
Acta Cybernetica 13 (1998) 423-429.

Minimizing the number of tardy jobs on a single
machine with batch setup times *

Günter Rote t Gerhard J. Woeginger*

Abstract
This paper investigates a single-machine sequencing problem where the

jobs are divided into families, and where a setup time is incurred whenever
there is a switch from a job in one family to a job in another family. This setup
only depends on the family of the job next to come and hence is sequence
independent. The jobs are due-dated, and the objective is to find a sequence
of jobs that minimizes the number of tardy jobs.

The special case of this problem where in every family the jobs have at
most two different due dates is known to be A,''P-coniplete [Bruno & Downey,
1978]. The main result of this paper is a polynomial time algorithm for the
remaining open case where in every family all the jobs have the same due
date. This case may be formulated as a dual resource allocation problem
with a tree-structured constraint system, which can be solved to optimality
in polynomial time.

Keywords, sequencing; scheduling; batch setup times; number of tardy jobs.

1 Introduction
This paper deals with the following scheduling problem. There are N jobs JI,..., JN

that are to be processed without interruption on a single machine. All jobs are
available for processing at time zero. The set of jobs is divided into F families; a
setup time SJ is associated to each family / = 1 , . . . ,F. Whenever a job in family /
is processed, this incurs the setup time Sf unless another job from the same family
is processed immediately before this job. The machine can execute at most one job
at a time, and it cannot perform any processing while undergoing a setup. Job Jj
(j = 1,... ,ri) has a positive integer processing time pj, and an integer due date dj.
In a schedule cr, we denote by Cj(a) the completion time of job Jj (j = 1 , . . . ,n).

"This research has been supported by the START program Y43-MAT of the Austrian Min-
istry of Science, and by the Spezialforschungsbereich Optimierung und Kontrolle, Projektbereich
Disckrete Optimierung.

tlnstitut fur Mathematik B, TU Graz, Steyrergasse 30, A-8010 Graz, Austria, e-mail:
ro te8opt .math . tu-graz .ac .at .

tlnstitut fur Mathematik B, TU Graz, Steyrergasse 30, A-§010 Graz, Austria, e-mail:
gvoegiQopt .math.tu-graz.ac .at .

423

424 Günter Rote, Gerhard J. Woeginger

If Cj{o) > dj, then job J, is tardy and we set Uj = 1. If Cj(a) < dj, then job Jj is
processed on-time and we set Uj = 0. The objective is to find a processing order
of the jobs that minimizes Uj, i.e. the number of tardy jobs. In the standard
scheduling notation (cf. Lawler, Lenstra, Rinnooy Kan & Shmoys [5] and Potts &
van Wassenhove [8]), this problem is denoted by 11 sj \ Y,Uj- For related problems
and for practical applications involving batch setup times, the interested reader is
referred to Monma & Potts [6], Potts & van Wassenhove [8], and Webster & Baker
[9].

A special case of 11 s/ | Y , U j t h e feasibility testing problem, i.e. the problem
of deciding whether there is a feasible schedule in which all jobs of a given instance
are on-time. Bruno & Downey [1] prove that the feasibility testing problem is
NV-hard, even if there are only two distinct deadlines per family. An instance of
11 sf I 12 Uj where in every family all jobs have the same due date, is said to have
uniform family due dates. In this paper we will show that the problem with uniform
family due dates is solvable in polynomial time. This special case is sufficiently
general to contain the problem 111 J^Uj without batch setup times (in 111 ^ Uj,
every jobs forms its own family and all family setup times are zero). Hence, our
result generalizes the well-known polynomial time algorithm of Moore [7].

Our solution approach to 11 s j | Y Uj is as follows: We formulate 11 s/ | J2Uj
with uniform family due dates as a dual resource allocation problem with tree-
structured constraints (cf. Section 3). Since this dual resource allocation problem
can be solved in polynomial time by dynamic programming (cf. Section 2), the
scheduling problem itself can be solved in polynomial time.

2 A dual resource allocation problem
The resource allocation problem (cf. Ibaraki & Katoh [3]) is a well-known optimiza-
tion problem with a (possibly) complex objective function under a single, extremely
simple constraint. In the dual resource allocation problem (cf. Katoh, Ibaraki &
Mine [4] or Section 10.1 in [3]), the roles are exchanged and the objective function is
simple whereas the constraint system may be messy. In this section, we investigate
the following dual resource allocation problem (DAP).

E / = i ® /

E / € s 9f(xf) < cs for all S G S
< 0 < xf <nf f = l,...,F
„ xf integer / = 1 , . . . ,F

For 1 < / < F, the function gf.[0,rif] - » IR is an arbitrary function which is
specified as an ordered list of pairs {x,g/(x)), x = 0 , . . . ,nj. The values n / , 1 <
/ < F, are positive integers. The set system S is a system of non-empty sets over
{ 1 , . . . , F } . For every S E S, the value c$ is an arbitrary real number.

max

(DAP)
s.t.

Minimizing the number of tardy jobs 425

Moreover, denote n = Observe that n > F holds and that by the
specification of the functions <?/, the numbers n/ and n are essentially encoded in
unary.

Proposition 2.1 The dual allocation problem (DAP) is an AfV-hard problem.

Proof. The statement may be proved e.g. via a reduction from INDEPENDENT
SET IN GRAPHS (cf. Garey k Johnson [2]): Given a graph G = (V,E), find
the maximum number of pairwise non-adjacent vertices. For every vertex Vf £ V,
introduce a corresponding variable x j in (DAP) with the interpretation "Xf = 1"
if Vf belongs to the independent set and "xf = 0" otherwise. Moreover, set n/ = 1,
<7/(0) = 0 and Qf(1) = 1. For every edge e = (vf, «/,.)• introduce the set { / , h} in S
and set C{//,} = 1. Then the optimal objective value of (DAP) yields the size of
the maximum independent set in G. •

A set system S is called tree-structured if 0 S and for all S', S" £ S,

S' C S" or S" C S' or S' n 5 " = 0.

With a tree-structured set system S, we associate a directed in-forest T(S) as
follows: For every set S £ S the forest contains a corresponding vertex; in the
following we will not distinguish between a set 5 and its corresponding vertex.
There is a directed edge from a set S' to another set S" in !F(S) if and only if
S' C S" and there is no S'" in S with S' ± S'" ± S' and S' c S'" C 5" . Clearly,
every vertex in T(S) has out-degree at most one. Adding all singleton sets to
S does not destroy the tree-structured property. But then, the forest ^"(5) has
F leaves, and the remaining vertices have indegree at least 2. It follows that a
tree-structured family S contains at most 2F — 1 sets.

Lemma 2.2 For any instance I — (n /,()/, S. c,s) of (DAP) with tree-structured
S, one can construct in 0(n + F2) time another instance /' = (rif,gf,S',c's) of
(DAP) such that the following conditions are fulfilled.

(CI) I and V are equivalent, i.e. they have the same set of optimal solutions and
the same optimal objective value.

(C2) The set system S' in I' is tree-structured; |<S'| = 2F — 1 holds; the in-forest
T(S') associated with S' is a binary in-tree.

Proof. We construct / ' in two steps by adding more sets to S. We set the right-
hand sides c's of all the corresponding new inequalities to the global upper bound
c* = max{0,maxo<x<n/ g/(x)}, which makes them redundant. Initialize
S' := S and for all S £ S set c's = cS- 'If { / } $ S' for some f £ {1,...,F} then
add the new set { / } to <S'. If { 1 , . . . , F} S' then add the new set { 1 , . . . , F} to
5'.

In the second step, repeat the following procedure as long as some vertex S in
J-(S') has three or more in-going edges: Let S^ and Sj2 be two arbitrary children of

426 Günter Rote, Gerhard J. Woeginger

S in add the set S' = S^ US,2 to S'. By iterating this procedure, eventually
every interior vertex in !F(S') will have in-degree two and condition (C2) will be
fulfilled. This completes the construction of instance I ' . It can be verified that / '
is equivalent to I and hence, conditions (Cl) and (C2) are both fulfilled.

It remains to discuss the time complexity. The first step is easily done in
0(n + F) time. In the beginning of the second step, compute the current forest
J-(S') as follows. First construct a simple, undirected, loopless auxiliary graph with
vertex set S': For every / = 1,... ,F and for every S', S" 6 S' with / e S' and
/ 6 S" , put an edge between S' and S" into the auxiliary graph. The auxiliary
graph can be constructed in 0(F2) overall time. Then for S € S1, S ^ { 1 , F } ,
the unique out-going edge in T(S') goes to the set S' where (i) S ' is adjacent to
S in the auxiliary graph, (ii) |S'| > |S|, and (iii) |S'| is smallest possible under
these conditions. In this way, the forest F(S') for S' at the beginning of the second
step can be computed in 0(F2) time from the auxiliary graph. Getting rid of the
vertices with in-degree greater than two can be done by locally manipulating JF(iS');
it is routine to implement it in 0{F2) overall time. •

Theorem 2.3 The special case of the dual allocation problem (DAP) where S is
tree-structured is solvable in 0(n2) time.

Proof. First we apply Lemma 2.2 to get in 0(n + F2) time an equivalent instance
where 3-(S) is a binary tree. Let S i , . . . , S2F-1 be an enumeration of the sets in S,
such that Si C Sj implies i < j. For S € S, let n(S) = E / e s nf •

The remaining argument will be done by dynamic programming. Define a two-
dimensional array A[i,t] where 1 < i < 2F — 1 and 0 < t < n with the following
meaning: The value A[i, ¿} is the smallest g* for which there exist values x*j. f £ St,
such that

(A1) Efes 9f (x*f) ^ c s holds for all S € S C Si.

(A2) E f € S i * } = * •
(A3) E / € 5 i .9/(z/) = <?*•

If no values x*j fulfilling (Al) and (A2) exist, then A\i,i] = +00. This happens
for example when I > n(Si). Hence from now on, we will only deal with entries
A[i,i] for which I < n(Si). We compute the entries A[i. £} in increasing order of i.
If |S»| = 1, let Si = { / } and set for 0 < i < nf

* M = i " (0 i f " W S c s (i) I + 0 0 otherwise.

If |Si| > 1, let Si = S0 U Sb with a < b < i, where Sa and St are the two children
of Si in T(S). Then for I < n(Si),

j min { A[a, k] + A[b, i - k] : 0 < k < n(S„), 0 < t - k < n(Sb) }
A^i, £\ — \ (2)

I + 0 0 if this minimum is greater than cs{ •

Minimizing the number of tardy jobs 427

It can be verified that with the above definitions, (A1)-(A3) are always fulfilled for
g* = A[i, £}. In the end, the optimal objective value of (DAP) equals the maximum
I for which A[2F - 1,1] takes a finite value.

Let us analyze the time needed to compute all values A[i,i], Denote by T(i)
the total time needed to handle all finite entries A[j,£] with 0 < i < n and Sj C Si.
Then for |Si| = 1 with S, = { / } , (1) implies that

T(i) = COnstx-71/ = consti • n(Si). (3)

If |Sj| > 1, let Sa and St, be the two children of Sj in T(S). Note that a < b < i,
that Si = Sa U St, and that n(Si.) = n(Stt) + n(St) holds. We claim that

T(i) = T(a) + T(b) + const2 • n(Sa) • n(Sb). (4)

This can be seen as follows. The time T(i) consists of the total time for handling
all entries A[j,£\ with 0 < I < n and Sj C Sa or Sj C St, plus the total time for
handling all entries A[i,i] with 0 < £ < n. For every a, 0 < a < n(Sa), and for
every /?, 0 < (3 < n(Sb), in (2) there is exactly one step performed with k = a and
£ — k = p. Hence, the total time for handling the entries A{i,i) with 0 < I < n(Si)
is proportional to n(Sa) -n(Sb). Hence, (4) indeed holds. By induction, one proves
from (3) and (4) that

T{i) < const • n(Si)2.

Consequently, the total time T(2F — 1) needed for computing all entries is 0(n2).
Since F < n, the time spent'on applying Lemma 2.2 is also 0(n2). Summarizing,
this yields the running time claimed in the statement of the theorem.

Finally, we remark that by storing appropriate auxiliary information in the
dynamic program and by doing some backtracking, one can also explicitly compute
the values xf in an optimal solution; this increases the running time by only a
constant factor. Since these are standard techniques, we do not elaborate on them.

•

3 Solution of the scheduling problem
In this section we discuss the scheduling problem 11 s / \ Uj that has been de-
fined in the introduction. The following observation follows via straightforward job
interchange arguments.

Observation 3.1 For any instance ofl\sf\ Y^Uj with uniform family due dates,
there is an optimal schedule of the following form.

(i) For every family, the on-time jobs of that family are processed consecutively;
hence, the setup for each family is performed at most once.

(ii) In each family, the on-time jobs are the shortest jobs of the family. •

428 Günter Rote, Gerhard J. Woeginger

For / = 1 , . . . , F, denote by df the due date of the jobs in family / . Without loss
of generality assume that d\ < do < • • • < dp. Let n / , / = 1,... ,F, denote the
number of jobs in family / , and let p/^ < p/,2 < • • • < Pf,n, denote their processing
times. Moreover, define

9f(x) =

For / = 1 ,...,F, introduce 5 / = { 1 , . . . , / } and set cs, = df. Define S =
{ 5 I , . . . , 5 F } . Finally, denote by Xf the number of on-time jobs from family / ,
f=l,...,F.

With this choice of parameters, the dual allocation problem (DAP) is equivalent
to 11 Sf | Y, Uj with uniform family due dates. Moreover, S is tree-structured and
hence Theorem 2.3 implies the main result of this paper:

Theorem 3.2 The special case of 11 sj | Uj with uniform family due dates is
solvable in 0(n2) time. •

Acknowledgement. The authors thank Bettina Klinz for several valuable discus-
sions and for providing pointers to the literature on allocation problems.

References
[1] J. BRUNO AND P. DOWNEY, Complexity of task sequencing with deadlines,

set-up times, and changeover costs, SIAM Journal on Computing 7, 1978,
393-404.

[2] M.R. GAREY AND D.S. JOHNSON, Computers and Intractability, A Guide to
the Theory of NP-Completeness, Freeman, San Francisco, 1979.

[3] T. IBARAKI AND N. KATOH, Resource Allocation Problems: Algorithmic Ap-
proaches, MIT Press, Boston, 1988.

[4] N . KATOH, T . IBARAKI, AND H . MINE, A lgor i thms for a variant o f the re-
source allocation problem, Journal of the Operations Research Society of Japan
22, 1979, 287-299.

[5] E . L . LAWLER, J . K . LENSTRA, A . H . G . RINNOOY KAN, AND D . B . SHMOYS,
Sequencing and scheduling: Algorithms and complexity, in: S.C. Graves,
A.H.G. Rinnooy Kan, and P.H. Zipkin (eds.) Logistics of Production and
Inventory, Handbooks in Operations Research and Management Science 4,
North-Holland, Amsterdam, 1993, 445-522.

[6] C.L. MONMA AND C.N. POTTS, On the complexity of scheduling with batch
set-up times, Operations Research 37, 1989, 798-804.

Minimizing the number of tardy jobs 429

[7] J. MOORE, An n job, one machine sequencing algorithm for minimizing the
number of late jobs, Management Science 15, 1968, 102-109.

[8] C.N. POTTS AND L.N. VAN WASSENHOVE, Integrating scheduling with batch-
ing and lotsizing: a review of algorithms and complexity, Journal of the Op-
erational Research Society 43, 1992, 395-406.

[9] S. WEBSTER AND K.R. BAKER, Scheduling groups of jobs on a single machine,
Operations Research 43, 1995, 692-703.

Received January, 1998

