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Abstract

An automata network graph is said to be n-complete (under projection) if
every automata network having underlying graph with n vertices can be sim-
ulated (under projection) on it. In this paper n-complete automata network
graphs with minimal number of edges are completely characterized.

1 Basic Notions

Let f: X1 x...x X, = X be a mapping having n variables for some positive

integer m, moreover, let t € {1,...,n}. f is said to really depend on its t** variable
if there exist ©; € X1,...,2;.1 € Xt_l,fltt,xtl € Xt7l't+1 € Xt+1, oz, € X,
having f(z1,...,2n) # fl21,...,Z¢—1, T, Te41, ..., Tn). I f does not have this

property then we also say that f is really independent of its t** variable. Moreover,
if there is no danger of confusion then sometimes we omit the attribute “really”.
For a given non-empty set X and positive integer n denote by X™ the nt*
0 power of X. Given a k-element subset H of {1,...,n}, H = {i1,...,ix}
(iy < ... < iy), the H-projection of X™ is a mapping prg : X™ — X* defined by
pru(zy, ..., zn) = (Tiy, ..., 2, ), where (z1,...,2,) € X™ The function pry(F) :
C XE o XE with prg(F(z1, ..., 20)) = pru(F)(pra (@1, ..., 20)), (21, ..., 2,) € X™
is called the H-projection of F' : X™ — X" (if it exists). If H = {h} for
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some h € {1,...,n}, i.e,, H is a singleton then sometimes we use the expres-
sion h-projection (of a vector or function) in the same sense as the concept “H-
projection”. (And in this case sometimes we use the notation pr, instead of
pr{n}-) Moreover, for an arbitrary i € {1,...,n}, we define the it" component
of F: X" — X" as the function cp;(F) : X" — X with ¢p;(F)(z1,...,2,)) =
Wi(F($1,~-~,$n)) (1‘1,...,$n) € X"

For any pair F; : X™ — X™,¢ = 1,2, one denotes by Fj o Fp : X" — X the
function Fy o Fy(z1,...,Zn) = Fy (Fa(z1,...,20)), (£1,-..,Zn) € X™.

A (finite) directed graph (or, in short, a digraph) D = (V, E) (of order n > 0) is
a pair of the sets of vertices V = {v;,...,v,} and edges ECV x V. vy; € V is an
isolated vertez if ({v;} x VUV x {v;})NE = 0.If (v;,v;) € E and i = j then (v;,v;)
is called (self-) loop edge. The digraph D' = (V', E') is a subdigraph of D if V' is
a non-void subset of V, and E’ C E. D is said to be connected for v; € V if every
vertex v; € V has a (directed) path from v; to v;. D is called strongly connected if it
is connected for all of its vertices. Moreover, D is centralized if there exists a v; € V
with V x {v;} C E (including (v;,v;) € E). In addition, a digraph D = (V, E)
having a structure V. = {v1,...,un}, £ = {(vs,Vif1(moan)) : # = 1,...,n} is
called a cycle (with n length). We also say that a digraph D has a cycle (with
n length) if there is a subdigraph of D which forms a cycle (with n length). A
transformation F : X™ — X™ is said to be compatible with a digraph D = (V, E)
(of order n) if F' has the form F(z1,...,zs) = (fi(z1,...,2Zn),. .., falz1, ..., 20))
({(z1,...,zp) € X™) and f; : X™ - X, i =1,...,n may depend only on z; and
those ; for which (v;,v;) € E (including the case i = j). »

A word (over X) is a finite sequence of elements of some finite non-empty set
X. We call the set X an alphabet, the elements of X letters. If v and v are words
over an alphabet X, then their catenation uv is also a word over X. Especially,
for every word u over X, ul = Au = u, where )\ denotes the empty word having
no letters. The length |w| of a word w is the number of letters in w, where each
letter is counted as many times as it occurs. Thus |A| = 0. By the free monoid X*
generated by X we mean the set of all words (including the empty word A) having
catenation as multiplication. We set X* = X* \ {)\}, where the subsemigroup X+
of X* is said to be free semigroup generated by X.

By an automaton A = (A, X, ) we mean a finite automaton without outputs.
Here A is the-(finite non-empty) state set, X is the input alphabetand § : AxX — A
is the transition function. We also use 0 in an extended sense, i.e., as a mapping
§: Ax X* — A, where §(a, ) = a (a € A) and §(a,pz) = §(d(a,p),z) (a € A,p€
X*,z € X). For a given word p € X*, the transition induced by p is the function
dp : A — A that takes any state a € A to §(a,p).

If A= Z™ forsome|Z| > 1 and n > 1 (where |Z| denotes the cardinality, i.e., the
number of elements in Z) then we say that A is a finite state-0 automata network
(of size n with respect to the basic local state set Z). Then the underlying graph
Da=(Va,En) of Ais defined by V4 ={1,...,n},E4={(i,5) | 3z € X : ¢p;(dz)
really depends on its it* variable}. A is a D-network if D = (V, E) is a digraph
with V = V4 and E D E4. In other words, A is a D-network if every mapping
6, : A = A (z € X) is compatible with D. Note that a size n automata network
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may be regarded as comprising n component automata A; = (Z,;Z2™ x X,6;), 1 €
{1,...,n}, where the é; are defined by

6(2’,.’5) = (61(217 (271))a v )6ﬂ(zn7 (Z,.Z'))),

for 2 = (21,...,2n) € Z™, z € X. One may of course suppress the components of
Z™ in the inputs to A; upon which §; does not really depend.

If n =1 or |Z] = 1 then we say that A = (Z", X, ) is a trivial automata net-
work. The purpose of this paper is to investigate the state-homogeneous automata
networks having state sets of the form Z", for a positive integer n > 1 and fixed
finite set Z of cardinality at least two. Therefore, by an automata network we shall
mean a non-trivial finite state-homogeneous network.

Let A = (2™, X,6),B = (Z™,Y,¢') be networks (having the same basic set Z).
We say that B simulates A by projection if there exists an H C {1,...,m} such that
every 0, : Z™ = Z™ (z € X) is an H-projection of a mapping 4, : Z™ = Z™ (p €
Y1). If there exists a D-network B which simulates a given network A by projection
then it is said that A can be simulated on D by projection. A digraph D is called .
n-complete (with respect to simulation by projection) if every network of size n can
be simulated on D by projection. The n-complete digraph D = (V, E) has minimal
number of edges if for every n-complete digraph D' = (V', E’), |V| = |V'| implies
|B| < |B].

2 Preliminary results

We start with the following technical result.

Lemma 2.1.(see [2]) Given a finite group G, a positive integer n > 1, let us
define for every distinct 1,5 € {1,...,n} the functions Fi(,;) Gt = Gt =1,2,3,
Fj(4) :G" = G", and U j : G — G™ as follows.

' )
Fi(,j)(gla"'ﬂgn):(.917"'7gj—1;gigjagj+1:"'7gﬂ)7
F(2)( ) = ( . S
ii (G1y-- 5 9n) = (91,1 95-1,95 "G5> Gi+15 -+ - Gn),
F(3)(g )_( . . .
iJ 15---39n) = 917---ag]—lag1ag]+17"'7gn)a
4 _
Fj( )(g1>~~-7gn)=(gl;~-'7gj—1;gj 1agj+17""agn)a

Ui,j(gl,--~;gn) = (gla"')gi—l)gjagi+l)"'7gj-—-lag‘i)gj+17" 7g'n.)

Then for arbitrary, pairwise distinct 4,5,k € {1,...,n} we get

1 2 1 1 2
Fi(’].) = Fz’(,k) oF,g,j) o Fi(,k) o F,E,j),
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(2 (1 1 2 2
Fi,j) = Fi,k) ° Flg,j) o Fi(,k) ° Fls,j)’

3 (1) (1) 2 (2 2 3
Fi(,j) = Fk,j ° Fi,k ° Fé,j) ° Fi,k) ° Flg,j) OFIS,]')1
Uj = Fj(4) o Fi(,;‘) o F].(4) o Fi(4) o Fj(,‘i) o i(,;')'

O

Given a non-void set Y, a positive integer n, let 7y denote the full transfor-
mation semigroup of all functions from Y to ¥. In addition, for every subset
H C Ty, let < H > denote the subsemigroup of Ty generated by H. More-
over, for any finite set X with |X| > 1 and positive integer n > 1, denote Tx,,
the subsemigroup of all transformations of 7x» having the form F(zy,...,z,) =
(Te(1)s - - Za(n))s (T1, -, Zn) € XMt {1,...,n} = {1,...,n}, and let

Fxn = {FX" . i I F(Z‘l,...,l‘n) = (:1:1,...,mi_l,f(zi,zj),zi+1,...,:z:n),
where f: X% = X,i,j € {1,...,n},(z1,...,2,) € X"},

(It is understood that the case ¢ = j is allowed in the above definition of I'x~.)
Define the elementary collapsing t; 5 : {1,...,n} = {1,...,n} for 1 <j #k < n,

. j ifi=k
ik (i) = { 1 otherwise
Moreover, as usual we say that u; . : {1,...,n} = {1,...,n} for 1 < j# k< nis
a transposition if
j o ifi=k
wi(@)=<{ k ifi=j
1 otherwise

Let Fxn-1y{qy be the semigroup of functions {F € Txn» : F(z1,...,z,) €
X1 x{d}, z1,...,2n € X, F is really independent of its last variable}.

Lemma 2.2. (see [2]) fxn—lx{d} c< IFx» >.
Proof. Fix arbitrary ¢ # d € X and let (¢ci,...,¢h—1) € X1,
A (z1,-..,za) if (z1,...,2n) =(c1,---,Cn-1,0),
Flerenn) (@150 Zn) = { (Z1,.. -, Bp-1,d) i (z1,...,20) #(c1,. .., Cno1,C)

((z1,...,2n) € X™). First we prove that Fi., .._,) €<Tx~>.
If n = 2, then our statement holds by definition. Otherwise, n > 2 and for every
b € X, define

Oy, sy < f @ a1,€) o =bian=c,
FV(z1, .., 2q) —{ (z1,...,Zn_1,d) otherwise,
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where (z1,...,z,) € X™
For everyi € {1,...,n—1},(ci,-.-,Cn—1) € X" 7%, let

| (z1,.. ., Zaor,0) A (T, 20) = (G-, Cnm1,0),
F(Ci ,,,,, cn—l)(xl" ”m")_{ (z1,...,Zn-1,d) otherwise,

where z = (1,...,2,) € X"). It is clear that F.,_ ) = Fc(,?)_l. On the other
hand, for every i € {2,...,n =1}, Fie. ;. .cn_) = Fleiroveno) © Uicin—t © F(O_)1 o

Ci
Ui—1 n—1. Simultaneously, we have by definition that F’c(,.o_)1 € I'x» holds for every
i € {2,...,n — 1}. Moreover, using Lemma 2.1, it can be shown easily U;; € <
T'x» > . Thus we get our statement by induction.
Now we consider a pair (ci,...,¢n-1), (di,...,dn-1) € X* 1, d € X, ((c1,..
Cno1) = (d1,...,dn_1) is allowed), and define

)

(cl,...,cn_l,d) if(l'l,...,in_l):(dl,...,

W 1)
Fiol on i@ =9 (diyoydnoa,d) i (21,0, 200) = (a1,
cn—l),
(z1,...:%n-1,d) otherwise,
) (Cl,...,Cn_l,d) if(Il,...,l‘n_l):(dl,...,
F(cl ,,,,, Cn_l),(dh...,dn_l)(w) = dn—l)’_
(z1,...,%n-1,d) otherwise,
where z = (z1,...,2,) € X™.

(%) .
Next we show F(Clw,cn_l),(d1 ,,,,, dn_y) €< I'xn >,1=1,2.

We have ¢ € X arbitrary with ¢ # d and set F® () = (T1,..-,Tp_1,C),
F(gg)(w) =(z1,...,Zn-1,d), and

@ (cl,...,cn_l,c) if(xl,...,zn):(dl,...,
F(clr-'wcn—l)y(dly~-<:dn—1)($) = dn_l’?),
(z1,...,%n—1,d) otherwise
where = (21,...,2,) € X", c,d € X,c # d, moreover, consider F, . . as
before. In addition, let
(z1,...,Zn-1,€) if z,, = d,
FO(zy,. . z) =4 (z1,...,2n1,d) ifz,=c,
(z1,..-,%n-1,Tn) otherwise,

and let for every a € X,

N — if z,, = C
F(G) Ti,... = (',El’ yIn Z,G,Z‘n) if z, ,
e (T, .., Tn) (1, s Tn—1,Tn) otherwise

((z1,...,zn) € X™). It is clear that FC(B),Fd(B),F@),FéG) € I'x». Next we show
that F((:l),...,cn_x),(dl,...,dn_l) €< I'x» > . Indeed, by an easy computation we get
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F((:l),~-~,cn—1)w(d1,m,dn-l) = Un_zy’"—lo‘ . '°U2y71-1°U1,n—1OFlS?)OUl,n~1°F526)°U2,n—1°

o oUn_sn10F joUn 3 n 10FS) [0Fy,  4._,) On the other hand, by Lemma
2.1 we can see easily U;; € < I'x» > . But then F® = Fés) o

() (5] - (e1,en—1),{d1,....dn-1)
F i en)(dissdn—y) © Fe implies FEE s dndn_yy €< Tx» > . It remains

to prove that F((cll),...,c,,_l),(d,,‘.‘,d,,_l) € <T'x~» >. This connection, completing the
proof, comes from F((cll),...,c,,_l),(dl,...,d,._l) = Ff) o F((;l),...,d.._l),(q,...,c,._l) o F® o
((:1),.“,%_1),((11,...,d,._l) o F{?.
Finally, for every pair (c1,...,¢n-1),(d1,...,dn_1) € X1, let us consider the
mappings F(Cll,---;Cn—l);(dly---,dn—l)’ F(czl,-..,c,._l),(dl,...,dn_l) defined before. Observe
that F((cll)w’cn_l),( dy,.dn_y) BCtS BS 2 transposition in the permutation group over

the set X™' x {d}, while F®)
the transformation semigroup over the set X™~! x {d}. We have already proved that
all of these transpositions and elementary collapsings are in < I'x» >. Moreover,
it is well-known that the set of all transpositions and elementary collapsings on a
set generates all mappings on that set, so any map taking X™~! x {d} to itself may

be written as the restriction to X™~1 x {d} of a composite of the the above func-

tions. A moment’s reflections shows that the set of all these F (1)
@) (15 en=1),(d1,....drn 1)’
2

F(C1 ene () in fact generates all of Fxn-1x(4), since a function in the
latter is uniquely determined by its 0 on X! x {d}. In addition, it is clear that
Txn \ Fxn-1x{a} is non-void. This completes the proof. O

cne1)y(d1s.ondn ) 3CtS as an elementary collapsing in

Next we show

Lemma 2.3. Given a finite group G, a pair of relatively prime integers m,n
with 1 < m < n, let us define for every £ € {1,...,n}, the transformations Ti(o) :
G =G, T . G™ = Gk =1,2,3,4 as follows.

T(O)(gla"'agn) = (gnagla~~~:gn—1)7

1
Te( )(gl> s 1gn) = (gn;gl, - 98—2,9¢-m—1( mod n)9e—1,9¢, - - 'agn—l)7

2 -
T[( )(gl; e >gn) - (gﬂ)gl) R igf—Qvg[_l«m__l( mod n)gl—lageu AN -;gn—l),

3
Tg( )(91;- e :gn) = (g'n.;gla . -~;gl—2:g£—m—l( mod n)» 9, - - - )gn—l)a

4 _
Te( )(gla"'vgn) = (gn:gla"':gf—2:ge_117gla-' . ,gn—1)~
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Then for any fized £ € {1,...,n}, Tgn C< {T(O),Tl(k) 1 k=1,2,3,4} > .

Proof. For every i € {1,...,n}, k € {1,...,4}, T = (TO)n+i-t T o
(T(®)n+€=i Thus we shall show only T » g< {T(O),TZ('”) cfe{l,...,n}k =
1,2,3,4 > . It is clear that using the notions in Lemma 2.1, by the simple fact
that every permutation is a composite of transpositions, and moreover, transfor-
mations can be generated by permutations and elementary collapsings, we obtain
Tan C< { ”, Uij : 4,5 € {1,...,n} > . On the other hand, < {T(O),Tz(k) :
k=1,2,3,4¢=1,....,n} > \Tagn # 0 is clear. Thus it is enough to prove
that for every i,j € {1,...,n}, F\?,Us; €< {T©® ’"’ c k= 1,2,3,4,0 =

n} > - USlng 1+%] 1)m—1( mod n),i+jm—1({ mod n) = (T(O)) Tz(-:—iim( mod n)’
d =1,2,3,i€{l,...,n},7=0,1,..., by an inductive application of Lemma 2.1, we
have Ff zn 1 mod ), 4gm—1( mod m) €< (TO,TH .k =1,2,3,4,6=1,...,n} >
(ie{l,...,n },i=0,1...).

Therefore, because m and n are relatively prime, we receive Fi(j») €< {TO), Te(k) :
k=1,2,3,4,£0=1,...,n}> (d=1,2,3,5,j € {1,...,n}).

Moreover, we also have F*) = (T©®)»=1oT™ ¢ {1,... n}. Hence, applying

Lemma 2.1 again, we obtain U;; €< {T©®, T(k) k=1,...,4=1,...,n} >,
i,j € {1,...,n} and thus, havingF(3 C< {TO)T k) k—1234}> (i,7 €
{1,...,n}), the proof is complete. 0

We shall use the following

Lemma 2.4. (see [1], [2]) Given a positive integer n, let G =< g > de-
note a finite non-trivial cyclic group with a generator ¢ € G. There exists an

arrangement a1, ...,an, (m = |G|") of the elements in the n'® direct power G™
of G such that for every i = 1,...,m — 1 there is ¢ j € {1,...,n} with a;4; €
{(91:--,95-1,9597" 9541, -, 9n), (91, - 95-1, 959, gj+1, ---,9n)}, whenever
a; = (g1, --,9n) (€ G™). m|

Now we are ready to prove the following key lemma.

Lemma 2.5. For any fized £ € {1,...,n},Tx~ is generated by the union of
< {T(O),Tl(k) ck=1,...,4} > and the set of all functions F : X™ — X™ having

the form F(zy,...,zn) = (@1, Te—1, f(T1, .-, Z0), Tpg1,- -, Zn), [ X7 = X,
where 1,...,T, € X.
Proof. We can take out of consideration the trivial case |X| = 1. Thus we

assume |X| > 1.

It is clear that without loss of generality we may suppose Z = 1. On the other
hand, using Lemma 2.3, {U;; : 4,5 € {1,...,n}} C<{TO, ;Y 1 k=1,...,4> .
Thus it is enough to prove that the union of {Uij 1,5 €{1,. n}} and the set of
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all functions- F : X™ — X™ having the form F(zy,...,z,) = (f(z1,...,%0),Z2, .. .,
Tn), generates Txn.

For every pair ¢ € {1,...,n}, f : X® = X, define the function F;; : X™ —
X™ with Fi’f(.’B]_,...,l‘n) = (1'1,..‘,1'1‘_1,_)((:121,...,Zn),ﬁﬂi+1,...,$n) (zl,..,,zn
€ X). Thus, by letting f' = fo U, ;, we have Fj y = U, jo F; p oU; ;. So for every
pairi € {1,...,n}, f: X" 2 X, F; €< Tx,U{F: X" = X" | F(z1,...,Z,) =
(flz1,. s Tn)y T2, T3, .., Zn), 1 X" = X,xq,.. ., 2, € X} >

Let us identify X with a non-trivial finite cyclic group with generating ele-
ment g € X. Thus we also have that for any c¢1,...,¢, € X, F(l)e,j,(Cl ,,,,, cen)
F(Z)e,j,(cl,...,cn) € <TxnU{F: X" > X" | F(z1,...,2n) = (f(z1,...,Zn), Z2, T3,
o Zo ), [ X2 Xz = (21,...,2,) € X™} >, whenever € € {1, -1},

FOierren (@) =

(01,. .. ,Cn) if z = (Cl,. .. ,Cj_l,ngE,Cj_*_l, .. ,Cn),

(€15 --5€j=1,69% Cit1,---,¢n) iz =(c1,...,cn),

T - otherwise,

€ M —
2) _ (C1,...5€21,6595,Cig1, .-y cn) iz =(c1,...,¢n),
7 erenen) (@) { z otherwise,

where z = (z1,...,2n) € X" On the other hand, by Lemma 2.4, there ex-
ists an arrangement ai,...,am of X", such that for every k = 1,...,m — 1,

pr € {F(l)e,j,(cl,..-,cn) e € {~1,1},57 € {1,...,n},c1,...,cn, € X}, 4 €
{F(Z)e,j,(m,...,cn) €€ {'“1:1}aj € {L"':n}’cli'"’cn € X}, where

ar+1 it £ =k,
pr{ae) = ay fl=k+1,
ag otherwise,
_ Ap+1 if ¢ = k,
ti(ae) = { ag otherwise.
But then p1,...,pm-1 is a set of transpositions such that {p1,...,pm_1} generates

all permutations over X™. And simultaneously, #1,...,%,_1 is a set of elementary
collapsings over X™. Thus by the well-known fact that for every 7 =1,...,m — 1,
{p1,...,Pm—1,t;, } generates all transformations over X™, the proof is complete. O

3 Main Results

First we show the next statement.

Theorem 3.1. Given a positive integern > 1, D = (V,E) withV = {1,...,n}
is an n-complete digraph with minimal number of edges if and only if there exists
a permutation p : {1,...,n} = {1,...,n} such that E = {(p(2),p(4)) : 4,7 €
{1,...,n},p(j) = p(i + 1 mod n)} U{(p(:),p(1)) : i € {1,...,n}}.
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Proof. We may assume without loss of generality that the permutation p is
the identity. Then it is clear that for an arbitrary m € {1,...,n}, the functions
T(O),Tl(k) :k =1,2,3,4 defined in Lemma 2.3 are compatible with D. Suppose that
m is 3 such that it is relatively prime to n. Then the sufficiency of this statement
is a direct consequence of Lemma 2.5. To the necessity first we show the existence
of j € V with {(i,7) : 1 € V} C E, whenever D is n-complete.

Let T : X™ — X" such that |[{T(z1,...,2Zn) : T1,...,Zn € X}| = {X"| -
1. First we show that for every Fy,...,Fy, € Tx~, T = Fj o... o0 F,, implies
the existence of an index ¢ O the property [{Fi(z1,...,Zn) : Z1,...,2n € X}| =
| X" — 1. Of course, if Fy,...,Fy, are injective then T' = Fj o ... o Fy,; should
be also injective, a contradiction. On the other hand, T' = Fj o ... o F},, implies
{F(z1,...,Zn) 1 21,...,2Zn € X} < min{|{Fi(z1,...,25) 1 21,...,2p € X}| 14 =
1,...,m}. Therefore, we obtain our assumption regarding the existence of an index
i preserving the property [{Fi(z1,...,%Zn) 1 Z1,...,Zn € X}| = |X"| - 1.

Now we identify the elements of X in a fixed but arbitrary way with the elements
of {1,...,|X|} and consider X™ as a subset of the n* direct power of integers.
For every (aii,...,@1m)s -, (@m1,---ramn) € X™ let Y {(ai1,...,ain) : 1 =
Lo..,m} = (Cmain, - 2ty Gin). Let @ = (a1,...,a,), b = (by,...,b,) €
X" denote distinct elements with |F;~!(a)| = 0 and |F;"(b)| = 2. And let j €
{1,...,n} be an index with a; # b;.

Prove that |X| does not divide pr; (3 {Fi(x1,...,2Zs) : Z1,...,2, € X}). In-
deed, then pr;(> {Fi(z1,...,2n) : z1,...,2n € X}) = pri(C{(z1,...,2z5) :
T1,.--,Tn € XD +bj—aj) = |X""H( lk)ilo_l k)+bj—a;. Of course, by this equality
we received that | X| does not divide pr; (3 {Fi(z1,...,2Z2) : 21,..., 70 € X}).

Suppose that for every j € V there exists an ¢ € V with (¢,j) ¢ E. Consider the
set Dx of all functions of the form X™ — X™ which are compatible with D. Now we
show that for every F € Dx, |X| divides pr; 3 {F(z1,...,zn) 1 z1,...,2n € X}),
implying F; ¢ Dx.

By F € Dx we have that for an appropriate £ € {1,...,n},pr;(F(z1,...,2,)) =
pri(F (21, .., Te—1, Ty, Teg1,-- -, Za)) ((T1,...,T0) € XM, 2, € X, £ = j is allowed).
Therefore, for an arbitrary fixed ¢ € X, pri( 3" {F(z1,...,Zn) 1 21,...,2n € X}) =
| X1pr; Q- {F(z1,...,Te-1, €, Te1,---,Zn)) : T1,--.,Te—1,Te41,-..,Zn € X}. But
then |X| divides pr;(C{F(z1,...,Zn) : T1,...,2n € X}) for every j = 1,...,n.
Hence we get F; ¢ Dx. Consequently, there exists a T € Tx» whith T ¢< Dx > .
This ends the proof of the existence of j € V with {(,7) : ¢ € V} C E, whenever
D is n-complete. Then we are ready if we can prove the existence of a permutation
pi{L,...,n} = {1,...,n} having {(p(i),p(3)) : 5,3 € {1,...,n},p(j) = pli) +
1(modn)} C E.

Consider the mapping T : X® — X" defined by T (z;,...,z,) = (zn, 21,
ooy Tp—1) (21, ..., zn € X). To complete the proof of our theorem, we will show
T©) ¢ Dy if there exists no such a permutation p.

It is also clear that an n-complete digraph D, having n vertices, should be
strongly connected. Therefore, all vertices have (non-loop) incoming edges. Thus,
by the minimality of |E|, we get |E\ {(i,7) : # € V}| = n — 1. Simultaneously,
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the strongly connectivity of D implies {5} x (V \ {j}) N E # 0 (where j € V with
{(3,7) : 1 € V} C E). On the other hand, if there exists no permutation p having
the above discussed property, then by the strongly connectivity of D,V x {j} C E
and |E\{(4,7) : 1 € V}| =n—1, we can prove |{j} x (V \ {j}) N E| > 2, implying
the existence of two distinct vertices 41,42 € V with {({,i,) : r = 1,2, € V}
NE = {(j7i1)7 (.]’ 12)}

It is enough to prove that in this case T(®) ¢ Dy. Clearly, Fy € Dx implies the
existence of functions fr : X — X, k& = 1,2 with pry, (Fi(z1,-..,2n)) = fr(z;).
Therefore, the cardinality of {(y1,v2) : yx = pri. (FA(z1,..., zn)), 6 =1,2, z41,. ..,
T, € X} is not greater than | X|. In a similar way, for every F1,..., Fin € Dx,m > 1
there exist functions f : X = X,k = 1,2such that pry, (Fio...0Fp(z1,...,2,)) =
fr(prj(Fyo...0 Fa(z1,...,Tm))) implying that the cardinality of {(y1,y2) : yx =
pri(Fio...0o Fp(z1,...,2a)),k = 1,2,2y,...,2, € X} is not greater than |X]|.
On the other side, the cardinality of {(y1,%2) : y& = pri. (TO(z1,. .. 20)),k =
1,2, z1,...,%n € X} is |X|? yielding to T ¢ Dx. The proof is complete. a

Now we prove the following characterization.

Theorem 3.2. Given a positive integern > 1, D = (V,E) withV = {1,...,m},
m > n is an n-complete digraph with minimal number of edges if and only if there
exists a permutation p : {1,...,m} — {1,...,m} such that E = {(p(i),p(j)) :
p(E),p(5) € {L,...,n+1},p(f) = p(i+1 mod n + 1)} U{(p(i"), p())}, where ;' €
{1,...,n+1},|j =] # 1, moreover, |j' —i'| =1 and n+1 are relatively prime. NB:
The case i' = j' is not excluded. Moreover, if there are more than n + 1 vertices
then all ezcept for n + 1 are isolated.

Proof. To the sufficiency it is enough to prove for any n > 2 the n-completeness
of D=({1,...,n+1},{(4,¢+ 1(modn + 1)) : 4 € {1,...,n+1}} U{(1,r)}, where
r € {1,...,n+1},7 # 2, and in addition, r — 2 and n + 1 are relative primes.

Consider the set Dx of all functions of the form X"+l — X% which are
compatible with D. By definition, we obtain {T(O),Tl(k) tk=1,...,4,} ¢ Dx,
where T, T;k), k=1,...,4 are defined as in Lemma 2.3 (taking m of the lemma
to be r — 2). Identifying X with a finite group and using Lemma 2.3, then we get
Txn €< Dx >, too. On the other hand, we have by definition {F : X"+ —

X77.+1A| F(zly-”azn—i—l) = (:En-i-lazla" ':zr—laf(zlazr—l( mod n+1))1$T+1;" .,l’n),
f: X2 X,ie{l,...,n+1}, (%1, ...,Tns1) € X™'} € Dx. But then {F :
Xt o Xl | F(xla--':z’n.-{-l) = (2}1,...,21'_1, f(z‘iazi+l( mod n+1))a$i+1:---:

Tny1), f: X2 = X,ie{l,...,n+1}, (z1,...,Tnt1) € X"} U Tx nt1 € Dx
resulting Ty~ C Dx. Applying Lemma 2.2, this shows the n-completeness of D.
Using the obvious fact that n-complete digraph should have a strongly con-
nected n-complete subdigraph, by our minimality conditions, we will consider di-
graphs which have a strongly connected subdigraph and all vertices outside of
this digraph are isolated. Thus, the sufficiency of our statement implies that by
our minimality conditions, we can restrict our investigations to the strongly con-
nected n-complete digraphs having not more than n + 2 edges. {(We can take out
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of consideration the isolated vertices.) If we have n + 1 vertices and fewer than
n + 1 edges then our digraph is not strongly connected. On the other hand,
if we consider a strongly connected digraph D with n + 1 vertices and n + 1
edges, i.e., a cycle having n + 1 length, then for every F' €< Dx >, there ex-
ist £k € {1,...,n+1}, fi : X = X,i = 1,...,n+ 1 with F(z1,...,2,) =

(f1 (zx), f2(xk+1( mod (n+1)); e far1 (:L'n—f-k( mod n+1)) (T1,..., 2 € X) There-
fore, for any 1 < 41 < 4y < ... < iy < 0+ 1, pryy i (F(z1,...,Tn11))
= (fi] (mil-f—k( mod n+1)): sy fim (zim+k( mod n+1))): (Z'I: sy Tppl € X) which ob-

viously shows that this type of digraphs can not be n-complete.

Therefore, to the necessity of our statement, we can consider only strongly
connected digraphs having n + 1 vertices and n + 2 edges. _

By the strongly connectivity of D we may suppose that D = (V, E), with |V| =
n+1,|E| =n+2, has a cycle C = (V', E') with k length for some 1 <k <n+1,
where V' = {Ul, .. ,’Uk}(g V), E = {(vi,viﬂ( mod k)) | 1= 1, .. ,k}(g E)

Using the strongly connectivity of D again, for every V' C V there are distinct
(vi,vj), (Vs,v¢) € E with v, vy € V', v5,v; € V' \ V'. Therefore, by an induction we
get the structure of D in the following manner.

IfTk<n+1lthenV ={v,...,0%, V1, -, Unt1}, B = B'"U {(Vhti-1,Vksi) |
i=1,...,n—k+1}U{(vpt1,vs)}, where £ € {1,...,k} is arbitrarily fixed.

If £ = n + 1 then, of course, V = V', and E = E' U {(vp+1,vr)} for some
te{2,...,n+1}.

To complete the case k = n + 1, first we study digraphs having the form
D = ({v1,- -, Vns1} {6, Vig1(moa nt1)) & € {1,...,m 4+ 1}} U {(v1,v¢)}, where
e {1,....,n+1},¢ # 2, such that £ — 2(mod n + 1) and n + 1 are not rel-
ative primes. Then n 4+ 1 has a divisor d > 1 such that for any mapping
F e DX, F(CB}, . ,iEn+1) = (fl(mim R ,xil‘jl ), caey fn+1((l?i"+1’1, e 7min+l,jn+1)>
where for every w € {1,..., n+ 1}, u,v € {1,...,ju}, twu = tww(mod d), iy, =
w — 1(mod d) (z1,...,2, € X). These hold for compatible maps, i.e. if w # r
then f,, depends only on z,,_,, otherwise w = r and f,, depends only on z,_; and
z1. It is also clear that every composition of such functions preserves this property.
Therefore, for every F €< Dx > and i € {1,...,n+ 1}, pr;(F) depends on proper
divisor of n 4+ 1 many variables which is fewer than n. Therefore, digraphs having
this like structures are not n-complete.

It is remained to study the case ¥ < n + 1. Then V =
{vi, U Vkt1s - Vg ), B o= BU {(Vkgio1,Uh) 0= 1,00 ,n —k+ 1} U
{(vnt1,ve)}, where £ € {1,...,k} is arbitrarily fixed. Of course,if k=1lorf =1
then we have one of the cases discussed previously. Thus we assume k, £ # 1.

Given a set X with |X| > 2, let Mx = {F : X™ -5 X" : | X" -1 <
{F(z1,.--,2Zn) : (T1,.-.,2Zn) € X"}H(L |X™])}. Clearly, then for every F': X —
X" Fe<Mx >.

To complete our proof, now we show that there exists a network D' = (V'  E')
with |V'| = n, B' = V' xV'\{(v;,v;) : v; € V'} such that for every pair F €< Dx >,
H C {1,...,n+ 1}, |H| = n, the existence of pry (F) implies pry(F) €< D'x >
whenever prg(F) € Mx (where D'x denotes the set of all functions of the form
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F: X"+ X" to be compatible with D’).

Observe that for every F;, € Dx thereare f; : X = X,j=1,...,6-1,¢(+
L..,m+1,f: X* = X with Fop(z1,...,20) = (fi(ze), folm1), -, feoa(ze—s),
felze_1,Tns1), ferr(ze)s - s fae1(zn)) (21, . .-, Zne1) € X™F1). Therefore, H =
{1,...,n+1\{i}, i€ {1,...,n+1}\{{-1,n+1}and F = Flo.. .oF,, F,... . F, €
Dx implies [{pru(F)(z1,...,Zn) : (Z1,...,Zn) € X} < |X"7!|. Hence, in this
case pry(F) ¢ Mx. Thus we may assume H = {1,...,n+1}\{¢}, i € {{-1,n+1}.
In addition, it is clear that by the structure of D, for every T € Dx, ¢pi(T) and
cpr+1(T) may really depend only on the same kt* variable of F.

Let F = Fyo...0F, with Fy,..., F,, € Dy, such that, prg(F) € Mx exists
for a suitable H = {1,...,i—1,i+1,...,n+1}, i€ {{—-1,n+ 1}

First we suppose m = 1. Consider functions f; : X — X,j € {1,...,£ - 1,4+
1, - ,n+ 1},fg : ,}(2 — X with F(ZL‘I, .. .,(l)n+1) = (fl(mk),fg((lll), e ,f(_l(.’lig__g),
fe(ze—1,Tns1), fer1(me)s - -y Far1(zn)) (Z1, .-, Tnt1) € XY, Clearly, then i €
{1,k + 1} also holds provided pry(F) € Mx.

Suppose i = 1. Then in consequence of ¢ € {£—1,n+ 1}, we have £ = 2. Clearly,
then f» really may not depend on its first variable, i.e. there existsa g: X — X
with fo(z1,22) = g(z2) (z1,22 € X). Construct the function T : X™ — X" with
T(z1,...,%n) = (9(zn), f3(x1), .- ., far1(8n—1)) ((z1,...,24) € X™). Then we get
pru(F) =T. On the other side, T' € D’ x is also obvious.

Suppose i = k+1.By i € {{—1,n+1} and £ < k, this implies ¥ = n. On the other
side, then f, really may not depend on its second variable, i.e. thereexistsag: X —
X with fe(z1,22) = g(z1) (z1,22 € X): Let T : X™ — X™ with T(z1,...,2,) =
(filzn), fo(z1), .-, fer(ze—2), 9(we-1), frir(ze), -, fr(@a-1) ((z1,..-,zn)
€ X™). It is obvious that T € D’'x and pru(F) =T.

Now we turn to the case m > 1. Then first we define the mappings Fy,..., F! €
Dx in the following way. For every r = 1,...,m, define functions f,. : X —
X,9r + X = X with f(z) = pri(Fr(z1,. .., 21,2, k41, - -, Tnt1)), gr(T) =
ka+1(F7-(£I]1, ey 15T, L1y - - - ,$n+1)), ZT1y---3Tk—1,L,Tk+15---, Tntl e X.
(F, € Dx implies that f. and g, are well-defined.) In addition, let for every
r=1,...,m, prj(Fi(z1,...,Tn41)) =

fi(zr) ifr=1andj=1,
91(zx) ifr=1andj=k+1,
Tk ifr>1andyje{l,k+1},
pri(Fm(z1,- ., Tng1)) ifr=mandje{2,. . kk+2,. .. ,n+1}
prj(Fr(fr+1(fl'1),$2,...,.’I:k7
9r41(Th+1); Tha2,- -, Tny1)) Otherwise

(z1,...,Zn41 € X). By an easy computation we get Fyo...0F, = F/o... o F! .
Define for a fixed c € X, m =2, prj(F)(z1,-..,Zn))

_ pri(Fi(zy,...,%i-1,C,Zi,.. ., Zpn)) if1<j<i,
prizi{E (1, . Tim1, 6,24, .., 2n) 1< <n

(z1a~-~;-'1:n+1 EX,’I"=1,2).
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Similarly, for a fixed ¢ € X and m = 3, let prj(F}(z1,...,zn))

pri(Fl (g, T2, ..., Te—2,
Ty, To—1, -+ 3 Tn—1,T1)) ifi=¢-1,r=1 and
1<j<t-1,
priv1i(Fi(ze, T2, .., Te—2,
Ty Tom1ly-- -y Tn—1,T1)) ife=¢-1,r=1 and
= prj(F{(zp+1.%2,. .., 2n)) ifi=n+1,r=1and
1<j<n,
provi{Fy(z1,.. ,Tim1,6,24,...,2,)) ifr=2and j=1,
pri(Fy(zy, .., Tic1,C, T4y .. ., Tn)) ifr=2and 1<j<ji,
privi(Fy(21, ..., Tic1,6, %4, ..., 2,))  ifr=2andi<j<n,
pri(F3(zy,. .., 2im1,6, %4, ..., Tn)) fr=3and1<j<i,
| prjs1(Fa(zy, ..., 21,6,%4,...,%y)) Hfr=3andi<j<n,

(z1,. ., Zny1 € X,7=1,2,3).
In addition, let for a fixed ¢ € X and m > 3, prj(F'(z1,...,2,))

( pri(Fl(zg,T2,. .., Te-2, :

.’En,I[_.]_,...,QZn_l,.’El)) ifi:f—l,r:1,1§j<€—1,
ori=¢—1,1<7r<m-2and
l<j<e-1,

ij+1(F7I,(CEk,fE2,. T2,

Ty, To—1, -y Tn—1,T1)) fi=f-1r=1¢-1<j<n,
ori=f—1,1<r<m-2and
-1 S]Sna

prov (Fl(zg, T2, ..., Te—2,

T, To_1,.--yTn—1,%1)) ifi=¢—1,1<r<m-—2and

= J=1

o1 (Fi(Zes1, T2, .., Zn)) ifi=n+1,1<r<m-2and
Jj=1

pri(Fi(Tes1, T2, .., Tn)) fi=n+lr=11<j<n,
ort=n+11<7r<m-—2 and
1<j<n,

procy(Fo (21, ., %im1,6, T4, ..., 2,)) fr=m-—landj=1,

pri(Ep1(T1,- ., Zim1,6, %4, .. ., Tn)) ifr=m-1landl<j<i,

prizi{Fp_1(Z1, .. Tim1,6,%4,...,2,))  fr=m—-1landi<j<m,
pri(E) (Z1,. .1 Tic1,6, T4, -, Tn) ifr=mand1<j<zi,
L i (Fo (21,0, %im1,6, 24, -+, T0) ifr=mandi<j<n,

(z1, ... ,Znt1 € X,7 € {1,...,n})).

We remark that, of course, for every j = 2,...,m, the value of Fj'o ... 0
Fl'(z1,...,2Zm) (#1,...,2n € X) may depend of the value of (the above fixed)
c € X. But the value of F{'o... 0 F)\(z1,...,%m) (#1,-..,2, € X) may not depend
on the value of ¢ € X in question, because Fy = F{' o... 0 F} by definition.



50 Pal Domési, Chrystopher L. Nehaniv

(Remember that the existence of pry(F) (= prua(Fio...0Fy),m > 1) is supposed
with H={1,...,i-1,i+1,...,n+ 1} forafixedi e {{-1,n+1}.)

By an elementary computation we can prove Fy', ..., F). € D'x. Applying The-
orem 3.1, D’ may not be n-complete because it is not centralized. Therefore,
there exists a T € Mx with T ¢< D'y > . But then for every F €< Dx >,
H={1,...,n+1}, |H| =n, pry(F) # T. Therefore, D can not be n-complete.

This ends the proof. O
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