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Syntactic Monoids of Codes* 

H. Jürgensen^ 

Abstract 

A general characterization theorem for syntactic monoids of codes that satisfy 
independence conditions of a special form is proved. This result provides in-
sight in some known characterizations of classes of codes via syntactic monoids 
and provides a general mechanism for deriving new characterizations for other 
classes of languages. 

1 Introduction 
Many of the combinatorial properties of codes related to issues in information 
transmission, like synchronization delays or error resistance, can be expressed alge-
braically in terms of properties of the syntactic monoids of the codes themselves or 
of the syntactic monoids of the set of messages generated by the codes. Obtaining 
these algebraic characterizations is an important, but difficult problem. 

Quite a few partial results have been obtained for various classes of codes, 
for example, for infix codes [15], outfix codes [9], and hypercodes [28], [30]. For a 
general overview, the reader should consult the books [2] and [25], the survey paper 
[12], and the other references listed at the end of this paper. A new characterization 
for infix codes and hypercodes has been obtained in [23]. In the present paper we 
extract and formulate a general characterization method from those specialized 
results which applies to all classes of codes that can be defined in a certain way. 
Thus, results analogous to those of [23] can now be obtained using this method for 
a large variety of classes of codes simply by proving that their definitions satisfy 
certain formal criteria. 

While this method is applicable to any class of codes satisfying these criteria, its 
most elegant consequences seem to arise when it is applied to subclasses of the class 
of infix codes. We discuss the special cases of infix codes, infix codes which are also 
outfix codes, infix-shuffle codes of index n, hypercodes, solid codes, and reflective 
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codes. We also show why there is no such characterization for the intercodes of 
index 1, that is, the comma-free codes. 

The paper is organized as follows: In Section 2, we introduce basic notions and 
notation. In Section 3, we investigate how conditions defining a class of codes are 
reflected in the syntactic monoids. In Sections 4 and 5, we then focus on classes 
of codes contained in the class of infix codes. Finally, Section 6 contains a few 
concluding remarks. 

2 Basic Notions and Notation 
In this section, we review the basic notions and introduce some notation. For further 
information regarding codes and their syntactic monoids the reader is referred to 
the books [2] and [25] and the survey paper [12]. 

An alphabet is a non-empty set.1 Let X be an alphabet: Then X* denotes the 
free monoid generated by X, that is, the set of all words over X, including the 
empty word 1, with concatenation as the multiplication. 

Let M be a monoid. With every subset L of M one associates its principal 
congruence PL given by 

u = v(PL) (Vz, y G M (xuy G L i—• xvy G L)). 

The factor monoid M/Pi is the syntactic monoid of L and is denoted by synL. 
For u G M, let [U]L denote the P^-class of u. The canonical morphism of M onto 
synL, that is, the morphism ol .u*-) [u\i, is called the syntactic morphism. The 
set L is said to be disjunctive if PL is the equality relation. The residue of L is the 
set WL = {u | u G M A MuM n L = 0}. 

A language over A is a subset of X*. A language over a finite alphabet is said 
to be regular if it is accepted by a deterministic finite automaton. The syntac-
tic monoid of a regular language is isomorphic with the transition monoid of the 
reduced complete finite automaton accepting the language. 

A language L is said to be a code if the submonoid of X*, which L generates, 
is freely generated by L. For the study of codes, the case of |X| = 1 is trivial and 
it is, therefore, common to assume without special mention that |A| > 1. 

Let M be a monoid with zero element, \M\ > 2. We denote the identity and 
the zero elements by 1 and 0, respectively. The intersection of all non-zero ideals, 
if it is different from {0} , is called the core of M, denoted by core(Af). The set 
annihil(M) = {c | Vs G M \ {1 } xc — cx — 0} is the set of anniliilators of M. 

A pointed monoid2 is a pair (M, L) where M is a monoid and L is a subset of M. 
Let (M, L) and (M' , L') be pointed monoids. A pointed-monoid morphism of (M, L) 
into (M',L ' ) is a semigroup morphism <p of M into M' such that </>_1(L') = L. 
Such a pointed-monoid morphism ip is surjective, injective, bijective if it is so as a 

' in the literature on formal languages, alphabets are usually assumed to be finite. In this 
paper, the finiteness condition would not make an important difference. It is, therefore, omitted 
as in [23]. 

2Called p-monoid in [24]. 
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semigroup morphism of M into M'\ it is non-erasing if (p 1 (1M / ) = {1M } . Let P 
denote the category of pointed monoids. 

If (M, L) is a pointed monoid then OL is a surjective pointed-monoid morphism 
onto (synL,CTL(L))- Moreover, if ip is a surjective pointed-monoid morphism of 
(M, L) onto (M' , L') then there is a unique surjective pointed-monoid morphism ip 
of ( M ' , L ' ) onto (synL,<TL(L)) such that, for all u £ M, oi(u) = ip(ip(u)). 

A predicate P on P is said to be invariant if, for any pointed monoid (M, L), 
P satisfies the following conditions: 

• For any surjective pointed-monoid morphism ip of ( M , L ) , P is true on 
(tp(M), ip(L)) if P is true on (M, L). 

• For any surjective non-erasing pointed-monoid morphism tp of (M,L), P is 
true on (M, L) if it is true on (tp(M),ip{L)). 

The results of this paper are based on the following observation concerning predi-
cates on the category of pointed monoids. 

Theorem 1 Let P be an invariant predicate on P and let Cp be the class of lan-
guages L over X for which P is true on (X*,L). The following statements are 
true: 

(1) If ol is non-erasing then L £ Cp if and only if P is true on the pointed 
monoid ( s y n L , o i ( L ) ) . 

(2) If P is decidable on finite pointed monoids, L is (constructively) regular, 
and OL is non-erasing, then it is decidable whether L £ Cp. 

Proof: The first claim is just a restatement of the definition of invariance, applied 
to GL . For the second claim, if L is constructively given as a regular language then 
one can compute the syntactic monoid synL and the set OL(L). Note that <TL is a 
pointed-monoid morphism. The fact that L is regular implies that syn L is finite. 
Therefore, P is decidable on (syn L, OL(L)). The invariance of P implies that it is 
decidable whether L £ Cp. • 

To apply Theorem 1 to a given predicate P, one has to establish that P is invari-
ant and decidable on finite pointed monoids. In this paper we focus on predicates 
on P which can be expressed in a special form called implicational independence 
condition. 

3 Codes and Independence Conditions 
Let X be an alphabet with \X\ > 1. Many natural classes of codes over X are 
characterized by independence conditions on the free monoid X*. A systematic 
study of this characterization method is presented in [17] and [18]; see also [12]. 
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The independence conditions can be presented in various forms. The most gen-
eral approach uses abstract dependence systems in the sense of universal algebra3 

with possible restrictions to finitely based dependence systems [12]. Incomparabil-
ity with respect to certain partial orders, like the prefix order 

u < v v e uX*, p 

as studied in [4], [14], and [25] is a quite special case of this approach. In this 
paper we only consider independence conditions that can be expressed in the form 
of implications involving equations over X*. 

Recall, for example, that the prefix order < p defines the class £ p of all prefix 
codes over X by 

L € Cp L C X+ A Vu,v € L (^u < v ->• u = WJ . 

This condition could also be expressed as 

L C X+ A VM, X E X* ((« E L A ux E L) X = 1 ) . 

We now turn to defining this latter form of independence condition in more abstract 
terms. 

Let M be an arbitrary monoid, let M be a finite set of subsets4 of M, and let 
V be a set of variable symbols, such that M fl V = 0. Moreover, let A denote a set 
variable ranging over all the subsets5 of M. 

In the sequel we need to consider words built from elements of M and V, that 
is, words in (M U V)*. An equation over M takes the form u = v and an inclusion 
takes the form u S A, where u and v are words over (M U V). A basic implicational 
independence condition has the form 

(quant i f i e r pre f ix ) ((formula) —> (formula)) 

where the quantifier prefix and the formulae satisfy the following conditions: 

(11) The quantifier prefix specifies, for each variable symbol in V, its range ex-
plicitly, that is, as one of the sets in M. Moreover, the quantifier prefix may 
include quantification over the number of variables used. It involves only 
universal quantifiers. 

(12) The formulas are disjunctions of conjunctions of equations and inclusions over 
M. 

The first formula will be referred to as the premiss, the second one as the 
conclusion of the basic implicational independence condition. 

3See [3], [5], and [6]. 
4In all our examples below we have M. = { M } . 
5More precisely, the range of A is the set of all subsets of whichever monoid is being considered. 
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These still rather informal definitions can obviously be expressed rigorously.6 An 
implicational independence condition is a conjunction of basic implicational inde-
pendence conditions. 

If I is an implicational independence condition on the monoid M and L C M, 
then I is satisfied on the pointed monoid (M, L) if I is true on M for A = L. 

We list a few natural examples of implicational independence conditions for the 
case of M = X* where X is an alphabet with at least two elements and M = 

Example 1 Let X be an alphabet with |X| > 1. In Table 1 we exhibit a list of 
implicational independence conditions defining classes of languages over X studied 
in the context of codes. Each implicational independence condition is identified by 
its property name which is also used to identify the corresponding class of languages. 
The prefix-shuffle codes, suffix-shuffle codes, infix-shuffle codes, and out fix-shuffle 
codes of index n = 1 are the prefix codes Cp, suffix codes Cs, infix codes C\, and 
outfix codes C0, respectively, in the usual sense? The infix-shuffle codes of index 
n are called n-shuffle codes in [17] and elsewhere; in [19], [20] they are called n-
infix codes; see also [22], [21]. The shuffle codes of index n as well as some of the 
other types of codes listed in Table 1 may look like mathematical artifacts; they do, 
however, capture important aspects of error detection; for details, see [12]. The 
relation between the classes of codes listed in Table 1 is shown in Figures 1 and 2. 
The n-codes shown there, for n > 2, are languages such that every subset of up to 
n elements is a code [7], [10]; the n-ps-codes are languages, such that every subset 
of up to n elements is a prefix code or a suffix code [8]. For details on infix and 
outfix codes and the classes Cv\ and Cs\ see [9]. 

Many natural classes of codes or code-related languages can be defined using 
implicational independence conditions. There are, however, some natural classes 
of codes characterized by finitely based dependence systems for which it seems to 
be impossible to express the independence condition in terms of an implicational 
independence condition; the class of uniform codes or block codes, that is, of codes 
all elements of which have the same length, seems to be an example of this kind. 

Suppose that ip is a morphism of M onto a monoid M', and that I is an 
implicational independence condition on M. Then ip induces an implicational in-
dependence condition on M', denoted by <p(I), as follows: 

(13) If I is a conjunction of basic implicational independence conditions then let 
ip(I) be the conjunction of the images, under ip, of these basic implicational 
independence conditions. Let A4' be the set of the images of the sets in A4. 
In the quantifier prefixes of I, replace any range in A4 by its image in A4'. 

(14) For a word u over (M U V), let ip(u) be the word over (M' U V) obtained by 
mapping the elements of M into M' according to ip and leaving all variables 

6In particular, quantification over the number of variables would need to be expanded. 
7In some cases, as in that of the prefix codes, one would have to require explicitly that L C X+ 

to rule out the trivial case of L = {1 } in which L is not a code. On the other hand, including this 
degenerate case allows for a simpler statement of the results. 
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Family Name Implicational condition 

¿ c o d e , c odes ^code 

V m V n V x i , . . . , i m , ! / i 9 n 6 X * 
( ( x i 6 A A . . . A Xm G A A g A A . . . 
A t/„ G A A ®i • • • s m = j/i • • • j / „ ) 
-* x\ = yi,.. . ,x„ = y„) 

¿2 - c o d e , 2 - c odes 12-code 
Vu, v ( ( u E A A « £ A A « t ) = tfu) 
—tu = v) 

¿ 2 -ps , 2 -ps - codes ^2-ps 
Vu, x , y ( ( u G A A u x G A A y u G A 
A ux = y u ) —> x = 2/ = 1) 

£ P n , pref ix-shuff le 
c o d e s of index n / P . 

V x i , . . . , x n , y i , . . . , y „ 
( ( x i • • • x „ 6 A 
A X 1 J / 1 X 2 1 / 2 • • • x „ y „ G A ) 
-> 3/1 = • • • = 1/n = 1 ) 

£ j n | C0n , £ g n | 
inf ix- , out f ix - , suffix-
shuffle c o d e s of 
index n 

A n , J o „ , / . „ analogous to £ P n 

CPn n CBn 

£b> bif ix c o d e s / b see £Pn n £„n for n = 1 

¿ ¡ n n £ o n / i „ , . „ A / „ „ 

¿ h » h y p e r c o d e s / h 
VnVxo , . . . , i n i V i Sn 6 X * 
( ( l O • • • X „ G A A X 0 J / 1 X 1 I / 2 • • ' i n l » 6 A ) 

-Crefi, reflective 
languages 

Vx, y G X * ( x y € A —f y x € A ) 

£ p i , p - inf ix codes ' p i Vtt, x , y ( ( u 6 A A x u y G A) —̂  y = 1) 

CS1, s - inf ix c o d e s V-u, x , y((-u € A A x-uy G A) —v x = 1) 

£intern j intercodes 
of index n 

A n t e r n 

V l i l , . . . , U n - f - i , Vi ,.. ., vn , x, y 
( ( u i 6 A A • • • A u „ + i G A 
A v i e A A • • • A t>„ E A 
A -ui • • • U„ + l = XUi • • • u n y ) 
-> ( ( x = 1 A y = t l „ + l ) 
V ( x = m A y = 1 ) ) ) 

£oi-frce> overlap- free 
languages /o]-frce 

Vx, y , z ( ( x y 6 A A y z G A ) 
- » ( I = 1 V : = 1 V J = 1 ) ) 

¿ s o l i d > solid c o d e s /»olid A / 0 l - f r e c 

Table 1: Implicational conditions for some of the language classes. 
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Figure 1: The relation between the shuffle codes. 

unchanged.8 For an equation u = v over M let tp(u = v) be the equation 
tp(u) = <p(v) over M' . For an inclusion u £ A, let <p(u € A) be the inclusion 
<p(u) £ A. A formula over M is mapped by ip onto the corresponding formula 
of the images of the equations and inclusions. 

This mechanism of induced implicational independence conditions is to be used in 
subsequent sections of this paper, to carry implicational independence conditions 
on X* defining certain classes of languages into the syntactic monoids of these 
languages. Hence we consider the following two properties of an implicational 
independence condition I on a pointed monoid (M,L) . 

(15) For any surjective pointed-monoid morphism <p of ( M , L ) , if a premiss of I 
is false for some assignment of values to the variables then the image of that 
premiss is also false in (ip(M), ip(L)) for the corresponding value assignment. 

(16) For any surjective non-erasing pointed-monoid morphism ip of (M,L) , if a 
conclusion of I is false for some assignment of values to the variables then the 
image of that conclusion is also false in (ip(M), ip(L)) for the corresponding 
value assignment. 

8 We assume that M' n V = 0. 
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Figure 2: The relation between the classes of languages introduced in Table 1. Lines 
indicate (known) proper inclusions. Dotted lines indicate hierarchies. Intersections 
and unions are not, in general, indicated. 
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Theorem 2 Let (M, L) be a pointed monoid and let I be an implicational inde-
pendence condition on (M,L). Let ip be a surjective pointed-monoid morphism of 
(M, L). If I has property 15 and is satisfied on (M, L) then ip(I) is satisfied on 
(<p(M), <p(L)). Conversely, when ip is also non-erasing, if I has property 16 and 
ip(I) is satisfied on (ip(M),<p(L)) then I is satisfied on (M,L). 

Proof: Let (M, L) be a pointed monoid and ip be a surjective pointed-monoid mor-
phism of (M,L) onto the pointed monoid (M' ,L ' ) . As I is a conjunction of basic 
implicational independence conditions, I is satisfied on (M,L) if and only if each 
of its basic components is satisfied on (M, L). Therefore, we only need to prove the 
claim for I a basic implicational independence condition. 

First note that if / is a formula appearing in I and / is true for some assign-
ment of values to the variable symbols then <p(/) is also true for the corresponding 
assignment of values. Indeed, if u and v are words over (M U V) and u = v for 
some value assignment then ip(u) = ip(v) for the corresponding value assignment; 
this follows from the fact that ip is a semigroup morphism. Similarly, if u € L then 
<p(u) 6 <p(L) = L' as (p is surjective and <p~l{L') = L, hence <p(L) = L'. Thus, as / 
is a disjunction of conjunctions of equations and inclusions, if / is true on (M,L) 
for some value assignment then also </?(/) is true on (M ' ,L ' ) for the corresponding 
value assignment. Moreover, as ip is surjective, every value assignment in (M'L ' ) 
corresponds to - that is, is the image of - a value assignment in ( M , L). 

Let p and c be the premiss and conclusion of I, respectively, and suppose that 
I has property 15 and is satisfied on (M,L). Consider an assignment of values in 
M to the variable symbols occurring in p and c. If the premiss p is false under this 
assignment then also <p(p) is false under the corresponding assignment in (M ' ,Z / ) 
by 15. On the other hand, if the premiss p is true under this assignment, then also 
the conclusion c must be true under this assignment. But then also ip(p) and <p(c) 
are true under the corresponding assignment. Hence, as the implication p —¥ c is 
true under any value assignment also the implication ip(p) —¥ tp(c) is true under 
any value assignment. Thus <p(I) is satisfied on (M',L ' ) . 

Conversely, assume that tp is also non-erasing and that I has property 16, and 
suppose ip{I) is satisfied on (M',L ' ) . Hence, for a value assignment either ip(p) is 
false or both ip(p) and <p(c) are true. If ip(p) is false then, for any value assignment 
in (M, L) that is mapped onto the given one by ip, also p is false. Suppose now 
that both cp(p) and ip(c) are true. Consider a value assignment in (M, L) which is 
mapped onto the given one by ip. If p is false under this assignment then p —¥ c is 
true as needed. If p is true under this assignment then, by 16, c cannot be false as 
ip(c) is true. This shows that I is satisfied on ( M , L ) . • 

An implicational independence condition I on a monoid M is said to be free if 
the only element of M occurring in I is 1 and if M = {M}. A free implicational 
independence condition can be interpreted over any pointed monoid (M' ,L ' ) . One 
treats M as a variable symbol for monoids, M having the value M' in this case, 
and 1 as denoting the identity element of the monoid under consideration. For a 
free implicational independence condition 7 let Cj be the class if pointed monoids 
(.X*,L), with X an alphabet, on which I is satisfied. 
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Theorem 3 Let P be a predicate on P, defined by a free implicational independence 
condition I. If I satisfies 15 and 16 for all pointed monoids then P is invariant. 

Proof: Consider a pointed monoid ( M , L ) and a surjective pointed-monoid mor-
phism ip of ( M , L ) onto (M',L ' ) . Suppose P is true on ( M , L ) . Then I is satisfied 
on ( M , L ) as P is defined by I and I is free. By 15, using Theorem 2, (p(I) is true 
on (M',L ' )• Thus P is true on (M',L ' ) . 

For the converse, assume that is also non-erasing and that P is true on 
(M', L'). Then tp(I) is satisfied on (M' ,L') and, by 16 and Theorem 2 , 1 is satisfied 
on (M,L), hence P is true on (M,L). • 

When I is a free implicational independence condition, instead of saying that 
ip(I) is satisfied on ip(M,L), it is more convenient to say that I is satisfied on 
ip(M,L). Since this is unambiguous, we make this simplification in the sequel.9 

Lemma 1 Let (M, L) be a pointed monoid and let I be an implicational indepen-
dence condition on M. The following statements hold true: 

(1) Suppose that, if a premiss p of I is false for some value assignment, then 
also oL(P) is false for the corresponding value assignment. Then I satisfies 
15. 

(2) Suppose that a i is non-erasing and that, if a conclusion c of I is false for 
some value assignment, then also cri(c) is false for the corresponding value 
assignment. Then I satisfies 16. 

Proof: To prove (1), consider a surjective pointed-monoid morphism (p of ( M , L ) 
onto (M',L ' ) . Then there is a surjective pointed-monoid morphism ip of ( M ' , L ' ) 
onto (synL,gl (L ) ) such that o l {u ) — ipiviu)) for all u 6 M. Suppose a premiss 
p of I is false; hence oi{p) is false by assumption; if, however, ip(j>) were true then 
also ip(<p(p)) would have to be true, a contradiction. Hence, <p(p) is false. Thus I 
satisfies 15. 

The proof of (2) is analogous; one only notes that CFL being non-erasing implies 
that xj) has to be non-erasing. • 

By Lemmma 1, it is sufficient to check 15 and 16 for syntactic morphisms. 
Invariance in general can be established by proving it for syntactic morphisms. 

Lemma 2 Let I be a free implicational independence condition. The following 
statements hold true: 

(1) If the premisses of I contain only inclusions then I satisfies 15 on any 
pointed monoid. 

(2) If the conclusions of I contain only inclusions or equations of the form 
u = 1 then I satisfies 16 on any pointed monoid. 

9For a completely rigorous treatment, one should build the category of pointed monoids from 
the category of monoids in such a way that the identity element is treated as a miliary operation 
symbol. In this way, a free implicational independence condition would not refer to any specific 
pointed monoid any more. 
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Proof: Let (M, L) and (M' , L') be pointed monoids and let ip be a surjective pointed-
monoid morphism of (M,L) onto (M' ,L ' ) . 

First consider an inclusion u € A. If this inclusion is true on (M' ,L ' ) for some 
value assignment then, because of y> -1(L') = L, this inclusion must be true on 
(M, L) for any pre-image, under <p, of this value assignment. 

Suppose now that a premiss p of I consists solely of inclusions. If p is false for 
some value assignment on (M, L) then, by the preceding argument, <p(p) must be 
false on (M' ,L ' ) . 

Finally assume that tp is also non-erasing. Then u = 1 can only be true in 
(M', L') if it is true in (M, L). Thus, if a conclusion c of I consists only of inclusions 
and equations of the form u = 1 then, if it is false on (M,L) , it is also false on 
(M',L'). • 

We now examine some of the implicational independence conditions of Exam-
ple 1 to determine which of these satisfy 15 or 15 and 16. 

Theorem 4 Let X be an alphabet with |X| > 1. Consider the implicational inde-
pendence conditions listed in Example 1. The following statements hold true. 

(a) icode o-nd /¡nteri do not satisfy 15. 

(b) IPn, ISn, /¡„, I0n, Iin,on, IPn,sn, h, /solid, lien satisfy 15 and 16. 

Proof: By Lemma 1 it is sufficient to consider syntactic morphisms. 
We first prove statement (a): Let L be an infix code with \L\ > 1. Clearly, L 

satisfies JCOde- By [15], GL(L) is a single element c in synL, and c is an annihilator 
different from 0. Let u,v £ L, u ^ v. Then u2 ^ v2. However, oL(u2) = c2 = 0 = 
ol(v2)- Therefore, /code does not satisfy 15. 

Now consider /¡nteri- Every intercode of index 1 is an infix code [27]. Let L 
be an intercode of index 1. Therefore, the implicational independence condition 
OL (/inter!) reduces to 

Mx, y (c2 = xcy -^x = lVy = l) 

where x and y range over the syntactic monoid of L. As c is an annihilator, 
c2 = xcy = 0 for all choices of x and y except x = y = 1. On the other hand, 
this premiss need not be true in X*. For instance, let X = {a, b} and L = {ab}\ 
by [16], L is a solid code, hence an intercode of index 1. Let x = y = a. The 
only choice for u,v,w is u = v = w = ab. Hence uv = abab ^ aaba = xwy, but 
oL(uv) = 0 = aL(xwy). 

Statement (b) follows by Lemma 2. • 

Note that the argument used to prove statement (b) does not apply in the cases 
of £2-code, ^2-ps, or £inter„ as, in all these cases, the implicational independence 
condition provided in Example 1 contains an equation in the premiss. 

Theorem 5 Let M be a monoid such that M\ {1} is a subsemigroup of M. Let I 
be a free implicational independence condition satisfying 15 and 16 on any pointed 
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monoid. Then M is isomorphic with the syntactic monoid of a language L over an 
alphabet X such that I is satisfied on (X*,L) if and only if M has a disjunctive 
subset L' such that I is satisfied on (M,L'). 

Proof: Suppose L C X* is such that I is satisfied on (X*,L) and that M ~ s y n i . 
Then ol{L) is disjunctive in synL and I is satisfied on ( synL,a i (L ) ) by 15. 

Conversely, let V be a disjunctive subset of M such that I is satisfied on (M, L'). 
Let X C M \ {1 } be a set of generators of M. The embedding of A' in M induces 
a morphism ip of X* onto M. Let L — </3-1(L'). Then ip — crl, p is non-erasing, 
and I is satisfied on (X*, L) by 16. • 

Thus, many classes of languages defined by independence conditions have a 
characterization by syntactic monoids in the following sense: M is the syntactic 
monoid of such a language if and only if M contains a disjunctive subset which 
satisfies the conditions that characterize the respective class of languages. In the 
next sections of this paper, we apply this property to subclasses of the class of infix 
codes. 

We conclude the present section with an interesting consequence of Theorem 5 
regarding the decidability of language properties. 

Theorem 6 Let I be a free implicational independence condition satisfying 15 
and 16 on all pointed monoids. Let X be an alphabet and let L be a regular language 
over X. If L is given effectively and aL is non-erasing then it is decidable whether 
I is satisfied on (X*,L). 

Proof: Let L be a regular language, given in some effective way. Construct the 
reduced complete deterministic finite automaton A accepting L. Then synL is 
isomorphic with the transition monoid of A. Moreover, one can compute <Tk(L). 
Since synL is finite one can check whether I is satisfied on (synL, oi(L)). If so I 
is satisfied on (X*,L)\ otherwise it is not. • 

With Theorem 6, we have a general proof of the decidability of certain code 
properties which, so far, has only been obtained for special cases with a special 
proof for each case. Another quite different general technique for proving such 
decidability results is provided in [13]. 

4 Infix Codes 
In this section, we consider classes of codes "low in the hierarchy," that is, classes 
of codes contained in the class C\, the class of infix codes. The syntactic monoids of 
infix codes have some special properties which render it particularly easy to express 
implicational independence conditions in them. 

The following characterization of monoids which are isomorphic with syntactic 
monoids of infix codes is given in [23]. Note that some of the conditions imply that 
the monoid be subdirectly irreducible (see also [15]). In stating this result, we refer 
to the following list of properties of a monoid M . 
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(Mi) M \ {1 } is a subsemigroup of M. 

(M2) M has a zero. 

(M3) M has a disjunctive element c distinct from 1 and 0 such that c = xcy implies 
x = y = 1. 

(M4) M has a disjunctive zero. 

(M5) There is an element c £ annihil(M) distinct from 0 such that cove(M) = 
{ c ,0} . 

(M6) There is an element c distinct from 0 such that c € core(M) fl annihil(M). 

Theorem 7 [23] The following conditions on a monoid M are equivalent. 

(1) M is isomorphic with the syntactic monoid of an infix code. 

(2) M has the properties Mi, M2 , and M3 . 

(3) M has the properties Mi, M 4 ; and M5 . 

(4) M has the properties Mi, M4 , and M6 . 

If L is an infix code and c £ syn L is the element of' condition M3, M5, or 
M6 then c = CTL(L). Hence, condition M4 states in particular that c satisfies the 
implicational independence condition I\. This observation allows the following gen-
eralization of Theorem 7. For an arbitrary implicational independence condition, 
let 1(c) be the implicational independence condition obtained by substituting the 
symbols '= c' for every occurence of the symbols '£ A'. 

Theorem 8 Let I be an implicational independence condition satisfying 15 and 16 
on all pointed monoids. If Cj C C\ then the following conditions on a monoid M 
are equivalent. 

(1) M is isomorphic with the syntactic monoid syn L of some L with (X* ,L) £ 
CI. 

(2) M has the properties Mi, M2 , M3 , and 1(c). 

(3) M has the properties Mx , M4 , M5, and 1(c). 

(4) M has the properties Mi, M4 , Mg, and 1(c). 

Proof: If M is isomorphic with the syntactic monoid syn L of some language L with 
(X*,L) £ Ci then L is an infix code, and M has the properties Mi, M2 , and M3 . 
As c = <jl(L), also 1(c) holds true. 

For infix codes, statements (2), (3), and (4) are equivalent by Theorem 7. More-
over, the proof shows that in each of M3 , M5, and M6, the element c is actually the 
same element of M. Hence, these statements are also equivalent for the class £ / . 

By Theorem 7, statement (4) implies that M is isomorphic with the syntactic 
monoid of an infix code L. Moreover, from the proof it follows that ai(L) = c. As 
</?(/), for A = L, is equivalent to 1(c), it follows that I is satisfied on (X*, L). • 
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Thus, Theorem 8 provides for a general method of characterizing the syntactic 
monoids of those classes of codes which are contained in the class of infix codes 
and are given by an implicational independence condition satisfying 15 and 16. In 
particular, this includes all the cases listed in Theorem 4(b) except the prefix and 
the suffix codes. 

5 Infix and Outfix Codes 
In [23], Corollary 1, a characterization of the syntactic monoids of hypercodes is 
derived which in part forms a special case of Theorem 8. In this section we show that 
also the remaining parts of that result can be obtained as a special case from a quite 
general theorem. For the result of [23] on hypercodes, the following observation is 
crucial: For a hypercode L, every P^-class different, from WL is a hypercode. A 
similar statement can be made about other classes of codes contained in the class of 
outfix codes. See Figure 1 for the hierarchy of shuffle codes. In essence, we consider 
the classes contained in C\ n C0 = Cn fl C01. This class is characterized by the free 
implicational independence condition 

Vu, x, y £ X* ( ( ( u € A A xuy e A ) - ) i = !/ = l ) 
A ((xy £ A A xuy £ A ) ->• u = 1)) 

which satisfies 15 and 16 on all pointed monoids. Thus, also the syntactic monoids 
of codes in C\ fl C0 can be characterized using Theorem 8. 

Theorem 9 The following statements hold true. 

(a) If L is an outfix code then every PL-class different from the residue of L 
is an outfix code. 

(b) If L is an infix-shuffle code of index n with n > 3 then every P^-class 
different from the residue of L is an infix-shuffle code of index n — 2. 

(c) If L is a hypercode then every Pi-class different from the residue of L is 
a hypercode. 

Proof: The proof of (a) is given in [9]. 
Let L be an infix-shuffle code of index n with n > 3, and consider PL-equivalent 

words u, v such that u is not in the residue of L. Hence, there are s and t such 
that sut £ L and, therefore, also svt £ L. Suppose that 

U = U\U2 • • • Un-2 and V = ViUiV2U2 • • • Vn-2Un-2Vn-l-

Letting s = vo, t = un-1 and vn = 1, one obtains sut = svt from the fact that L 
is an infix-shuffle code of index n. This implies u = v. Thus, the class of u is an 
infix-shuffle code of index n — 2. 

The statement concerning hypercodes is proved in [23]. It is, of course, also an 
immediate consequence of (b) as a language is a hypercode if and only if it is an 
infix-shuffle code of index n for every n. • 
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By Theorem 9(b) and Figure 1, if L G C\ n CQ, L G CPn, L G CSn, L G £ u , 
L G C0„, or L G £h f° r n > 2, then every P^-class different from the residue is an 
outfix code. 

In view of Theorem 9, the result of [23] on hypercodes can be generalized sig-
nificantly. 

Theorem 10 Let I be an implicational independence condition satisfying 15 and 
16 on all pointed monoids and such that Ci C C\. 

Let I' be an implicational independence condition satisfying 15 and 16 on all 
elements of Ci and such that I implies I' and I' implies L. 

Suppose that, if (X*,L) G £ / , for every P^-class L' different from WL, I' is 
satisfied on (X* ,L'). Then the following conditions on a monoid M are equivalent. 

(1) M is isomorphic with the syntactic monoid of a code in £j. 

(2) M has the properties Mi, M2 , M3, and 1(c) and every element x G M \ { 0 } 
satisfies /'(x). 

(3) M has the properties Mi, M2 , M3 , and 1(c). 

Proof: The assumption about the P^-classes different from WL implies that / ' ( x ) 
holds true for every x G M \ {0} . Thus, (1) implies (2). Obviously, statement (3) 
follows from (2). The remaining implication is already stated in Theorem 8. • 

The case of hypercodes [23] is a special case of this result as are the cases of 
infix-shuffle codes of index n and of those infix codes which are also outfix codes. 

6 Concluding Remarks 
The main result of this paper is a general method for characterizing the syntactic 
monoids of codes when the class of codes is defined in a special formal way. The 
main application is to classes of codes, low in the hierarchy, that is, below the 
classes of infix codes and outfix codes. 

The properties of infix codes and outfix codes that lead to particularly simple 
characterizations are the following: The syntactic monoid of an infix code has a 
disjunctive element. Every syntactic class of an outfix code is an outfix code. The 
obvious next step seems to be to abstract these properties and extend the results 
to higher regions of the hierarchy in possibly some restricted form. 
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