
Acta Cybernetica 14 (1999) 37-50. 

Complete Finite Automata Network Graphs with 
Minimal Number of Edges* 

Pál Dömösit Chrystopher L. Nehaniv* 

Dedicated to Professor Ferenc Gécseg on his 60th birthday 

Abstract 

An automata network graph is said to be n-complete (under projection) if 
every automata network having underlying graph with n vertices can be sim-
ulated (under projection) on it. In this paper n-complete automata network 
graphs with minimal number of edges are completely characterized. 

1 Basic Notions 

Let f : Xi x ... x Xn I be a mapping having n variables for some positive 
integer n, moreover, let, t £ { 1 , . . . . n} . / is said to really depend on its tih variable 
if there exist xt £ X i , . . . , x t _ i £ Xt-i,xt,xt' £ Xt,xt+i £ Xt+1,...,xn £ Xn 

having f(xi,... ,xn) ± f(xi,... ,xt-i,xt',xt+i,... ,xn). If / does not have this 
property then we also say that / is really independent of its tih variable. Moreover, 
if there is no danger of confusion then sometimes we omit the attribute "really". 

For a given non-empty set X and positive integer n denote by Xn the nth 

0 power of X. Given a fc-element subset H of { l , . . . , n } , H = 
(z'i < . . . < ik), the H-projection of Xn is a mapping prn • Xn —> Xk defined by 
prfjixx,... j xn) — (xii j • • • > xik )> where (x\,..., xn) £ Xn. The function prjj(F) : 
Xk Xk with pru{F(xi, . . . , xn)) = prH(F)(prH(x1,... ,xn)),(xi,... ,xn) £ Xn 

is called the H-projection of F : Xn -» Xn (if it exists). If H = {h} for 
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some h £ { l , . . . , n } , i.e., H is a singleton then sometimes we use the expres-
sion h-projection (of a vector or function) in the same sense as the concept "H-
projection". (And in this case sometimes we use the notation pr^ instead of 
pr{k} ) Moreover, for an arbitrary i £ { l , . . . , n } , we define the ith component 
of F : Xn —> X" as the function cpi(F) : Xn X with cpi{F){(xx,... ,xn)) = 
pri(F(xi, • • •, xn)) (xi, • • •, xn) £ Xn. 

For any pair Fi : Xn -> Xn,i = 1,2, one denotes by Fx o F2 : Xn Xn the 
function Fi o F2(xi,... ,xn) = FI(F2(X I, .. .,xn)), (an, . . . ,xn) £ Xn. 

A (finite) directed graph (or, in short, a digraph) V = (V, E) (of order n > 0) is 
a pair of the sets of vertices V = { i n , . . . ,vn} and edges E C V x V. Vi £ V is an 
isolated vertex if ({wj} x VL)V x { » j } ) i l £ = 0. If (vi,Vj) £ E and i = j then (Vi,Vj) 
is called (self-) loop edge. The digraph V = (V',E') is a subdigraph of V if V is 
a non-void subset of V, and E' C E. T> is said to be connected for Vi £ V if every 
vertex vj £ V has a (directed) path from Vi to Vj. T> is called strongly connected if it 
is connected for all of its vertices. Moreover, V is centralized if there exists a Vi £ V 
with V x {vi} C E (including (Vi,Vi) £ E). In addition, a digraph V = {V,E) 
having a structure V = {i>i, . . . ,vn}, E = {(vi,vi+1(modn)) : i = 1 , . . . , n } is 
called a cycle (with n length). We also say that a digraph V has a cycle (with 
n length) if there is a subdigraph of T> which forms a cycle (with n length). A 
transformation F : Xn —> Xn is said to be compatible with a digraph V = (V, E) 
(of order n) if F has the form F(xi,. ..,xn) = ( / i ( z i , • • • ,xn),..., fn(x i , . . . ,a;n)) 
((an, • • • ,xn) £ Xn) and : Xn -> X, i = 1 , . . . ,n may depend only on Xi and 
those Xj for which (Vj,Vi) £ E (including the case i = j). 

A word (over X) is a finite sequence of elements of some finite non-empty set 
X. We call the set X an alphabet, the elements of X letters. If u and v are words 
over an alphabet X, then their catenation uv is also a word over X. Especially, 
for every word u over X, uX = \u = u, where A denotes the empty word having 
no letters. The length |w| of a word w is the number of letters in w, where each 
letter is counted as many times as it occurs. Thus |A| = 0 . By the free monoid X* 
generated by X we mean the set of all words (including the empty word A) having 
catenation as multiplication. We set X+ = X* \ {A}, where the subsemigroup X+ 

of X* is said to be free semigroup generated by X. 
By an automaton A = (.4, X, S) we mean a finite automaton without outputs. 

Here A is the-(finite non-empty) state set, X is the input alphabet and 5 : AxX ^ A 
is the transition function. We also use 5 in an extended sense, i.e., as a mapping 
6 : A x X* A, where 5(a, A) = a (a £ A) and S(a,px) = 6(S(a,p),x) (a £ A,p £ 
X*,x £ X). For a given word p £ X*, the transition induced by p is the function 
6P : A —> A that takes any state a € A to 5(a,p). 

If A = Zn for some \Z\ > 1 and n > 1 (where \Z\ denotes the cardinality, i.e., the 
number of elements in Z) then we say that A is a finite state-0 automata network 
(of size n with respect to the basic local state set Z). Then the underlying graph 
VA = (VA,EA) of A is defined by VA = {1 , . . -,n},EA = {(i,j) \ 3x£ X : cPj(Sx) 
really depends on its ilh variable}. A is a V-network if T> = (V,E) is a digraph 
with V = VA and E D EA. In other words, A is a D-network if every mapping 
Sx : A —» A (x £ X) is compatible with V. Note that a size n automata network 
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may be regarded as comprising n component automata At = (Z,Zn x X, Si), i £ 
{ 1 , . . . , n } , where the Si are defined by 

S(z, x) = (¿1 (z]_,{z,x)),... ,8n(zn,(z,x))), 

for z = (z\,... ,zn) £ Zn, x £ X. One may of course suppress the components of 
Zn in the inputs to Ai upon which Si does not really depend. 

If n = 1 or \Z\ = 1 then we say that A = (Zn,X,S) is a trivial automata net-
work. The purpose of this paper is to investigate the state-homogeneous automata 
networks having state sets of the form Zn, for a positive integer n > 1 and fixed 
finite set Z of cardinality at least two. Therefore, by an automata network we shall 
mean a non-trivial finite state-homogeneous network. 

Let A = (Zn, X,S),B = (Zm, Y, S') be networks (having the same basic set Z). 
We say that B simulates A by projection if there exists an H C { 1 , . . . , m } such that 
every 5X : Zn —» Zn (x £ X) is an ii-projection of a mapping S'p : Zm Zm (p £ 
Y+). If there exists a 2?-network B which simulates a given network A by projection 
then it is said that A can be simulated on V by projection. A digraph V is called 
n-complete (with respect to simulation by projection) if every network of size n can 
be simulated on V by projection. The n-complete digraph V = (V, E) has minimal 
number of edges if for every n-complete digraph V = (V',E'), |V| = \V'\ implies 
\E\ < \E'\. 

2 Preliminary results 
We start with the following technical result. 

Lemma 2.1.(see [2]) Given a finite group G, d positive integer 71 > 1, let us 
define for every distinct G { 1 , . . . , n } the functions : Gn Gn,t = 1,2, 3, 

: Gn Gn, and Uij :Gn Gn as follows. 

F i j (S i , • • •: 9n) = (gi, • • •, 9j-i, gi9j, 9j+i, • • •, 9n), 

Fij (9i, • • •, 9n) = (gi, • • •, 9j-i , 9i~l9j, 9j+1 ,...,gn), 

F-j(gi,. • • ,g„) = (gi,.. .,gj-i,gi,gj+1,.. .,gn), 

(9i, • • •, 9n) = {gi,...,gj-i,gj~l,gj+i,...,gn), 

Ui,j{g\, •• .,9n) = (fli, • • • ,9i-i,9j,9i+i, • • • ,9j-i,9i,9j+i, • • • ,9n)-

Then for arbitrary, pairwise distinct i,j,k £ { 1 , . . . , n } we get 
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jrW 3 

- Fk.j 

3 
o i f > O f f 

• 

Given a non-void set Y, a positive integer n, let 7y denote the full transfor-
mation semigroup of all functions from Y to Y. In addition, for every subset 
H C 7V, let < H > denote the subsemigroup of 7y generated by H. More-
over, for any finite set X with > 1 and positive integer n > 1, denote Tx,n 

the subsemigroup of all transformations of Tx» having the form F(xi,... ,xn) = 
ixt(i)i • • • ^¿(n)), ( x i : • • •, xn) G xn,t : { 1 , . . . , n } —» { 1 , . . . , n} , and let 

IV» = {F:Xn^Xn\ F(xi,..., xn) = (xx,..., Xi-i, f(xi, xj), xi+1,... ,xn), 
where ft: X2 {1,... ,n}, (xu ... ,xn) E l " } , 

(It is understood that the case i = j is allowed in the above definition of I V " . ) 
Define the elementary collapsing tj:k : { 1 , . . . , n } —> { 1 , . . . , n} for 1 < j k < n, 

. ( j if i 
= oth 

= k 
otherwise 

Moreover, as usual we say that Ujtk • {1, • • • ,n } —> { 1 , . . . , n } for 1 < j k < n is 
a transposition if 

j if i = k 
uj,k(i) = { k if i = j 

i otherwise 

Let be the semigroup of functions { i 1 G Txn '• F(xi,...,xn) £ 
Xn_1 x {d}, xi,..., xn € X, F is really independent of its last variable}. 

Lemma 2.2. (see [2]) S < IV» > • 

Proof. Fix arbitrary c ^ d £ X and let ( c i , . . . , c „ _ i ) £ X n _ 1 , 

, - f ( z i , . . . , z n ) if (a^, . . . , x n ) = (ci,...,cn-i,c), 

( ( x j , . . . , xn) € Xn). First we prove that i(ci,...,cn_,) G < r x » > . 
If n = 2, then our statement holds by definition. Otherwise, n > 2 and for every 

b £ X, define 

\ - j (xi,---,xn-i,c) if Xn-i = b,xn = c, 
b (1,--'n,~\(xl,...!xn-1,d) otherwise, 
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where ( x i , . . . , xn) £ X™. 
For every i £ { 1 , . . . ,n - 1}, ( c i ; . . . , c „_ i ) £ X n _ t , let 

P / \ j {xL, • • •, Zn-I: c) if (Xi , . . . , x n ) = (CI, • - •, cN_I, c), 
c - O ^ i . - - - . ^ - ^ (a;! , . . . otherwise, 

where x = ( x i , . . . , xn) £ Xn). It is clear that F(Cn_1) = On the other 
hand, for every i G { 2 , . . . ,n - 1}, ^(^.^.. .^„-i) = F(cu - ,cn - i ) ° ° -^i.-i ° 
f / i_i ,n_i . Simultaneously, we have by definition that F^l , G Tx" holds for every 
i £ { 2 , . . . , n - 1}. Moreover, using Lemma 2.1, it can be shown easily Uij £ < 
Y'x" > • Thus we get our statement by induction. 

Now we consider a pair ( c i , . . . , c n _i ) , ( d i , . . . , d n _ i ) £ X™ - 1 , d £ X, ( ( c i , . . . , 
c „_ i ) — (di,... ,dn-1) is allowed), and define 

Fj-1] W/J , Ax) = { 

( c i , . . . , c n _ i ,d ) if (ari,... , x n _ i ) = ( d i , . . . , 
dn-i)> 

(d i , . . . ,d „_ i ,d ) if ( x i , . . . , i „ _ i ) = ( c i , . . . , 
c n - i ) , 

( x i , . . . ,xn-i,d) otherwise, 

(ci, • • •, c „_ i , d) if (x L , . . . , x n _ i ) = (di, 

( x i , . . . ,xn-i,d) otherwise, 

where x = ( x i , . . . , x n ) € X " . 
Next we show i?((ci1),...,c„_l),(dl,...,dn_l) € < Tx, >,i = 1,2. 

We have c £ X arbitrary with c ^ d and set Fc3\x) = ( x i , . . . , x n _ i , c ) , 
F d 3 ) ( x ) = (xi> • • • , z „ _ i , d ) , and 

{( c i , . . . , c n _ i , c ) if (xx,... , x „ ) = ( d i , . . . , 
d „ - i , c ) , 

( x i , . . . , x n _ i , d) otherwise 
where x = ( x i , . . . , x n ) G X n , c , d G X , c ^ d, moreover, consider i*^,...,<;„_!) as 
before. In addition, let 

{( x i , . . . , x n _ i , c ) i f x „ = d , 
( x i , . . . , x n _ i ,d ) i f x n = c, 
( x i , . . . , x n _ i , x n ) otherwise, 

and let for every a G X , 

^(e)/^ x ) = { ( x i>-- -> xn-z>a> xn) if xn = c, 
° 1 ' ' ' ' ' \ ( x i , . . . , x „_ i , x „ ) otherwise 

( ( x ! , . . . , x „ ) G Xn). It is clear that F^, F™, F&, F^ £ Tx». Next we show 
that F ^ ^ £ < TXn > • Indeed, by an easy computation we get 
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^(c?,...,£„_!),(</ d„_!) = [ / n - 2 , n - l ° - - •°t/2,n-l°C/l,n-loPc (16)oi/i,„_1oFc (26)o[/2,n-l° 
On the other hand, by Lemma 

2.1 we can see easily Ui6 < Ty» > . But then F^ w . . . = F j 3 ' o 

i m p l i e s F£.. . ,c»-i),(<f„. . . ,dn-,)e < > •J t r e m a i n s 

to prove that F ^ c„_i) (d, d„_i) e < >• This connection, completing the 

proof, comes from F ' X ) „ W . . , = FJ3) O F/,4) , w , o F^ o 

r(c1,...,c„_i),(dll...,d„_i) ° V c • 
Finally, for every pair ( c i , . . . , c „ _ i ) , ( d i , . . . , d „ _ i ) £ X " - 1 , let us consider the 

mappings Fl1c)li... :Cn_ l )Xdu...,dn_1y ^J,...,<=,_,),(* d„_0 d e f i n e d b e f o r e - Observe 

that F^j c ^ (dl d acts as a transposition in the permutation group over 
the set Xn~l x {d\. while F^ c ^ ^ d ^ acts as an elementary collapsing in 
the transformation semigroup over the set X " - 1 x {d}. We have already proved that 
all of these transpositions and elementary collapsings are in < Tx» >• Moreover, 
it is well-known that the set of all transpositions and elementary collapsings on a 
set generates all mappings on that set, so any map taking Xn~1 x {d} to itself may 
be written as the restriction to X " - 1 x {d} of a composite of the the above func-
tions. A moment's reflections shows that the set of all these F^ w , , ., 
f £ > c ^ d in fact generates all of 3rxn~1x{d}, since a function in the 
latter is uniquely determined by its 0 on X™ - 1 x {d } . In addition, it is clear that 
Fx™ \ -Fx™-1 x{d\ is non-void. This completes the proof. • 

Next we show 

L e m m a 2.3. Given a finite group G, a pair of relatively prime integers m,n 
with 1 < m < n, let us define for every I £ {1,... , n}, the transformations T^ : 
Gn Gn, Tlk) : Gn Gn, k = 1 ,2 ,3 ,4 as follows. 

T { 0 ) ( g i , . . . , g n ) = 

T ^ i g i , . • • ,gn) = (gn,9i, • • • ,gi-2,ge-m-i( mod n)9e-i,ge, • • - ,gn-1), 

T(~\gi,. • • ,5n) — (gn,gi, • • • ,gt-2,fff_1TO_1( m o d n)ge-i,ge, • • -,gn-1), 

T(3\gi,- . . , g „ ) = (gn,gi, • • •, gi-2, 9e-m-n mod n)>9e,--- ,gn-1), 

T(4)(gi, • • • ,gn) = (gn,gi,- • • ,9i-2,gjlx,gi, • • -,gn-1)-
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Then for any fixed I £ { l , . . . , n } , TG,n C < :k = 1 , 2 ,3 ,4 } > . 

Proof For every i £ { l , . . . , n } , A; € { 1 , . . . , 4 } , T^k) = (T^)n+i~e o T(tk) o 
(r(o))n+<-t. Thus we shall show only TG,n 9< : I £ { l , . . . , n } , / c = 
1,2 ,3 ,4 > . It is clear that using the notions in Lemma 2.1, by the simple fact 
that every permutation is a composite of transpositions, and moreover, transfor-
mations can be generated by permutations and elementary collapsings, we obtain 
TG,n C < {F^,Uii:j : i,j £ {1 ,--.,n} > . On the other hand, < {T(°\T^k) : 
k = 1 ,2 ,3 ,4 ,£ = 1 , . . . , n } > \TG,n ^ 0 is clear. Thus, it is enough to prove 
that for every i,j £ { l , . . . , n } , ,Uid £< {T^0\T{ek) : k = 1 ,2 ,3 ,4 , * = 
1, . . . , Tl} > . Using m o d n ) > i + j m _ i ( m o d n) = (T^0 ' )" 1 O m Q d n j , 

d= 1,2,3, i £ { 1 , . . . ,n},j = 0 , 1 , . . . , by an inductive application of Lemma 2.1, we 
have i i ( ? m _ 1 ( m o d n ) , i + j m _ 1 ( m o d n ) £ < {T<°) ,Tf> : k = 1 ,2 ,3 ,4 ,* = l , . . . , n } > 
(i £ {1,... },j =0,1...). 

Therefore, because m and n are relatively prime, we receive F^ £ < : 
k = 1 ,2 ,3 ,4 , 1= l , . . . , n } > (d= 1,2,3,1,7 G { l , - . . , n } ) . 

Moreover, we also have = (T« 5 ) ) " - 1 oT i ( 4 ) , i £ { 1 , . . . ,n}. Hence, applying 
Lemma 2.1 again, we obtain Uij £< {T^°\T^k) : k = 1 , . . . , 4 , 1 = 1 , . . . , n } >, 
i,j £ { 1 , . . . , « } and thus, having fjV C < {T^°\T^k) : k = 1 ,2 ,3 ,4 } > ( i , j £ 
{ 1 , . . . , n } ) , the proof is complete. • 

We shall use the following 

Lemma 2.4. (see [1], [2]) Given a positive integer n, let G = < g > de-
note a finite non-trivial cyclic group with a generator g £ G. There exists an 
arrangement ai,...,am (m = |G|") of the elements in the nth direct power Gn 

of G such that for every i = 1,... ,m — 1 there is a j £ {1,... ,n} with Oj+i 6 
{{9i,---,9j-i,9j9'1,gj+i,---,9n),{9i,---,9j-i,9j9, 9j+1> •••,fln)}, whenever 
a-i = (ffi, • • - ,9n) (£ Gn). • 

Now we are ready to prove the following key lemma. 

Lemma 2.5. For any fixed I £ { 1 , . . . , n}, Txn is generated by the union of 
< {T^yT^ : k = 1 , . . . , 4 } > and the set of all functions F : Xn -> Xn having 
the form F(x i,...,xn) = (xx,... ,xt-i, f(x i,... ,xn),xe+1,... ,xn), f : Xn X, 
where X\,..., xn £ X. 

Proof. We can take out of consideration the trivial case \X\ = 1. Thus we 
assume > 1. 

It is clear that without loss of generality we may suppose i = 1. On the other 
hand, using Lemma 2.3, {Uitj :i,j £ { 1 , . . . , n } } C < : k = 1 , . . . , 4 > . 
Thus it is enough to prove that the union of {Uij : i, j £ { 1 , . . . , n } } and the set of 
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all functions F : Xn —> Xn having the form F(xi,... ,xn) — (f(x1,..., xn),x2, • • •, 
xn), generates 7x» • 

For every pair i G { 1 , . . . , n } , / : Xn —» X, define the function Fij : Xn —> 
Xn with F i j ( x u . . . , x „ ) = ( x i , . . . , Xi-i, / ( x i , . . . , xn),xi+i,..., xn) (x\,... ,xn 

G X). Thus, by letting / ' = / o Uij, we have Fjj = Uij o o Uij. So for every 
pair i G { l , . . . , n } , f : X n - > X , Fu €< Tx,n U {F : X " - V x " \ F{xu...,xn) = 
(f(x i , . . . , x „ ) , x 2 , x 3 , . . .,xn), / : X " X , x x , . . . , x n G X } > . 

Let us identify X with a non-trivial finite cyclic group with generating ele-
ment g G X. Thus we also have that for any c i , . . . , c „ G X, i1'1^eij,(Cl,...,c„), 
F{2K,j,(cu...,cn) e < 7 x , „ U { F : X " X n | F ( x i , . . . , x „ ) = ( / ( x i , . . . , x n ) , X2 5^3, 
... ,xn), f : Xn X, x = (x±,.. .,xn) G X™} > , whenever e G { 1 , - 1 } , 

^ e j , ( c i , . . . , c „ ) ( x ) = 

( c i , . . . , c „ ) if x = ( c i , . . . ,Cj-i,Cjge, Cj+1,... , c n ) , 
(ci, . . . ,Cj_i ,Cj3£ ,Cj+ i , . . . , c „ ) if X = ( c i , . . . , c „ ) , 
x - otherwise, 

(2) . , _ J ( c i , . . . , C j _ i , C j 3 e , C j + i , . . . , C n ) if X = ( c i , . . . , c „ ) , 
e,j,(ci,...,c„)W | x otherwise, 

where x = ( s i , . . . , x n ) G X " . On the other hand, by Lemma 2.4, there ex-
ists an arrangement a i , . . . , a m of X™, such that for every k = l , . . . , m — 1, 
Pk e {F^K,j,(Cl,...,cn) • e S { - 1 , 1 } , i G { l , . . . , n } , c i , . . . , c n G X}, tk G 
{Fi2)e,j,(c 1,...,cn) • e 6 { - 1 , 1 } , 3 G { 1 , . . . , n } , c i , . . . , c n G X } , where 

a f c + i if i - k , 
Pk{ai) = { afc if * = fc + 1, 

a; otherwise, 

tk(at)=\ak+i i f i = fc' v ; \ ae otherwise. 

But then pi,... ,pm-I is a set of transpositions such that { p i , . . . ,pm_i} generates 
all permutations over X n . And simultaneously, t\,..., i m - i is a set of elementary 
collapsings over X n . Thus by the well-known fact that for every j = 1 , . . . ,m — 1, 
{ p i , . . . ,pm-I, tj,} generates all transformations over X " , the proof is complete. • 

3 Main Results 
First we show the next statement. 

Theorem 3.1. Given a positive integer n > 1, V — (V, E) with V = { 1 , . . . , n} 
is an n-complete digraph with minimal number of edges if and only if there exists 
a permutation p : {l,...,n} —• {l,...,n} such that E = {(p(i),p(j)) : i,j G 
{ l , . . . , n } , p ( j ) =p(* + lmod n)}U{(p(»),p(l)) :i G { l , . . . , n } } . 
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Proof. We may assume without loss of generality that the permutation p is 
the identity. Then it is clear that for an arbitrary m 6 { 1 , . . . ,n } , the functions 
T(o) i rpW _ k _ 1 2 , 3 , 4 defined in Lemma 2.3 are compatible with V. Suppose that 
m is 3 such that it is relatively prime to n. Then the sufficiency of this statement 
is a direct consequence of Lemma 2.5. To the necessity first we show the existence 
of j E V with {(¿, j) : i G V} C E, whenever V is n-complete. 

Let T : X n Xn such that \{T(Xl,... ,xn) : xi,...,xn G X}\ = \Xn\ -
1. First we show that for every F\,...,Fm G Txn, T = F\ o ... o Fm implies 
the existence of an index i 0 the property \{Fi(xi,... ,xn) : xi,... ,xn G X } | = 
\Xn\ — 1. Of course, if Fi,... ,Fm are injective then T = Fx o ... o Fm should 
be also injective, a contradiction. On the other hand, T = Fx o ... o Fm implies 
| {F(z i , . . . ,xn) :xx,-..,xn G X } | < min{|{Fj(:Ei,... ,xn) : xx, • •. ,xn G X } | : i = 
1 , . . . ,m} . Therefore, we obtain our assumption regarding the existence of an index 
i preserving the property \{Fi(xx, • • • ,xn) : xly. • • ,xn £ X}\ = \Xn\ - 1. 

Now we identify the elements of X in a fixed but arbitrary way with the elements 
of { 1 , . . . , |X|} and consider Xn as a subset of the nth direct power of integers. 
For every (a i , i , . . . , a i i ? l ) , . . . , ( o m > i , . . . ,o„ l j n ) G Xn, let • • •»ai,n) • i = 
l , . . . , m } = ( S ™ ! Oi.i, • • •, TH=\ Let a = ( a i >--->an), b = (bx,...,bn) G 
Xn denote distinct elements with |Fi_1(a)| = 0 and = 2. And let j G 
{ 1 , . . . , n } be an index with Oj ^ bj. 

Prove that |X| does not divide prj{^2{Fi{x i , . . . , x n ) : xx,. • • , x n G X } ) . In-
deed, then prj(J2{Fi(xx, - • • , Xn) '. X\ , . . . , Xfi G X } ) = prjC^lixx,... ,xn) : 
xx,-.-,xn G X}) + bj-a,j) = k) + bj-a,j. Of course, by this equality 
we received that \X\ does not divide prj(J2{Fi(%i, • • • j Xn) • j . . . ; Xn e x } ) . 

Suppose that for every j G V there exists an i G V with ( i , j ) ^ E. Consider the 
set T>x of all functions of the form Xn —> Xn which are compatible with V. Now we 
show that for every F G T>x, divides prj(Y,{F(xx, • • • ,xn) : xx,...,xn G X } ) , 
implying F i ^ V x . 

By F G T>x we have that for an appropriate t G { 1 , . . . ;n},prj(F(x i,..., xn)) = 
Prj {F(xx, • • .,xt-x, x'e,xi+x,- • -,xn)) ((xx, • • •, xn) G Xn,x'e e X , t = j is allowed). 
Therefore, for an arbitrary fixed c G X, prj{^{F(xi,... ,xn) : xx, • • • ,xn £ X } ) = 
\X\prj(J^{F(xx,... ,xe-i, c,x(+x,...,xn)) : xx,...,xe-x,xe+x,-..,xn G X } . But 
then |X| divides prj(Y^{F(xi,..., xn) : xi,..., xn E X } ) for every j = 1 , . . . , n. 
Hence we get Fi Vx. Consequently, there exists a T G 73c» whith T </< Vx > . 
This ends the proof of the existence of j G V with {(i,j) : i E V} C E, whenever 
V is n-complete. Then we are ready if we can prove the existence of a permutation 
p : {1 , . . . , n } { l , . . . , n } having { (p( i ) ,p( j ) ) : i,j E { 1 , . . . , n},p{j) = p{i) + 
l (modn)} C E. 

Consider the mapping T<°) : X " Xn defined by T^(Xl,. ..,xn) = (xn,xi, 
...,xn-x) , • • • ,xn E X ) . To complete the proof of our theorem, we will show 
r<°> ^ Vx if there exists no such a permutation p. 

It is also clear that an n-complete digraph T>, having n vertices, should be 
strongly connected. Therefore, all vertices have (non-loop) incoming edges. Thus, 
by the minimality of \E\, we get |E \ {(¿, j) : i G V}\ = n - 1. Simultaneously, 
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the strongly connectivity of V implies { j } x (V \ { j } ) fl B / O (where j G V with 
{(i,j) : i G V} C E). On the other hand, if there exists no permutation p having 
the above discussed property, then by the strongly connectivity of V, V x { j } C E 
and |E \ { ( i , j ) : i G V}\ = n - 1, we can prove \{j} x (V \ { j } ) n E\ > 2, implying 
the existence of two distinct vertices i\,i2 G V with { (£ , i r ) : r = 1 ,2 , t £ V} 
n £ = { ( ¿ . * i ) , 0 ' . t 2 ) } . 

It is enough to prove that in this case J1'0' ^ Vx - Clearly, F\ G V x implies the 
existence of functions fk • X -4 A", k = 1,2 with prik(Fi(xi,... ,xn)) = fk{zj)-
Therefore, the cardinality of {(1/1,1/2) : Vk = prik{Fi(xi, xn)),k = 1, 2, xx,..., 
i n G X } is not greater than . In a similar way, for every F\,..., Fm £ T>x ,m > 1 
there exist functions fk : X X,k = 1,2 such that prik (Fxo.. .oFm(xi,..., xn)) = 
fk(prj{P2 0 • • • 0 Fm(xi,.. .,xm))) implying that the cardinality of {(1/1,1/2) : Vk = 
Wik{F\ o ... o Fm(x 1, . . ,,xn)),k = 1,2,2i, . . . ,a:n G X} is not greater than |A"|. 
On the other side, the cardinality of {(1/1,1/2) : IIk = prik(T^(xi,... ,xn)),k = 
1,2, xi,... ,xn G X} is |X|2 yielding to T^ $ VX- The proof is complete. • 

Now we prove the following characterization. 

Theorem 3.2. Given a positive integer n > 1, V = (V, E) with V = { 1 , . . . , rn}, 
m > n is an n-complete digraph with minimal number of edges if and only if there 
exists a permutation p : { l , . . . , m } h-> {1 , . . . , m } such that E = {(p{i),p(j)) : 
P(*),PU) e { l , . . . , n + l } , p ( j ) =p(i + l modn + l)}U{(p(i'),p(j'))j, where i',j' G 
{ 1 , . . . ,n + l},\j'—1'| 1, moreover, \j'—i'\ — l andn + 1 are relatively prime. NB: 
The case i' = j' is not excluded. Moreover, if there are more than n + 1 vertices 
then all except for n + 1 are isolated. 

Proof. To the sufficiency it is enough to prove for any n > 2 the n-completeness 
of V = ( {1 , . . . , i i + 1 } , { ( M + l (modn + 1)) : i G {1, . ..,11 + 1 } } U { ( l , r ) } , where 
rG { l , . . . , n + l } , r ^ 2 , and in addition, r — 2 and n + 1 are relative primes. 

Consider the set T>x of all functions of the form Xn+1 —» Xn+l which are 
compatible with V. By definition, we obtain {T(°),T f ( fc ) : k = 1,..., 4, } C V x , 
where T^,T^\k= 1 , . . . , 4 are defined as in Lemma 2.3 (taking m of the lemma 
to be r — 2). Identifying X with a finite group and using Lemma 2.3, then we get 
Tx,n Vx >, too. On the other hand, we have by definition { F : —> 
Xn+1 | F( x1,...,xn+i) = (xn-i-i,xi,..., xr-i, f(xi,xr_n mod „+1)), xr+x,... ,xn), 
f : X2 X,i £ { l , . . . , n + 1}, ( n , ...,xn+1) £ X n + 1 } £ V x . But then {F : 
Xn+\ Xn+1 | F(xi,...,xn+1) = (Xi ,...,Xi-i, f(Xi,Xi+1{modn+1)),Xi+1,. .., 
xn+1),f : X2 X,i £ { 1 , . . . , n + 1}, ( n , . . . , ! ^ ) G UTx,n+i C V x 

resulting I\y» C VX- Applying Lemma 2.2, this shows the n-completeness of V. 
Using the obvious fact that 71-complete digraph should have a strongly con-

nected n-complete subdigraph, by our minimality conditions, we will consider di-
graphs which have a strongly connected subdigraph and all vertices outside of 
this digraph are isolated. Thus, the sufficiency of our statement implies that by 
our minimality conditions, we can restrict our investigations to the strongly con-
nected n-complete digraphs having not more than n + 2 edges. (We can take out 
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of consideration the isolated vertices.) If we have n + 1 vertices and fewer than 
n + 1 edges then our digraph is not strongly connected. On the other hand, 
if we consider a strongly connected digraph V with n + 1 vertices and n + 1 
edges, i.e., a cycle having n + 1 length, then for every F £< T>x >, there ex-
ist k £ { 1 , . . . ,n + 1}, fi : X X,i = 1,... ,n + 1 with F(x1,... ,xn) = 
ifi(xk), hixk+i( mod (n+i)), • • • i / n + i ( V M mod n+i)) (xi,---,xn £ X). There-
fore, for any 1 < ii < i2 < ... < im < n + 1, prh:...iim(F(x1,...,xn+1)) 
= (fii (xii+k( mod n+l))> • • • , fim (xim+k( mod n+1))), {xl, • • • ,xn+l £ X) which ob-
viously shows that this type of digraphs can not be n-complete. 

Therefore, to the necessity of our statement, we can consider only strongly 
connected digraphs having n + 1 vertices and n + 2 edges. 

By the strongly connectivity of V we may suppose that V = (V, E), with \V\ = 
n + 1, = n + 2, has a cycle C = ( V , E') with k length for some 1 < k < n + 1, 
where V' = { « i , . . . ,vk}(C V), E' = mod k)) | i = l,...,k}(C E). 

Using the strongly connectivity of T> again, for every V C V there are distinct 
(vi,vj), (vs,vt) £ E with vi,vt £ V',vj,vs £ V\V'. Therefore, by an induction we 
get the structure of V in the following manner. 

If k < n + 1 then V = { v i , . . .,vk,vk+i,. • .,vn+1},E = E' U {{vk+i-Uvk+i) | 
i= 1 , . . . , n — fc + 1} U { ( i )„+ i , Vi)}, where I £ { 1 , . . . , k} is arbitrarily fixed. 

If k = n + 1 then, of course, V — V', and E = E' U {(wn+i, ve)} for some 
I £ {2, . . . , n + 1}. 

To complete the case k = n + 1, first we study digraphs having the form 
V = ( {u i , . . . , v „ + i } , { {vi ,v i + 1 { modn+i)) : i £ {1 , . . . ,n + 1} } U where 
I £ { 1 , . . . ,n + 1},£ ^ 2, such that I - 2(mod n + 1) and n + 1 are not rel-
ative primes. Then n + 1 has a divisor d > 1 such that for any mapping 
F £ V x , F(xi,...,xn+1) = (f1(xill,...,xilh),..., fn+1(xin+11,... ,xin+1Jn+i), 
where for every w £ { 1 , . . . , n + l},u,v £ { 1 , . . . ,jw}, iWiU = i№i„(mod d),iWtU = 
w — l(mod d) {xi,...,xn £ X). These hold for compatible maps, i.e. if w ^ r 
then fw depends only on xw-i, otherwise w = r and fw depends only on and 
xi. It is also clear that every composition of such functions preserves this property. 
Therefore, for every F £< T>x > and i £ { l , . . . , n + l } , pr i (F ) depends on proper 
divisor of n + 1 many variables which is fewer than n. Therefore, digraphs having 
this like structures are not n-complete. 

It is remained to study the case k < n + 1. Then V — 
{wi, . . .,vk,vk+i,. • • ,vn+i}, E = E' U {(vk+i-i,vk+i) • i = 1 , . . . ,n - k + 1} U 
{(vn+i,v()}, where £ £ { 1 , . . . ,k} is arbitrarily fixed. Of course, if k = 1 or £ = 1 
then we have one of the cases discussed previously. Thus we assume k , £ ^ 1. 

Given a set X with |X| > 2, let Mx = {F : Xn Xn : \Xn\ - 1 < 
|{F(a;i,. . . ,a;n) : (xu ..., xn) £ X™}|(< |X"|)}. Clearly, then for every F : Xn 

X n , F £ < M X > • 

To complete our proof, now we show that there exists a network V = ( V , E') 
with \V'\ = n, E' = V' x V'\{(vi, Vi) : u, £ V'} such that for every pair F £<VX >, 
H C { 1 , . . . ,n + 1}, \H\ — n, the existence of prH(F) implies prH(F) £< V x > 
whenever prH(F) £ Mx (where V x denotes the set of all functions of the form 
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F : Xn Xn to be compatible with V). 
Observe that for every Fm £ T>x there are f j : X —> X,j = .. ,1 — \ ,i + 

l,...,n + l,fe : X2 X with Fm{xi,. ..,xn) = (fi(xk), /2(2:1),. •., ft-\ (x<_2), 
ft(xi-i,xn+i),fc+i{xt),...,fn+i(xn))((xi,...,xn+i) £ X n + 1 ) . Therefore, H = 
{ l , . . . , n + l } \ { * } , i £ { 1 , . . . , n + l } \ { £ — l , n + l } and F — Fio.. .oFm,Fi, • • •, Fm £ 
T>x implies \{prH(F)(xi,...,xn) : ( x i , . . . , x „ ) £ X n } | < |Xn_1|. Hence, in this 
cas eprn(F) £ Mx. Thus we may assume i i = { l , . . . , n + l } \ { i } , i £ {I—I, n + 1 } . 
In addition, it is clear that by the structure of V, for every T £ T>x, cpi ( T ) and 
cpk+i (T ) may really depend only on the same kth variable of F. 

Let F = Fi o ... o Fm with Fi,...,Fm £ V x , such that, prH(F) £ Mx exists 
for a suitable H = {1,... ,i — l , i + l , . . . , n + l } , i £ {I — 1, n + 1}. 

First we suppose m = 1. Consider functions f j : X X, j £ { 1 , . . . , i — 1, i + 
l , . . . , n + l},/i> : X 2 X with F(xi,...,xn+1) = (fi(xk), /2 (^1) , . . . , fe~i(xc-2), 
ft(xe-i,xn+i),ft+i(xe),...,fn+i(Xn)) (xi, • • • , x n + i ) £ Xn+1). Clearly, then i £ 
{1, k + 1} also holds provided prn(F) £ Mx-

Suppose ¿ = 1. Then in consequence of i £ {I — 1, n+ 1}, we have I = 2. Clearly, 
then /2 really may not depend on its first variable, i.e. there exists a g : X ^ X 
with / 2 ( x i , X 2 ) = <7(X2) ( X I , X 2 £ X). Construct the function T : Xn —> Xn with 
T(x i,...,xn) = (g(xn), fi(xi),..., fn+i(xn-i)) ( ( x i , . . . , x „ ) £ Xn). Then we get 
prn{F) = T. On the other side, T £ Vx is also obvious. 

Suppose i = k+1. By i £ {i—1, n + 1 } and £ < k, this implies k = n. On the other 
side, then f( really may not depend on its second variable, i.e. there exists a g : X —> 
X with fe(xi,x2) = g{x 1) (x i ,x 2 £ X ) : Let T : Xn X " with T{xu...,xn) = 
(fi{xn), /2 ( x i ) , . . . ,fe-i(xe-2),g(xe-i)Ji+i(xe),.. . , / „ ( x n _ 1) ( ( x L , . . . , x n ) 
£ X n ) . It is obvious that T £ V x and prH(F) = T. 

Now we turn to the case m > 1. Then first we define the mappings F l , . . . , i7"m £ 
in the following way. For every r = 1 ,...,m, define functions fr : X H-

X,gr : X X with fr(x) = pr1(Fr(x1,... ,xk-i,x,xk+i, •.. ,xn+i)), gr{x) = 
prk+i(FT(xi,... ,xk-i,x,xk+i,... , x n + i ) ) , x i , . . . ,xk-i,x,xk+i, • • •, x n + i £ X . 
(Fr £ Vx implies that fr and gT are well-defined.) In addition, let for every 
r = 1 , . . . ,m, prj(Fj.(xi,... ,xn+i)) = 

/i(xfc) if r = 1 and j = 1, 
gi(xk) if r = 1 and j = k + 1, 
xk if r > 1 and j £ {l,k + 1}, 
prj{Fm(x 1 , . . . , x n + i ) ) if r = m and j £ { 2 , . . . , k, k + 2 , . . . , n + 1}, 
W j (Fr [ fr+1 (Xl), X 2 , . . • , XJFC, 

gr+i(xk+i),xk+2,... , x „ + 1 ) ) otherwise 

( x i , . . . , x n + i £ X ) . By an easy computation we get Fx o ... o Fm = F[ o ... o F^. 
Define for a fixed c £ X , m = 2, prj(F"(x 1 , . . . , x „ ) ) 

prj(F^.{xi,. . .,Xi-i,C,Xi,.. . , ! „ ) ) if 1 < j < 
j 1, c, . . . , if i<j<n 

( x i , . . . , x n + i £ X,r = 1,2). 
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Similarly, for a fixed c G X and m = 3, let prj(F"(x..., xn)) 

prj(F{(xk,x2, • • • ,XF_2 , 
Xn, • . . , X „ _ I , X I ) ) 

prj+1(F{(xk,x2,. • .,Xt-2, 
Xl)) 

if i = £ — l,r = 1 and 
1 < j <£-l, 

prj{F{(xk+1,x 2, . . . ,XN)) 

iî i = £ — l,r = 1 and 
I - 1 < j < n, 

i f i = n + l , r = 1 and 
1 < 3 < n, 

prn+i{F2(xi,.. .,Xi-i,c,Xi,.. .,xn)) if r = 2 and j = 1, 
prj{F2{xi,... ,Xi-i,c,Xi,... ,x„)) if r = 2 and 1 < j < i, 
pr j+i iF i i x i , . . . ,Xi- i ,c ,Xi , •.. , x „ ) ) if r = 2 and i < j <n, 
prj(F^(xi,.. ,,Xi-i,c,Xi,.. .,xn)) if r = 3 and 1 < j <i, 
prj+iiFzixx,... ,Xi-i,c,Xi,... ,x„)) if r = 3 and i < j < n, 

( x i , . . . , x n + i € X,r = 1,2,3). 
In addition, let for a fixed c 6 X and m > 3, prj(F"(xi,..., x „ ) ) 

pri{F!r{xk,x2, • • -,xt-2, 
Xn-> Xl—1, • . • , Xn—i, Si)) 

prj+i(Fr(xk,x2,.. . ,Xf_2, 
7̂1J 1 ) ' • • 3 — 1 î 

pr„+i (F^ (xfc, x 2 , . . . , xf_2, 
Zl)) 

if i =£ - l,r = 1,1 < j < £ - 1, 
or i = £ — 1,1 < r <m — 2 and 
1 < j < £ ~ 1, 

if i = £- l,r = 1,£ - 1 < j < n, 
or i = £ — 1,1 < r < m — 2 and 
£ - 1 < j < n, 

, X 2 , . • - , x n ) ) 

prj(Fr(xk+l,x2, .. .,xn)) 

ifi = £—1,1 <r<m — 2 and 
= < 3 = 1> 

i f z = n + l , l < r < m — 2 and 
J = l, 

if i = n + 1, r = 1,1 < J < n, 
o r i = n + l , l < r < m — 2 and 
1 <j<n, 

pr n + 1 (F^ l _ 1 ( x 1 , . . . ,Xi-i,c,Xi,... ,xn)) if r = m - 1 and j = 1, 
p r j ( F l n _ 1 ( x i , . . . ,X i - i , c ,X i , . . . ,x„ ) ) if r = m - 1 and 1 < j < i, 
Vrj+i{F!m_l{xi,... ,Xi-i,c,Xi,... ,x„ ) ) if r = m - 1 and % < j < n, 
prj(F^(x i , . . ,,Xi-i,c,Xi,.. .,xn)) if r = 77i and 1 <j<i, 
prj+1(F^(xi,... ,Xi_ i , c ,Xi , . . . ,x n ) ) if r = m and i < j < n, 

{xi,...,xn+i E X,r G {l,...,n})). 
We remark that, of course, for every j = 2 , . . . ,m, the value of F " o . . . o 

F " j ( x i , . . . , x m ) ( x ! , . . . , x n € X ) may depend of the value of (the above fixed) 
cG. X. But the value of F " o . . . o F ^ ( x i , . . . , x m ) ( x i , . . . , xn G X ) may not depend 
on the value of c G X in question, because F# = F " o . . . o F^ by definition. 
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(Remember that the existence of prjj(F) (= prfj(Fi o... o F m ) , m > 1) is supposed 
with H = { 1 , . . . ,i - l,i + 1 , . . . ,n + 1} for a fixed i S {( - l , n + 1}.) 

By an elementary computation we can prove F",..., F^ 6 V x- Applying The-
orem 3.1, V may not be n-complete because it is not centralized. Therefore, 
there exists a T € Mx with T V x > • But then for every F e < Vx > , 
H — { 1 , . . . ,n + 1}, |i/| = n, pru(F) T. Therefore, V can not be n-complete. 

This ends the proof. • 

References 
[1] Domosi, P. and Kovacs, B., Simulation on finite networks of automata. 

Words, Languages and Combinatorics, Ed. by M. Ito (Kyoto, 1990), 131-
138, World Sci. Publishing, River Edge, NJ, 1992. 

[2] Domosi, P., Nehaniv, C. L., Some Results and Problems on Finite Homo-
geneous Automata Networks, Proc. Japanese Association of Mathematical 
Sciences Annual Meeting on "Languages, Computation and Algebra", Kobe 
University, August 27-28, 1997 (in press). 

[3] Tchuente, M., Computation on Finite Networks of Automata, In: Automata 
Networks, Ed. by C. Choffrut (Argeles-Village, France, 1986), 53-67, Lecture 
Notes in Computer Science 316, 1988. 


