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On Some Cyclic Connectivity Properties of 
Directed Graphs 

(Examples and Problems) * 

A. Ádám f 

To Professor Ferenc Gécseg on his sixtieth birthday 

Introduction 

The essence of the paper consists in ten properties (each defining a class of finite 
directed graphs) listed in § 2 and in open questions (relating to dependencies among 
the properties) raised in §§ 8-10. 

A number of dependence and independence assertions can be deduced easily or 
follow trivially from the ten properties. The originality of the statements in §§ 3, 8, 
9 and of the examples in §§ 6, 7 does not exceed the level of routine consequences 
of the definitions. 

Since the number of properties is ten, one can think "a priori" that the class 
of graphs which possess at least one property is partitioned into 1023(= 210 — 1) 
subclasses (called types). In fact, the dependency statements imply that there are 
not more than twenty-one types; on the other hand, examples are got for ten types. 
The 21 imaginable types correspond in a natural manner to the 21 independent 
vertex sets of the hierarchy diagram shown in Figure 1. One of the types consists 
of some connected graphs which are not strongly connected, the remaining < 20 
types constitute a partition of the class of the strongly connected graphs. 

A part of the open problems concerns to the existence of the eleven types whose 
non-emptiness is not decided in the article. In the last section an exciting topics 
is affected: the (fond?) hope for elaborating a structure theory of the strongly 
connected (directed) graphs. 
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I Notions and facts 

§ 11 
By a graph, we mean a finite directed graph G = (V, E) where 0) is the set 
of vertices and E(^ 0) is the set of edges of G. We suppose that G is simple (in 
detail: any edge joins two different vertices and there is at most one edge between 
any fixed vertex pair) and connected. The outdegree and indegree of ci(G V) are 
denoted by <5~(a) and <5+(a), respectively. 

Throughout the paper we study graphs whose vertices satisfy1 <5~(a) -<5+(a) > 2; 
hence transient vertices (i.e., vertices fulfilling S~(a) = <5+(a) = 1) are excluded. 

A graph G is said to be strongly connected if, for each ordered vertex pair (a, b), 
there exists a directed path from a to b. 

As usual, we say that two edges e = (a, b) and f = (c, d) of G are adjacent if 
the number of different elements of the vertex set {a, b, c, d} is three. We say that 
e and f are consecutively adjacent if 6 = c or a = d holds; c and f are said to be 
oppositely adjacent if either a — c or b = d. 

Remark 1 The assumption that transient vertices cannot occur is useful, and it is 
not a serious restriction. The structure of cycles of a graph is not altered essentially 
if a transient vertex and the two edges incident to it are replaced by a new edge. 

§ 2 
By a cycle Z of a graph G, we understand a sequence 

ai,a2,...,at (2.1) 

of pairwise different vertices such that t > 3 and there exist the t (directed) edges 

(ai,a2) , ( a 2 , a 3 ) , . . . , (at-i,at), (at,Oi) (2.2) 

in G. We say that the vertices in (2.1) and the edges in (2.2) are contained in Z 
(or, equivalently, that they belong to Z). The cycles (2.1) and a2 , a 3 , . . .,at,a i are 
considered to equal. We say that the length of the cycle (2.1) is t. A cycle of length 
3 is also called a cyclical triangle.2 

Let x be an element of either V or E. We say that x is cyclic if there is a 
cycle Z which contains x. Two different elements x, y of V U E are called cyclically 
completable if there exists a cycle Z such that both x and y belong to Z. 

Next ten conditions (A), (B), . . . , (K) will be introduced for a directed graph 
G = (V,E). 

(A) Any vertex of G is cyclic. 

(B) Any edge of G is cyclic. 

lrThis condition implies that we do not deal with graphs being sheer cycles. 
2If a i , a2, <13 are pairwise joined and they do not constitute a cyclical triangle, then they form 

clearly a transitive triangle. 
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(C) Any pair a, b of vertices of G is cyclically computable. 

(D) Any pair a(e E) is cyclically completable. 

(E) Any pair e,f of edges of G is cyclically completable when e and f are non-
adjacent or consecutively adjacent edges. 

(F) There exists an a(e V) such that any pair a, b(e V — {a } ) is cyclically com-
pletable. 

(G) There exists an a(e V) such that any pair a, c(G E) is cyclically completable. 

(H) There exists an e(€ E) such that any pair a(G V), с is cyclically completable. 

(J) There exists an e(e E) such that any pair e,f(e E — {e}) is cyclically com-
pletable. 

(K) There exists an e(e E) such that any pair e, f(e E — {e}) is cyclically com-
pletable when e and f are non-adjacent or consecutively adjacent edges. 

The class of all (connected simple) graphs G which fulfil (A) is denoted by A. 
The notations В, C , . . . , К are used in an analogous sense. 

Remark 2 It is well known that Condition (B) is equivalent to the strong con-
nectedness of G. 

Remark 3 The condition "any pair of edges is cyclically completable" does not 
occur among (A)-(K). This condition is not fulfilled by a connected simple graph 
unless it is a single cycle (cf. Footnote 1). 

§ 3 

Our aim in the present section is to state thirteen inclusions for the graph classes 
introduced above. The next ten inclusions follow immediately from how Conditions 
(A)-(K) have been defined:3 

В С А, С С F, G С F , H Ç F , 

J С К, J С G , E С K , D С C , D С G , D С H (3.1) 

Lemma 1 Let e = {b, с) be an edge of G such that any pair e,f(6 E — {e}) is 
cyclically completable when e, f are non-adjacent or consecutively adjacent edges. 
Choose an arbitrary element a ofV~{b}. Then the pair a, e is cyclically completable. 

3 The evident formulae F C A , D C B , J C H are omitted from (3.1). These are consequences 
of other assertions in this section (by the transitivity of inclusion). 
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Proof. From among the two possibilities a = c and a ^ c it suffices to treat the 
second one. There are at least three edges incident to a, we Can select an edge 0 
out of them such that g is either non-adjacent or consecutively adjacent to e. The 
pair e, g is cyclically completable, hence the same holds for the pair e, a. • 

Lemma 1 implies at once 

Corollary 1 We have E C D and K C H. • 

Proposition 1 We have F C B . 

Proof. Suppose G € F. Choose an arbitrary edge e = {c,d) in G. By (F), a is 
accessible from d and c is accessible from a. It follows the accessibility of c from d. 
that is, the cyclicity of e. (Our idea remains valid even if a 6 {c, d}.) • 

II Hierarchy and examples 

The assertions contained in § 3 (Corollary 1, Proposition 1 and the formulae in 
(3.1)) determine a hierarchy of the graph classes A , B , . . . , K . This hierarchy is 
shown in Figure 1. 

One can now pose the general problem whether there exists any further inter-
relation among the ten graph classes or not. A more particular question is whether 
each of the thirteen inclusions is proper. 

In what follows, the general problem is broken up into a number of subproblems. 
We do not succeed in carrying out a full discussion, a part of the subproblems will 
be left open. It will be shown, however, that eleven of the thirteen inclusions 
mentioned above are proper (Proposition 2). 

§ 5 
Figure 1 shows a cycle-free (directed) graph. There are nine maximal 

independent4 vertex sets in this graph: 

{ A } , { B } , { F } , { C , J } , { D , K } , 

{ D , J } , { E , J } , { C , G , H } , { C , G , K } . 

Thus there are twenty-one non-empty independent vertex sets: 

{A} , {B}, {C}, {D}, {E}, 
{F}, {G} , {H}, {J}, {K} , 

{C ,G} , {C, H}, {C, J}, {C, K} , 
{D,J} , { D , K } , {E,J}, { G , H } , 
{ G , K } , {C, G, H}, {C, G, K} . 

(5.1) 

4 T w o vertices of a directed graph G = (V, E) are called independent if they are mutually 
inaccessible (by directed paths). A subset of V is said to be independent if its elements are 
pairvvise independent. Maximality is understood with respect to set inclusion. It is clear that the 
independent vertex sets are exactly the subsets of the maximal independent sets. Although the 
empty set is independent, we shall disregard it. 
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Whenever { X i , X 2 , . . . , X p } is one of these twenty-one sets (where 1 < g < 3), 
then we define a type of graphs in the following manner: 

G is of (XiX-2... X s)-type precisely if 

(a) G belongs to X i D X 2 n . . . n Xg and 

(P) G does not belong to any of the classes (out of A, B , . . . , K) which are inac-
cessible from the vertices X i , X 2 , . . . , X s in the graph of Figure 1. 

For example, G is contained in the (CJ)-type exactly when 
G belongs to C fl J (hence to A, B, F, G, H, K also), and 
G does not belong to D (thus also G $ E). 
In sense of this definition, the class of (connected) graphs fulfilling Condition 

(A) is partitioned into at most twenty-one types.5 The remaining two sections of 
Chapter II are devoted to giving examples which show the non-emptiness of ten 
types. 

§ 6 
We examine in this section some strongly connected graphs (without transient 

vertices) which have four or five vertices. The outdegrees and indegrees of the 
vertices of a graph are expressed by a matrix of form 

/ <5~(ai) ¿~(a2) . . . 5~{av) \ 
\ S+(ai) ¿+(a2) . . . ¿+(a„) J 

where the vertices are numbered in such a manner that 

(i) ¿~(ai) > ¿~(a2) > • • • > S~(av) (where v = |V|), and 

(ii) 1 < i < v, ¿"(a») = ¿~ (a i + i ) imply ¿ + (a j ) > ¿+ (a i + i ) . 

Example 1 There is only one strongly connected tournament with four vertices 
(apart from isomorphy), see Figure 2/a. The degree matrix of this graph is 

( 2 2 1 1 \ 
^ 1 1 2 2 J ' 

There is one cycle of length four: abed and there are two cyclical triangles: abd and 
acd. 

The fulfilment of Condition (C) is clear. (J) is satisfied with the edge (da). (D) 
does not hold since the vertex b is not cyclically completable with the edge (ac). 

We have got that the type of this graph is (CJ). 
In the following five examples, graphs with five vertices and eight edges are 

considered. The degree matrix of Examples 2-5 is 

/ 2 2 2 1 1 \ 
^ 2 1 1 2 2 J ' 

5 By (/3), the subclasses called types are pairwise disjoint. We used the words "at most" because 
it is not sure that all the types are non-empty. 
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Figure 2 

Figure 3 

Example 2 In the graph of Figure 2/b there are four cyclic triangles: abe, cbe, cde 
and ade. There is no cycle of length four or five. Condition (G) is satisfied with e. 
The graph fulfils neither (C) nor (H). ((C) is false since with a and c form a pair 
which is not cyclically completable.) 

The type of this graph is (G). 

Example 3 The graph of Figure 2/c has five cycles; in detail, abcde and abecd are 
ones of length five, the length of abed is four, furthermore, abe and cde are cyclical 
triangles. (J) is satisfied with the edge (ab), the fulfilment of (E) can be checked 
easily. 

The type of this graph is (EJ). It is contained in each of the classes A, B , . . . , K. 

Example 4 The length of any cycle of the graph of Figure 3/a is five or three. 
There is one cycle containing all vertices: abcde, and there are three cyclical trian-
gles: abe,ade and cde. Conditions (G), (K) are satisfied with e,(de), respectively; 
the fulfilment of (C) is clear. (D) is false for this graph (for example, a and (ec) 
are not cyclically completable). The falsity of (J) follows from the fact that, for an 
arbitrary edge f, there is an edge 0 such that f, g are oppositely adjacent edges. 

This graph is of type (CGK). 
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Figure 4 

Example 5 Any cycle of the graph of Figure 3 /b is of length three or four. There 
are two cycles whose length is four: abce and adce; there are two cyclical triangles: 
abe and ced. (G) is satisfied with e, (K) is fulfilled with (ce). (C) is not valid because 
b and d are not cyclically completable. (J) does not hold (by the same reason as in 
the preceding example)1. 

The type of this graph is (GK). 

Example 6 The degree matrix of the graph of Figure 3/c is 

/ 3 2 1 1 1 \ 
V 1 1 2 2 2 J ' 

There is no cycle of length five. Two cycles have length four: abce and adce; there 
are two cyclical triangles: bee and ced. Condition (J) holds with (ce). Condition 
(C) is not fulfilled since b and d are not cyclically completable. 

The type of this graph is (J). 

Example 7 Consider the graph of Figure 4. Each outdegree and indegree equals 
2 in it. It is easy to see (without a detailed examination of the cycles) that this 
highly symmetric tournament satisfies (E). Condition (J) is not fulfilled (similarly 
to Examples 4 and 5). 

We have got that this graph belongs to the type (E). 

Remark 4 It seems that the remaining strongly connected graphs having five ver-
tices (each non-transient) do not represent any other type than the types to which 
Examples 1-7 belong. For the reader who wantsUo recapitulate the investigation 
of these graphs, the following method can be advised: 

first to get an overview of the possible degree matrices, 
for any degree matrix, to construct all of its graph realizations, 
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(a) 

Figure 5 

if two graphs are dual6 to each other, then to examine only one of them (because 
duality does not alter the structure of cycles essentially). 

§ 7 

We have seen in § 6 some examples which were obtained by scanning all graphs 
with a very small number of vertices, they show the non-emptiness of seven types. 
In the present section examples for three additional types will be given.7 

The fact that the type (A) of graphs is not empty is clear (it is well known 
that the class of strongly connected graphs does not exhaust the class of connected 
graphs in which every vertex is cyclic). For the sake of completeness of the treat-
ment, we put first an instance for this type. 

Example 8 Every vertex of the graph in Figure 5/a is cyclic, and (ab) is a non-
cyclic edge. Thus the graph belongs to the type (A). 

Example 9 Figure 5 /b shows a graph for which (B) is valid (or, equivalently, it is 
strongly connected), but (F) does not hold. This means that the graph is of type 
(B). 

6 Two directed graphs are said to be dual if one is obtained from the other by reversing the 
orientation of all the edges. It may happen that a graph is isomorphic to its dual. 

7In the course of constructing these graphs, the restriction that transient vertices are forbidden 
needed to be regarded. 
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b 

Figure 6 

Example 10 The graph in Figure 6 satisfies (F) (with the vertex a). It is easy to 
see that (C) and (H) are not valid. (G) is not fulfilled also (observe that a and the 
edge (be) are not cyclically completable). Therefore this graph is of type (F). 

Ill Overview and open questions 

§ 8 
Remember that twenty-one graph types have been introduced in § 5. We have 
seen in Sections 6-7 examples for ten types. The question of the existence of the 
remaining types is open: 

Problem 1 Decide for any of the eleven types (C), (D), (H), (K), (CG), (CH). 
(CK), (DJ), (DK), (GH), (CGH) - consisting of directed graphs - whether the type 
is empty or not. 

Problem 1 is a comprehensive question in the sense that the subsequent Problems 
2 and 3 are (essentially) particular cases of it. 

Recall the hierarchy shown in Figure 1. We are going to suggest some possibil-
ities for improving this hierarchy. Next we consider the pairs of graph classes (out 
of A , B , . . . , K) for which the corresponding vertices are adjacent in Figure 1. 

Proposition 2 We have the proper inclusions 

B C A , F C B , C c F , G c F , 

H c F ,D c C, D C G, D C H, 

E C K ,J c G, J C K. 
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Proof. Examples 8, 9 show that B is properly included in A and F is properly 
included in B, respectively. The inclusion C C F is guaranteed by8 Example 2. 
The remaining eight inclusions are ensured by Examples 10, 2, 1, 1, 1, 1, 2, 4, 
respectively. • 

We do not have examples for the strictness of the inclusions K C H and E C D , 
hence we can raise: 

Problem 2 Decide the validity of the equalities K = H and E = D. 

§ 9 
There are nine independent vertex pairs in the graph of Figure 1. Our present 

aim is to discuss the pairs of graph classes which correspond to these vertex pairs. 
Examples 3, 6 and 7 guarantee the truth of the following assertions: 

Proposition 3 The intersection En J is not empty and it is properly included both 
by E and by J. The intersections D fl J and C fl J are proper in the same sense. • 

Any of the formulae 

G C K , G C H , G C C , H C C , K C C , K C D, 

is disproved either by Example 2 or by Example 6; our examples leave open the 
truth of the (strict) inclusions in the opposite sense. Thus we can pose: 

Problem 3 Decide the validity of the inclusions 

K c G , H c G , C c G , C c H , C c K , D c K 

§ 10 

We have throughout adopted in the above considerations that transient vertices 
are forbidden. After determining the hierarchy completely (i.e., after solving Prob-
lem 1), the question may arise how the hierarchy changes when transient vertices 
are allowed. The solution of this question does not seem to be difficult. 

Now we turn to another possibility of varying the subject. In our former anal-
ysis, graphs having cut vertices9 were not excluded. Cut vertices have occured in 
Examples 8, 9, 10 actually. It is evident that Example 8 can be replaced by a 
twofold connected graph; the same is, however, not trivial for Examples 9 and 10. 
Consequently we formulate 

Problem 4 Is the hierarchy of the graph classes B, C , . . . , K modified if we restrict 
ourselves to graphs without cut vertices? Especially, do the formulae F C B and 
G C F remain valid after this restriction? 

8Instead of Example 2, any of Examples 5, 6, 10 is suitable for this purpose. In what follows, we 
mention only one instance in analogous situations, and the search for other appropriate examples 
is left to the reader. 

9In other words, exactly onefold connected graphs. The orientation of the edges is indifferent 
in this notion. 
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§ 11 
In the hierarchy of graphs studied by us, the intersection E fl J is the common 

part of all classes. It can be hoped that a structural description of this relatively-
narrow graph class will be elaborated: 

Problem 5 Characterize the structure of the graphs which belong to the type (EJ). 

A bold challenge is initiated in the last open question of the paper. A complete 
elucidation of this question would imply a systematization of the structure of all 
finite directed graphs. Even if this goal will not prove to be successful, partial 
solutions are of importance also: 

Problem 6 Consider a graph class X from among the nine classes B, C , . . . ,K . 
Let a constructive procedure be obtained how the members of the class X can be 
produced from graphs belonging to classes which are proper subclasses of X (in the 
hierarchy). 

Remark 5 It is at once clear that the solution of Problem 6 for all the nine classes 
yields the structural overview of the strongly connected graphs. This observation 
can be supplemented by two well-known facts: 

(i) any directed graph G admits a unique decomposition into a cycle-free graph 
so that each maximal strongly connected subgraph of G is contracted into a 
single vertex; 

(ii) it is possible to get a good survey of the structure of cycle-free (directed) 
graphs. 

Details may be found in Chapters 3 and 10 of the book [1] of Harary, Norman, and 
Cartwright. 

References 
[1] Harary, F., Norman, R. Z., and Cartwright, D., Structural models: An in-

troduction to the theory of directed graphs, Wiley, New York, 1965. (French 
translation: Dunod, Paris, 1968.) 

J 


