
Acta Cybernetica 13 (1998) 413-421.

Improving Storage Handling of Interval Methods
for Global Optimization *

Csallner A. E. t

Abstract
Global nonlinear optimization problems can be solved by interval subdivi-

sion methods with guaranteed reliability. These algorithms are based on the
branch-and-bound principle and use special storage utilities for the paths not
pruned from the search tree yet. In this paper the possibilities for the kinds
of applied storage units are discussed.

If no ordering is kept in the storage unit then the dependence of the
number of operations demanded by the storage on the iterations completed
is quadratic in worst case. On the other hand, ordering the elements as it is

" necessary for choosing new elements from the storage unit for backtracking,
the worst case for the number of storage operations done to the fc-th iteration
has the magnitude k log k. The hybrid method defined in this paper satisfies
the same complexity properties. It is also proved that the fclogfc magnitude
is optimal.

1 Global Optimization and Interval Methods —
Introduction

The global optimization problem can be defined in general as follows:

min f(x) (1)

where X is a — possibly multidimensional — interval. If we denote the set of real
intervals by E and / :]Rn —• 1FL is the objective function of the problem, then
X 6 ffn. Note, that a great class of real-life bound-constrained global optimization
problems are covered by (1), e.g., problems where the parameters are given with
tolerances or if the optimizers are supposed to be inside a parameter region [2].

Problem (1) can be solved with verified accuracy with the aid of interval methods
(see, e.g., [1, 5, 6, 7, 8]). These methods are based on the well-known branch-and-
bound principle. Thus, a search tree is built where the whole search region — the

•This work has been supported by the Grants O T K A T017241, F025743, and FKFP 0739/1997.
Presented at the Conference of PhD Students on Computer Science, July 18-22 1998, Szeged.

tDepartment of Computer Science, Juhász Gyula Teacher Training College, 6725 Szeged,
Boldogasszony sgt. 6, Hungary, e-mail: csa l lnerSjgyt f .u -szeged .hu

413

414 Csaliner A. E.

interval X — is the root and the particular levels consist of subintervals which are
partitions of their parents in the tree. Those branches that cannot be pruned have
to be stored for later treatment. The kind of the storage method used can be of
great importance in performance if the increase of the number of intervals to be
stored is considerable.

The following outlined algorithm is a model algorithm for interval subdivision
methods for global optimization.

Algorithm 1 Model algorithm for interval subdivision methods for global opti-
mization.

Step 1 Let 5 be an empty storage unit, the actual box A := X, and the iteration
counter k := 1.

Step 2 Subdivide A into finite number s > 2 of subintervals Ai satisfying A = UAi
so that int(Aj) fl int(Aj) = 0 for all i j where 'int! denotes the interior of a
set.

Step 3 Let S := S U { A , } .

Step 4 Discard certain elements from 5.

Step 5 Choose a new A £ S and delete it from S, S := S\ {A} .

Step 6 While termination criteria do not hold let k := k + 1 and go to Step 2.

Steps 3, 4, and 5 are using S, and their running time depends obviously on the
storage handling of the algorithm. In the following we shall concentrate on these
parts of the algorithm.

2 Worst Cases in Storage Handling of Interval
Subdivision Methods

Because the efficiency of a branch-and-bound method depends highly on which
branch, i.e., stored element is chosen as next to be treated, two basically different
principles can be applied to handle the list. The first is to keep the list ordered
and always pick up the first (or last) element in that ordering, while the second is
to let the list be unordered and search for the next element in each step a new one
is needed. The former saves computational time at picking up the elements, the
latter at storing them. The time necessary for storage handling can be calculated
in both cases.

We shall assume that Step 4 is not involved in the considered algorithm. In
practice, this is the case in most implementations because cleaning up the stored
elements is usually done when choosing a new A or before storing the new Ai
intervals.

Improving Storage Handling of Interval Methods for Global Optimization 415

If the stored elements are unordered then Step 3 consumes some cis operations,
and Step 5 some c-2151. If there is an ordering present which provides a constant
time operation for finding the new element A in Step 5 then with a most efficient
method the newly arisen s subintervals are stored in some C3S log |5|'time and the
new actual interval A is delivered in constant C4 time. We summarize these results
in the following lemma.

Lemma 1 The worst case time complexity of storage handling of Algorithm 1 is

cis + c2\S\ (2)

if S is unordered, and
c3slog|S]+c4 (3)

if S is ordered. The results apply to a single iteration.

The algorithm keeps running for some k0 iteration steps, and our goal is now to
determine the total time consumption of the storage handling for the whole running
time of the algorithm.

2.1 Unordered Storage Handling

If the elements are unordered then we can simply consider the storage unit as a
sequential list. The next theorem says that in this case the number of storage
operations depends quadratically on the iterations completed.

Theorem 2 If S of Algorithm 1 is unordered and the process of finding a new
actual interval A depends on a certain property of the list elements then the time
complexity of storage operations up to the ko-th iteration is

T(s,k0) = O{sk20). (4)

Proof. From (2) of Lemma 1 it follows that a single iteration step uses c\s + C2|S|
operations for appending the newly arisen intervals to the list and to find a new
actual interval, where ci and c-2 are independent constants. The total number of
storage operations done till the fco-th iteration is hence

fc0
T(s, ko) = ^ (c i s + C2|S|). (5)

k=1

Let us check how Algorithm 1 works. After the first iteration at most s elements
are put onto the empty list, and one of them is picked up as the new actual interval
in the same iteration. Thus, the number of list elements becomes s — 1. The list
grows in every iteration by at most s — 1. Hence, at the end of some k-th iteration
in worst case the number of list elements equals

\S\=k(s- 1). (6)

416 Csaliner A. E.

Now putting (5) and (6) together we have

T(s, ko) = ¿ (c i s + c2k(s - 1)) = Clsko + c2(s- (7)
fc=l

delivering (4) of the assertion. •

Note, that the proof does not presume the way of either subdividing or choosing
a new actual box. Hence, all methods covered by the model Algorithm 1 obey
Theorem 2.

2.2 Ordered Storage Handling

The following result is only sharp if in worst case more than a number of operations
linear in the storage unit's cardinality is needed to keep the elements in the storage
unit ordered.

Theorem 3 If S of Algorithm 1 is kept ordered and the selection of the new actual
intervals presume considering the elements' ordering then the time complexity of
storage handling up to iteration ko is

T(s,k0) = O(sk0{logs + \ogk0)). (8)

Proof . (3) of Lemma 1 says that storage handling costs C3slog|S| + C4 in each
iteration, where C3 and C4 are independent constants. Hence, summing this to the
fco-th iteration we get

fco
T(S,fco) = X > 3 s l o g l 5 l + c4)- (9)

k=1

On the other hand, from (6) of the proof of Theorem 2 (9) can be extended to

ko
T(s,k 0) = £ (c 3 s l o g (A (s - l)) + C4)= (10)

k=1
ko

= C3s log fc + c3sk0 l og (s - 1) + c4k0. (11)
fc=l

The first term of (11) can be bounded from above using the following inequality:

/-fco + l "•» rK 0 + i J
Ylogk < / l og\xdx=-—[zlna ; - i]?0-1"1 =
r~i 1 l n a

(12)
it=i

^ - { k o + l) H k o + l) - p ~ , (13) In a In a

Improving Storage Handling of Interval Methods for Global Optimization 417

where a denotes the base of the logarithm function in question. Note, that its value
cannot influence the magnitude of the formula.

Substituting (13) into (11) provides the magnitudes that had to be proved. •

If s is considered as a constant then till finishing the A:o-th iteration the mag-
nitude of storage handling's time consumption is k0 log ko in worst case, provided
that any element can be inserted to the ordered storage unit in logarithmic time.

However, the time consumption's dependence on s is higher by a logs factor
than in the unordered case (see Theorem 2), though this might not mean heavy
differences by the usually small values of s.

2.3 Hybrid Storage Handling

A further storage handling method can be used which has not been mentioned here
yet. In reality, this is not a new one but a mixture of those from Subsection 2.1
and 2.2. The idea is [4] to keep some po elements from the storage unit ordered.
These elements have to be the first ones regarding to the ordering of the whole.
Hence, the new actual interval can always be chosen as the first of the ordered part.
When inserting newly arisen intervals, one of them can supply for the ordered part.
Otherwise a new element for the ordered part can be searched for in the unordered
part. In worst case it can occur that for a substantial number of iterations the
ordered part can only be refilled from the unordered part consuming C(|S| — po)
time in each iteration.

Therefore, let us consider the following modification; we shall fix the value of
po and store oiily the first p (1 < p <Po) elements ordered. The remaining |S| — p
elements are stored in a simple list.

Thus, every time a new interval is needed, it can be reached in constant time,
since the first element of the ordered part does it. The other direction, namely,
storing new elements is a little bit more difficult. For each new element it is
checked whether it can be inserted into the ordered part of S. If it is the case, the
element is inserted. If p = po held before the insertion, the last element is moved to
the unordered part. If the new element is greater at the present ordering than any
from the ordered part — assuming the ordering is increasing — then it is pushed
simply onto the unordered part. This procedure can be done in some c5 logp0 time
in worst case. Since there are at most s new elements to be inserted, the total
amount of time needed for the storage operations is

c5s log po 4- c6 (14)

together with the constant number of operations for picking up the new actual
interval. If po was considered as an independent constant, (14) could lead to the
conclusion that for an arbitrary number ko of iterations the time complexity of
storage operations is linear in the variable ko. In worst case, however, the ordered
part can become empty forcing the new element to be chosen from the unordered
part. Theoretically this can occur arbitrary many times. Thus, we should enhance
the performance, namely, by doing the following two things:

418 Csaliner A. E.

1. We compensate the missing elements of the ordered part only if the ordered
part runs empty, and then it is filled up with po elements from the unordered
part.

2. We do not fix po directly as a constant, but say that it is always a k proportion
of |S|, where K is a constant.

We shall call this algorithm the hybrid method. The time complexity of this
method is described in Theorem 4.

Theorem 4 Let us implement Algorithm 1 with the storage handling described
above as the hybrid method. Then the time complexity of storage handling opera-
tions is

T(s,k0) = O{k0\og(sk0)) (15)

in worst case.

Proof. Upon the assumptions the elements are stored in two disjunct units, one is
ordered, the other is not. If the number of all the elements is |S| then the ordered
part consists of at most po = /c|S| elements, where 0 < k < 1 hold.

The procedure of storage handling involves two stages. In worst case, the first
stage is done through po iterations, i.e., until the ordered part becomes empty. The
next stage consists of a single iteration, where the ordered part is rebuilt.

In the second stage filling up the ordered part is done as follows. First of all,
the first po elements are ordered which needs

k = c5p0 log p0 (1 6)

time. After this, the remaining |5| — po elements have to be inserted into the
ordered part if possible, each with a logpo time complexity. This can be done with
the following time consumption:

t-2 =c 6 (|5| -p 0) l ogp 0 - (17)

From (6) of Theorem 2 we know that in worst case the number of list elements
after the &o-th iteration is |S| = k0(s — 1). Let us apply this to (17) and add it to
(16):

t = c5p0 logpo + C6{k0(s - 1) - Po) logpo- (18)

It is known that at the iteration in question po equals with a given K. But
citing (6) of the proof of Theorem 2 again we have

PO = k|S|=KAO(S-1) (19)

Let us use this to (18):

t = (c5n + c6(l - n))k0(s - 1) log(Kk0(s - 1)) • (20)

Improving Storage Handling of Interval Methods for Global Optimization 419

These t operations only have to be done periodically after each po iterations, where
po grows monotonously. Applying amortized analysis t can be apportioned among
the next po iterations to get the time complexity of storage handling for a single
iteration in average. If for this the actual |5| is used, we get an underestimation
due to the increasing value of |5| and hence po- Thus, for the time complexity the
following holds:

k^1T(s,ko)<— + c7= * n + C 7 , (21)
Po KKO (s 1)

where c7 is the time consumption of the first stage. Applying this to the form for
t calculated in (20) we have

K'Tis, ko) < C5K + C6(1~/C) log(«Ao(* " 1)) + c7, (22)
K,

delivering the magnitude of (15) after ko iterations. •

The result of Theorem 4 is a nice enhancement in storage handling. To reach it
we had to make two further assumptions previous to the theorem. None of them
can be left away unless damaging the bound of (15). Namely, if the ordered part is
supplied continually then in worst case the time complexity becomes the same as in
the unordered case (see Theorem 2). On the other hand, if p0 is a value independent
from |S| then the amortized analysis leaves a term containing fco on first degree in
the formula also resulting in a quadratic time complexity in ko similar to (4).

From the three investigated methods the dependence on s is far the best with
its log s complexity. This magnitude means that in practice — where s > 8 hardly
ever occurs — the influence of s is unimportant.

Moreover, for the dependence on the number ko of iterations the following the-
orem holds.

Theorem 5 For the time complexity dependence on the number ko of iterations
the magnitude ko log ko is optimal in worst case.

Proof. It will be proved that if it was not optimal then an algorithm could be
given to order n elements in less than O(nlogn) time in worst case.

Let the n data to be ordered be denoted by ai, a-2, . . . , an. We can determine
the max := maxi=iv.. in a* value in linear time, and let a be greater regarding to the
ordering than max. Then the algorithm is the following. We take a list handling
method for interval subdivision methods which has a smaller time complexity than
fco log fco provided the algorithm is stopped after ko iterations. Now we place the
data into the storage unit and begin to select elements from it as the ordering desires
it. Instead of each element removed at least two further instances of the value a is
put into the storage unit. After n iterations the original data are taken from the
storage unit in the right order in less than nlogn time which is a contradiction. •

Corollary 6 The ordered and hybrid list handling methods for interval branch-
and-bound algorithms are both optimal.

420 Csaliner A. E.

2.4 List Handling of Hansen Methods

In the previous three subsections it has been assumed that the sequence of storing
and recalling elements of the storage unit have not necessarily the same order.
However, E.R. Hansen's subdivision method [5, 8] selects the oldest element waiting
in the storage unit — which is a simple FIFO list in this case — in Step 5 of
Algorithm 1, thus, the time complexity for a single iteration is constant. The time
complexity after ko iterations is linear in the variable ko. The reason for using the
algorithm of Hansen yet quite rarely is that its convergence speed is in best case
the same (see [3]) as of all efficiently converging interval subdivision methods in
worst case.

3 Best Cases and Concluding Remarks
It is obvious that no storage handling can perform better than linearly depending
on the number of iterations since there must be a few storage handling acts in
every iteration. A straight consequence of this fact and of the properties discussed
in Subsection 2.4 is that the Hansen methods achieve this linear dependence.

Upon the worst cases the unordered and mixed storage handling methods are
the worst with their quadratic dependence. For the unordered handling this is
the best case, as well, because looking up all list elements for choosing the new
actual box cannot be avoided, at all. For the mixed handling it can occur that
a newly arisen subinterval can always immediately be inserted into the ordered
part consuming constant time in k0. Thus, the best case behavior shows linear
dependence.

The same thoughts lead to the statements about the ordered and hybrid han-
dling methods. These methods both have linear time complexity in best case con-
cerning the number of iterations made.

The optimal storage handling time complexity is ko log ko — where k0 denotes
the iteration of termination — for interval branch-and-bound methods if the order
of the sequence of resulting elements is not necessarily the same as that of the
recalled elements.

This optimal complexity is obtained for the ordered storage types and the hybrid
method.

If the algorithm itself provides the ordering of new elements then the worst
case is the same as the best case, i.e., linear regarding to the iterations completed
(Hansen algorithm).

The best and worst cases for the rest of the methods are summarized below:

Method Best Case Worst Case
Unordered k'2 0 k'1 K0
Ordered k0 k0 log k0

Mixed k0 k2 0
Hybrid k0 k0 log k0

Improving Storage Handling of Interval Methods for Global Optimization 421

Note, that the worst case of the ordered storage handling is only true if a best
implementation, i.e., a balanced search tree is used. Otherwise the worst case can
also grow to kg as for the unordered case.

Average cases cannot be treated simply deriving them from the best and worst
cases, respectively, since the interval branch-and-bound methods can be applied
to every programmable function and thus their influence to the storage's behavior
cannot be predicted in general. Numerical tests are in progress but they are not at
hand at the present.

References
[1] Alefeld G. and Herzberger J. (1983), Introduction to Interval Computations,

Academic Press, New York.

[2] Csallner A.E. (1993), Global Optimization in Separation Network Synthesis,
Hungarian Journal of Industrial Chemistry, 21, pp. 303-308.

[3] Csallner A.E. and Csendes T. (1995), Convergence Speed of Interval Methods
for Global Optimization and the Joint Effects of Algorithmic Modifications,
IMACS/ GAMM SCAN-95 Conference, p. 33, Wuppertal, Germany, Septem-
ber 26-29, 1995.

[4] Csendes T. and Pintér J. (1993), The Impact of Accelerating Tools on the
Interval Subdivision Algorithm for Global Optimization, European Journal on
Operational Research, 65, pp. 314-320.

[5] Hansen E.R. (1992), Global Optimization Using Interval Analysis, Marcel
Dekker, New York.

[6] Kearfott R.B. (1996), Rigorous Global Search: Continuous Problems, Kluwer,
Dordrecht.

[7] Moore, R.E. (1966), Interval Analysis, Prentice Hall, Englewood Cliffs NJ.

[8] Ratschek H. and Rokne J. (1993), Interval Methods, In: Handbook of Global
Optimization, Horst R. and Pardalos P.M. (eds.), Kluwer, Dordrecht, pp. 751-
828.

