved to 
the unordered part. If the new element is greater at the present ordering than any 
from the ordered part — assuming the ordering is increasing — then it is pushed 
simply onto the unordered part. This procedure can be done in some c5 logp0 time 
in worst case. Since there are at most s new elements to be inserted, the total 
amount of time needed for the storage operations is 

c5s log po 4- c6 (14) 

together with the constant number of operations for picking up the new actual 
interval. If po was considered as an independent constant, (14) could lead to the 
conclusion that for an arbitrary number ko of iterations the time complexity of 
storage operations is linear in the variable ko. In worst case, however, the ordered 
part can become empty forcing the new element to be chosen from the unordered 
part. Theoretically this can occur arbitrary many times. Thus, we should enhance 
the performance, namely, by doing the following two things: 
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1. We compensate the missing elements of the ordered part only if the ordered 
part runs empty, and then it is filled up with po elements from the unordered 
part. 

2. We do not fix po directly as a constant, but say that it is always a k proportion 
of |S|, where K is a constant. 

We shall call this algorithm the hybrid method. The time complexity of this 
method is described in Theorem 4. 

Theorem 4 Let us implement Algorithm 1 with the storage handling described 
above as the hybrid method. Then the time complexity of storage handling opera-
tions is 

T(s,k0) = O{k0\og(sk0)) (15) 

in worst case. 

Proof. Upon the assumptions the elements are stored in two disjunct units, one is 
ordered, the other is not. If the number of all the elements is |S| then the ordered 
part consists of at most po = /c|S| elements, where 0 < k < 1 hold. 

The procedure of storage handling involves two stages. In worst case, the first 
stage is done through po iterations, i.e., until the ordered part becomes empty. The 
next stage consists of a single iteration, where the ordered part is rebuilt. 

In the second stage filling up the ordered part is done as follows. First of all, 
the first po elements are ordered which needs 

k = c5p0 log p0 ( 1 6 ) 

time. After this, the remaining |5| — po elements have to be inserted into the 
ordered part if possible, each with a logpo time complexity. This can be done with 
the following time consumption: 

t-2 =c 6 (|5| -p 0 ) l ogp 0 - (17) 

From (6) of Theorem 2 we know that in worst case the number of list elements 
after the &o-th iteration is |S| = k0(s — 1). Let us apply this to (17) and add it to 
(16): 

t = c5p0 logpo + C6{k0(s - 1) - Po) logpo- (18) 

It is known that at the iteration in question po equals with a given K. But 
citing (6) of the proof of Theorem 2 again we have 

PO = k|S|=KAO(S-1 ) (19) 

Let us use this to (18): 

t = (c5n + c6(l - n))k0(s - 1) log(Kk0(s - 1)) • (20) 
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These t operations only have to be done periodically after each po iterations, where 
po grows monotonously. Applying amortized analysis t can be apportioned among 
the next po iterations to get the time complexity of storage handling for a single 
iteration in average. If for this the actual |5| is used, we get an underestimation 
due to the increasing value of |5| and hence po- Thus, for the time complexity the 
following holds: 

k^1T(s,ko)<— + c7= * n + C 7 , (21) 
Po KKO (s 1) 

where c7 is the time consumption of the first stage. Applying this to the form for 
t calculated in (20) we have 

K'Tis, ko) < C5K + C6(1~/C) log(«Ao(* " 1)) + c7, (22) 
K, 

delivering the magnitude of (15) after ko iterations. • 

The result of Theorem 4 is a nice enhancement in storage handling. To reach it 
we had to make two further assumptions previous to the theorem. None of them 
can be left away unless damaging the bound of (15). Namely, if the ordered part is 
supplied continually then in worst case the time complexity becomes the same as in 
the unordered case (see Theorem 2). On the other hand, if p0 is a value independent 
from |S| then the amortized analysis leaves a term containing fco on first degree in 
the formula also resulting in a quadratic time complexity in ko similar to (4). 

From the three investigated methods the dependence on s is far the best with 
its log s complexity. This magnitude means that in practice — where s > 8 hardly 
ever occurs — the influence of s is unimportant. 

Moreover, for the dependence on the number ko of iterations the following the-
orem holds. 

Theorem 5 For the time complexity dependence on the number ko of iterations 
the magnitude ko log ko is optimal in worst case. 

Proof. It will be proved that if it was not optimal then an algorithm could be 
given to order n elements in less than O(nlogn) time in worst case. 

Let the n data to be ordered be denoted by ai, a-2, . . . , an. We can determine 
the max := maxi=iv.. in a* value in linear time, and let a be greater regarding to the 
ordering than max. Then the algorithm is the following. We take a list handling 
method for interval subdivision methods which has a smaller time complexity than 
fco log fco provided the algorithm is stopped after ko iterations. Now we place the 
data into the storage unit and begin to select elements from it as the ordering desires 
it. Instead of each element removed at least two further instances of the value a is 
put into the storage unit. After n iterations the original data are taken from the 
storage unit in the right order in less than nlogn time which is a contradiction. • 

Corollary 6 The ordered and hybrid list handling methods for interval branch-
and-bound algorithms are both optimal. 
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2.4 List Handling of Hansen Methods 

In the previous three subsections it has been assumed that the sequence of storing 
and recalling elements of the storage unit have not necessarily the same order. 
However, E.R. Hansen's subdivision method [5, 8] selects the oldest element waiting 
in the storage unit — which is a simple FIFO list in this case — in Step 5 of 
Algorithm 1, thus, the time complexity for a single iteration is constant. The time 
complexity after ko iterations is linear in the variable ko. The reason for using the 
algorithm of Hansen yet quite rarely is that its convergence speed is in best case 
the same (see [3]) as of all efficiently converging interval subdivision methods in 
worst case. 

3 Best Cases and Concluding Remarks 
It is obvious that no storage handling can perform better than linearly depending 
on the number of iterations since there must be a few storage handling acts in 
every iteration. A straight consequence of this fact and of the properties discussed 
in Subsection 2.4 is that the Hansen methods achieve this linear dependence. 

Upon the worst cases the unordered and mixed storage handling methods are 
the worst with their quadratic dependence. For the unordered handling this is 
the best case, as well, because looking up all list elements for choosing the new 
actual box cannot be avoided, at all. For the mixed handling it can occur that 
a newly arisen subinterval can always immediately be inserted into the ordered 
part consuming constant time in k0. Thus, the best case behavior shows linear 
dependence. 

The same thoughts lead to the statements about the ordered and hybrid han-
dling methods. These methods both have linear time complexity in best case con-
cerning the number of iterations made. 

The optimal storage handling time complexity is ko log ko — where k0 denotes 
the iteration of termination — for interval branch-and-bound methods if the order 
of the sequence of resulting elements is not necessarily the same as that of the 
recalled elements. 

This optimal complexity is obtained for the ordered storage types and the hybrid 
method. 

If the algorithm itself provides the ordering of new elements then the worst 
case is the same as the best case, i.e., linear regarding to the iterations completed 
(Hansen algorithm). 

The best and worst cases for the rest of the methods are summarized below: 

Method Best Case Worst Case 
Unordered k'2 0 k'1 K0 
Ordered k0 k0 log k0 

Mixed k0 k2 0 
Hybrid k0 k0 log k0 
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Note, that the worst case of the ordered storage handling is only true if a best 
implementation, i.e., a balanced search tree is used. Otherwise the worst case can 
also grow to kg as for the unordered case. 

Average cases cannot be treated simply deriving them from the best and worst 
cases, respectively, since the interval branch-and-bound methods can be applied 
to every programmable function and thus their influence to the storage's behavior 
cannot be predicted in general. Numerical tests are in progress but they are not at 
hand at the present. 
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