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On ±l-representations of integers 

János Demetrovics* Attila Pethő^and Lajos Rónyai* 

This paper is dedicated to Professor Ferenc Gécseg on the occasion of 
his 60th birthday. 

1 Introduction 
In public key cryptography cryptosystems employing elliptic curves are playing 
an important role. Such systems are based on the elliptic version of the discrete 
logarithm problem. Let K be a finite field, E = E(K) be an elliptic curve over K 
and let P 6 E. If the binary expansion of n £ N is 

i 
n = Y / h b i = 0,1; i = 1,... ,1; 6; = 1, 

i=0 
then one can compute P(n) = nP by using the following algorithm: 

1. P(n) <- P 

2. for i 1 to I do 
{P(n) <- 2P(n) , 
if bi-i = 1 then P(n) <- P(n) + P.} 

This algorithm requires I doubling and bi addition steps. All operations are 
performed of course on the curve E. The idea is quite old. In a recipe for integer 
multiplication it appears in the Egyptian Rhind Papyrus dated from about 1650 
B.C. 

Observing that addition and subtraction on an elliptic curve have the same com-
plexity, Morain and Olivos [MO] developed another algorithm for the computation 
of P(n). Their algorithm uses one of the representations 

n = Y2di2\ di = - 1 , 0 , 1 ; i = 1 , . . . , / ' ; dv = 1, (1) 
i = 0 
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which we shall call a ±l-representation of n. In the above algorithm only the 
conditional statement should be changed to 

if df-i ^ 0 then P(n) P(n) + dV-{P. 

j/ ^ 
The new algorithm requires I1 doubling and \di\ addition/subtraction 

steps on the curve. As J2't=o l^l c a n be considerably smaller than ^ ¿ o ^ i , the 
algorithm of Morain and Olivos may be more efficient, if I' is not too big compared 
to I. 

We will point out to another application of ±l-representation of integers. Let 
A = (a,ij)i-i,2-,j=i,2 be a matrix with entries from a commutative ring, and with 
determinant ±1. As A~l = det(J4)AT the computation of A~l means in this case 
only the swapping of ai i2 and a2 :i , and the replacement of the sign of entries of 
AT, whenever det(A) = - 1 . 

In contrast to the binary expansion, the ±l-representation of integers is not 
at all unique. If, for example, the bitsequence of the binary expansion of n looks 
like xOl, then a;0(—l)fcl are ±l-representations of n for all k > 0. (Here we listed 
the digits in reverse compared to the usual representation.) Morain and Olivos 
[MO] (see also Miiller [M]) describes two substitutions: -10& - 11,A; > 2 and 
1*01' ->• —10 fc_1l —10 i _ 1l -¥ - 1 0 f c _ 1 - 1 0 ' l , which result usually ±l-representation 
of smaller weight than the binary expansion. Moreover, both algorithms are linear 
in logn. On the other hand, the length of the representation can be at most one 
longer than the shortest representations. For example the numbers 0^11, A; > 0 
have weight 2 and length k + 2, but the algorithms of Morain and Olivos results 
0* — 101, which has weight 2, but length k + 3. 

We call a il-representation optimal, if I' + Mil is minimal among the 
±l-representations of n. Note that the quantity I' + \di\ is actually one 
more than the number of additions/subtractions in E required when using the ±1 -
representation (1) for computing nP. The aim of the present paper is to prove the 
following theorem. 

Theorem 1 There exists an algorithm which computes an optimal ±1-represen-
tation of the integer n in 0(log |n|) additions and comparisons. 

The proof of the theorem is constructive, i.e. we present a linear time algorithm 
for the computation of an optimal ±l-representation of integers. Our method is the 
following: first we associate to the integer n an infinite, bipartite, directed acyclic 
graph G(n) such that the ±l-representations of n correspond to suitable directed 
paths in G(n). Next we establish that to find an optimal ±l-representation it suffices 
to consider a subgraph of G(n) having at most 21og2 n-1-5 nodes. Our problem is 
actually equivalent to a single source shortest paths problem in this graph, which 
can be solved fast using a variant of the well known Dijkstra algorithm [D], [CLR]. 
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2 The construction and elementary properties of 
G(n) 

Let 0 / n f N and assume that 2" is the highest power of 2, which divides n. For 
each k > 0 we consider the solutions x of the congruence 

x = n (mod 2 fc), —2k < x < 2k. (2) 

This congruence has one solution, x = nk = 0, if 0 < k < v, and two solutions, if 
k > v. In the latter case we denote the solutions by nk,i and n^ 2 and order them 
as follows: 

0 < K , 2 | < 2*- 1 < |nM| < 2k. (3) 

If I ^ m I = \nk,2\ > 0 (which may happen only if k = v + 1), then put i = 2" and 
nk,2 = —2". The set of vertices V of G(n) is 

V = {(k,nk) :0<k< ¡/}U {(k,nk,i),(k,nk,2) :k>u}. 

To lighten notation we shall refer to vertices ( k , n k ) simply as nk and (k ,n k , j ) as 
nkj. Thus, in the sequel we will use the notations nk and nkj, j = 1,2 in two 
meanings; either as vertices of G(n) or solutions of (2) satisfying the inequalities 
(3). 

The set of edges E of G(n) is the union of three sets, EI,E2,E3, where 

E3 = {ejfe.i = ek = (nk,nk+i) : k = 0 , . . .v - 1}, 
E2 = {e„,i = (n „ ,n„ + i , i ) , e „ ,2 = (n„,n„+i ,2)} , 

= {ek,j,h = (nkj,nk+ith) : nk+i,h = nk,j + £kj,h^k with 
£k,j,h e { - 1 , 0 , 1 } , k > u}. 

Here e = (x, y) means that the directed edge e joins vertex x to vertex y. 
Let d~(x), (resp. d+(x)) denote the indegree (the outdegree, resp.) of vertex 

x £ V, i.e. the number of edges having x as their endpoint (starting point, resp.). 
Now we prove the following simple lemma. 

L e m m a 1 We have d~(nk) = d~(nv+ij) = 1, if 0 < k < v + 1, j = 1,2 and 
d" (nkj) - j, if k > v + l,j = 1 , 2 . 

Proof: The first assertion is obvious. We consider therefore the second one. Let 
k > v + 1. An edge ending at vertex nkj, has, by construction, n k - o r nk-ii2 as 
its starting point, and hence belongs to the set E\. Then there exists an h € { 1 , 2 } 
and £k-i,h,j £ { - 1 ) 0 , 1 } such that 

n k j = n k - i : h + ejfc-i,h,j2 fc_1. 

Let first j = 1. If £ = 0 or —sgink^)1 then 

\nk,i -£2k~1\ > | n M | > 2k~1 > \nk-x.hl /1 = 1 , 2 

xWe denote by sg(n) the sign of the integer n. 
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by (3). Hence there can be no edges, which correspond to these values of e, i.e. 
d~(rik,i) < 1- On the other hand, if e = sg(nki\) then for u = nk,i — sg(n,tj)2fc_1 

we have 
M = K,1 - sg(nk,i)2k-l\ <2k- 2k~1 = 2k~1. 

This implies that u = njt—i,i or u — nk-¡ 2 and hence d~(nki\) > 1. 
Let now be j = 2. If e = 0 or sg(nk-2) then 

K,2-e2A-1| < \nK2\ <2k~1 

by (3). Hence there is one edge either from nk- 1,1 or from nk-1,2 to 11^:2• If 
e = —sg(nk:2) then, as 

K , 2 - e 2 f c - 1 | > 2 f c -\ 

by (3), there is no edge, which corresponds to this value of e. Thus d~(rik,2) = 2, 
as asserted. • 

Now we associate weights to the edges of G(n). Let 

[ 0, if e £ E3, 
w(e) = < sg(nu+ij), if e = (nv,nv+Xij) e E2, 

[ sg(£k,j,h), if e = (nktj,nk+1,h) £ Ei. 

The following lemma shows that the network G(n) has a quite transparent struc-
ture. 

Lemma 2 If k> v, then there exists for every e € { — 1,0,1} exactly one pair of 
indices (j, h), 1 < j, h < 2 such that w(e.k:j,h) = Moreover, for an edge e^j^h we 
have w(ek,j,h) = 0 if and only if h = 2 and d+(nkj) = 1. 

Remark 1 The second assertion of Lemma 2 means that ifk>v then the subgraph 
ofG(n) spanned by the nodes on the k-th and k + l-th levels has one of the following 
two types: 

"fc+i.i • • nk+1>2 

t t (0) 
nk,l • • nk-2 

or 
Figure 1 

riit+1,1 • • n f c + i i 2 

(0) T 
nkA • • nko 

Figure 2 

This observation will be important in the computation of an optimal ±1 -
representation of n. 
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Proof: We have seen in the proof of Lemma 1 that w(ekj^),j = 1,2 takes two 
different values: 0 and sg(nk+1,2), while w(ekjii) = sg(nk-(-1,1). But sg(nk+1,2) ^ 
sg(n.k+i,i), and both of them are different from 0, implying the first assertion. 

¿From what we established so far, we know that w(ekj,h) = 0 implies that 
h= 2. It also follows from Lemma 1 that at level k one of the vertices has outdegree 
1, the other has outdegree 2. Having all these, to prove the second assertion, it 
suffices to verify that w(e k j^ ) = 0 implies that d^ (n k j ) = 1. The condition on 
the edge-weight gives that nk+1,2 = nk,j- Using this we have 

|n*+i,i - nkJ| = Irifc+i,! - nfc+ii2| = 2fc+1 > e2k, 
for any e e {1,0, —1}. This means that there can be no edge from nkj to nk+1,1, 
hence d+(nkj) = 1. • 

We have constructed an, in one direction, infinite directed acyclic graph G(n). 
Observe, that if 2k > |n|, then nk+j,2 = n for all j > 1. We shall prove, that this 
network describes completely the ±l-representations of the integer n. 

To be more precise, let U(n) denote the set of directed paths from 0 to the 
nodes n k j k where nk,jk = n, and let 

W(n) = {{w(e0Jl),... • • • ,w{ek-,Jfc)), 
where the path eo,^,.. • nev+i,jl,+i,ju+2> • • • G U(n)}. 

Remark that j , = 1, if i < v and ji = 1 or 2, otherwise. Hence W(n) is the set 
of sequences of weights of directed path from the vertex no = 0 to the vertices 
nk,jk = n. 

On the other hand, let 
k-l 

E(n) = {(do, • • -,dk-1), such that n = ^ dj2®, di E { - 1 , 0 , 1 } } , 
¿=0 

i.e. E(n) is the set of sequences of digits of the ±l-representations of n. Now we 
are in the position to prove the following theorem. 

Theorem 2 If n ^ 0, then W(n) = E(n). 

Proof: If n < 0 then we have obviously W(—n) = —W(n) and E(—n) — 
—E(n). Hence it is enough to prove the theorem for n > 0, which we assume in the 
sequel. 

Let first 

s = ( w ( e 0 , j 1 ) , . . . , w ( e ^ + 1 ) , w ( e i / + i j ^ + 1 j l / + 2 ) , . . • ,w(ek-iijk_ujh)) e W(n). 

Then 

e0,jl 1 • • • 1 ev,j„ + i ) eP+l,J„ + l,ji,+2 > ' " ' 1 ek-l,jk-l,jk 

= (no,ni),..., (nv-x,nv), (nv,nv+iju+1), 
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We have the relations 

nhjh =nh-i,jh_1 +w{eh.-i:jh_ujh)2h~1, 

whenever h > v, by the definition of the vertices and the weights. Hence, as 
nkjk = n, we have 

fc-i 
n = nktjk = w(eVtju+l)2v + w(ehtjhtjh+1)2h. 

h=v+l 

As w{e^ji+i) = 0 for h = 0 , . . . , v — 1 we obtain 

i/-i fc-i 
n = nk,jk = Y2w{eh:h+1)2h + w{evjv+1)2" + ^ w(ehtJliJh+1)2h, 

h=Q h=v+l 

i.e. s e E(n). 
Assume now that s = (do,..., dk-i) € E(n). Then 

k-1 
n = ] > > 2 \ 

¿=o 

Let n0 = 0, and if 0 < h < k, then nh = di2l- Then nk = n, 

nh= n (mod 2h) 

and 
h-1 

\nh | < ^ ] 2 i < 2 f t . 
¿=0 

Thus, if h > i>, then nh = nhjh for jh, = 1 or jh = 2. If h < k, then 

nh+1 =nh + dh2h, 

i.e n-h+i,jh+1 = nhjh + dh2h. 
This means that there exists an edge from rih,jh to 71^+i,jh+1 and its weight is 
w ( e h j h , j h + J = dh. Hence 
(n0,ni), . . . , (n„-i,nv), (n„,Tl„+l,j„ + 1), (nv+l,j„ + 1,nv+2j„+2), ..., {nk-l!jk_l,Tlkjk) 

is a directed path from no = 0 to nkjk = n, i.e. s € W(n). The proof is complete. 
• 

We define the weight of a node nkj of G(n) to be the minimum of the sums 
Ylj=i \w(e^)\> where the edges e1, e 2 , . . . ,ek form a directed path from 0 to nkj. 
We denote the weight of nkj by w(nkj). In view of Theorem 2, our task of finding 
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an optimal representation of n is equivalent to finding a node nkj with k + w(nkj) 
minimal among the nodes with nkj = n. (Please note that for an optimal node 
nkj a shortest path from 0 to nkj can not end with an edge of weight zero, hence 
for the ±l-representation of type (1) obtained from the path we have I' = k.) 

To solve the latter optimization problem, we examine closely the lowest level of 
G(n) where n appears as a vertex. Let k' = [lognj + 2. Then 2k ~2 < n < 2k - 1 . 
Hence n ^ - i , ! = nh,2 = n for all h > k', by (3). Moreover, only these vertices are 
equal to n. 

Lemma 3 If w(nk'-i,i) < w(nki-1,2) + 1 then (a shortest path from 0 to) node 
nk'-1,1 provides an optimal representation of n. If w(nk'-1,1) > w(nk>-1,2) + 1 
then (a shortest path to) node nk't2 provides an optimal representation of n. 

Proof: By Remark 1. the layer of G(n) comprising levels k1 — 1 ,k' and A;' + 1 
looks like 

nk'+1,1 • • «£'+1,2 = n 
t t (0) 

nk't 1 • • n/fc/,2 = n 
(0) t 

n = nk'-l,l • • nk>-\,2-

Here the edges without label have weight ±1 . Using the fact that a directed 
path from 0 to a node at level h > k! must pass through level k! — 1, we have 

w(nhj) > mm{w(nk'-i,i),w(nkl-1>2) + 1 } = w(nk>a)-

Hence if h > k' then h + w(nh,j) > k' + w(nk>t2)- ¿From this we- see that the 
optimum is attained at node nk*-1,1 or nk:2-

If w(nk>-1,1) < w(nk>-i,2) + 1 then 

k' - 1 + w(rik' —1,1) <k' - 1 + w(nk',2) < k' + w(nk>t2), 

hence n k > - i s the (only) optimal node. 
On the other hand, if w(nk<-1,1) > w(nk>-ii2) + 1 then w(n/i'_i,i) > w(nk't2), 

and therefore k' — 1 + w(nk'-iti) > k' + w(nk*fi)- In this case nki^ is an optimal 
node. • 

Note that the lemma implies in particular that the length I' of an optimal ±1 -
representation (1) of n can have at most two values. The second alternative of the 
Lemma 3 allows for the possibility of two optimal nodes. This may indeed happen, 
as exemplified by the representations 7 = 4 + 2 + 1 and 7 = 8 — 1. 

Proof of Theorem 1. The algorithm now is quite straightforward to outline. 
On input n > 0 we build the the first k' layers of the graph G(n) and calculate the 
the edge weights. It is a directed acyclic graph (dag) with no more than 2 log2 n + 5 
vertices and 3 log2 n + 6 edges. Following the definition directly, this graph can be 
built using O(log n) elementary operations. 
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By Lemma 3 it suffices to compute the weights w(nk'~ 1,1), w(iik>,2) together 
with with an appropriate path from 0 to r iv - i , 1 or to rik',2 which provides the 
optimal weight. We can use here Dijkstra's algorithm for the single source shortest 
path problem. In doing this, we have to work with the absolute values of the original 
edge-weights. Dijkstra's method can be implemented in linear time for dag-s (see 
for example section 25.4 in [CLR]), hence this phase can also be accomplished in 
time O(logn). • 

3 A detailed algorithm 
Here we present a detailed and streamlined procedure which performs the tasks 
sketched in the proof of Theorem 1. It computes an optimal ±l-representation of 
the input integer n > 0. In the following description we use a two-dimensional 
array n(h,j),j = 1,2, to represent the vertices n/,^ of the network G(n). The value 
of n(h,j) is a three-dimensional vector, whose i-th coordinate will be denoted by 
n(h,j)[i}. 

Upon termination n(h,j)[3] will store w(rih,j)• ^Moreover, n( / i , j ) [ l ] stores an 
identifier of the next to last vertex of an optimal path to rihj, and n(h,j)[2] contains 
the weight of the last edge along this path. More formally, in the general situation 
(i.e. if h > v) we intend to achieve the following: 

= min{n(/i - M)[3] + \w(eh-ltjtl)\, where eh-i,j,t £ G(n)}, 
n(h,j)[2] = w(eh-i,j,t), if n(/i,j)[3] = n ( h - l , £ ) [ 3 ] + K e h _ l l i i / ) | ) 

n(h,j)[l] = t, if n(h,j)[2,}=n(h-l,i)[Z] + \w(eh^jtl)\. 

Algorithm 

Input: n > 0 an integer 
Output: (do, • • •, dk~i) an optimal ±l-representation of n. 

1. k! := [log 71J + 2 

2. Compute G(n) up to level k' 

3. for h := 1 to v do n(h, 1) := (1, 0,0) 

4. n(v + 1,1) := ( l ,w ; (e y ^ + i i i ) , l ) ;n ( i /+ 1,2) := (1 ,w(e v , v + i , 2 ) , 1) 

5. for h := v + 2 to k' do 
if eh-1,1,1 € G(n) then begin 
n ( M ) " : = ( l M e h - W ) M h ~ 1,1)[3] + 1) 
n(h, 2) := (2,0, n(h — 1, 2)[3]) 
if 71 (h - 1,1) [3] + 1 < n(h, 2)[3] then 
n(h, 2) := (1, w(eh~i,ifi), n(h, 1)[3]) 
end 
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else begin 
n(h, 1) := (2, w(eh-li2il),n(h - 1, 2)[3] + 1) 
n(h, 2) := (l,0,n(/i — 1,1)[3]) 
if n(/i — 1, 2) [3] + 1 <n(h, 2)[3] then 
n(h,2) := (2,w(eh-1^2),n{h,l)[3]) 
end 

6. k := k' - l;j := n(k, l ) [ l ] ;d := (n(k, 1)[2]) 
if n(fc',2)[3] < n(fc,l)[3] then k := k'-,j := n{k, 2)[1]; d := (n(fc,2)[2]) 

7. while k ± 0 do 
d:=(n(kj)[2],d); j:=n(k,j)[l]; k:=k-l 

8. output d. 

Proposition 1 The preceding Algorithm computes an optimal ±l-representation 
of the integer n in O(logn) time. 

Proof: It is clear that the algorithm terminates after O(logn) steps. Therefore, 
it is enough to establish correctness. 

The basis of the calculation of w(nh,j) is the straightforward relation 

w(nhtj) = min {w{n h - i , j ) + \w(eh-i,itj)\, where (nh-lti,nh,j) € G{n)}. 

As w(e) = 0 for e G E3, we have w(n,hj) = 0 for h < p. Thus n(h, 1)[3] is 
set correctly in Step 3 for 1 < h < v. The same is true for n(v + 1, j)[3], j = 1,2, 
because |iu(e)| = 1 for e G E2- If h > v + 2 then the h-th level of G(n) has one 
of the shapes, presented on Figures 1 and 2. The value of n(h,j)[3] is determined 
in Step 5 according to these alternatives. Thus n(h, j)[3] = w(nhj) for all h and 
j considered. By Lemma 3 it is enough to compute the weights up until level 
[lognj + 2, hence k! is set properly in Step 1. 

Lemma 3 shows also that in Step 6 the parameters k,j of an optimal node nk,j 
are calculated correctly. In fact, we set k = k' — 1, if w(nk>-1,1) < w(nk*,2), and 
k = k', if w(nk'-i , i) > w(rik't2)- Finally, by tracing backwards an optimal path 
to nk,j in loop 7, we compute the digits of an optimal ±l-representation. The 
proposition is proved. • 
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