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Tree Transducers and Formal Tree Series* 

Werner Kuich t 

Gécseg Ferenc barátomnak 60. születésnapja alkalmából 

Abstract 
W e introduce tree transducers over formal tree series as a generaliza-

tion of a restricted type of root-to-frontier tree transducers and show that 
linear nondeleting recognizable tree transducers do preserve recognizabil-
ity of tree series. 

1 Introduction and preliminaries 
In this paper we give a uniform treatment of tree transducers and tree automata 
in terms of tree series and matrices. 

In Section 2 we define tree transducers that map tree series into tree series. 
These tree transducers are a generalization of a restricted type of root-to-frontier 
tree transducers as described in Gécseg, Steinby [4, 5]. 

In Section 3 we consider linear and nondeleting tree representations and 
show certain algebraic properties of these tree representations. 

In the last section we consider linear nondeleting recognizable tree transduc-
ers. Intuitively, these are generalizations of linear nondeleting root-to-frontier 
tree transducers with infinitely many productions whose right sides form recog-
nizable tree languages. The main result of Section 4 is that linear nondeleting 
recognizable tree transducers do preserve recognizability of tree series. Our main 
result is a generalization of the following theorem of Thatcher [10]: Linear root-
to-frontier tree transducers preserve recognizability (see also Gécseg, Steinby [4], 
Corollary IY.6.6). 

It is assumed that the reader is familiar with the basics of semiring theory 
(see Kuich, Salomaa [9] and Kuich [6], Section 2). Throughout the paper, 
(A ,+ , - , 0,1} denotes a commutative continuous semiring. This means: 

(o) the multiplication • is commutative; 
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(i) A is partially ordered by the relation [I: a C b iff there exists a c such 
that a + c = b, 

(ii) (A, + , 0,1) is a complete semiring, 

(iii) Yhiei ai = suP(X]i6jBai \ F C I, E finite), â  £ A, i £ I, for an arbitrary 
index set / , where sup denotes the least upper bound with respect to C. 

In the sequel, we denote {A, + , -, 0,1) briefly by A. 
Furthermore, £ = EoUEiU.. .US^U... will always denote a ranked alphabet, 

where E&, k > 0, contains the symbols of rank k and X will denote an alphabet 
of leaf symbols. By Tg(X) we denote the set of trees formed by S U X . This set 
T^(X) is the smallest set formed according to the following conventions: 

(i) i f w e S o U l then OJ £ T E (X ) , 

(ii) if Lo £ k > 1, and h,...,tk £ T E (X ) then w(tu...,tk) £ T S ( X ) . 

If So / 0 then X may be the empty set. 
By A{(T-£(X))) we denote the set of formal tree series over T%(X), i. e., the 

set of mappings s : T-^(X) —> A written in the form where the 
coefficient (s, t) is the value of s for the tree t £ TZ(X). For a formal tree series 
s £ A((TX(X))), we define the support of s, supp(s) = {t £ T E ( X ) | (s,t) ± 0}. 
By A{T^(X)) we denote the set of tree series in A{{TZ(X))) that have finite 
support. A power series with finite support is termed polynomial. (For more 
definitions see Kuich [7].) 

Formal tree series induce continuous mappings called substitutions as follows. 
Let Y. denote a set of variables, where Y fl (£ U X) = 0 (0 denotes the empty-
set), and consider a mapping h : Y —» A((T^(X U Y))). This mapping can be 
extended to a mapping h : TS(X U Y) A{{TS{X U Y))) by h(x) = x, x £ X , 
and 

h(u(tu . . . ,tk)) = Q(h(h),. .. ,h(tk)) = 
Zt'1,...,t>keTx(xuY)(Hh),t'1)... (/»(**)> t'fcMti,... ,fk), 

for w £ E/t and ti,...,tk £ T s ( A U Y), k > 0. One more extension of h 
yields a mapping h : A{(T^{X U Y))) A((T^{X U Y))) by defining h(s) = 
^2t€Ts{xuY) (si t)h(t). This last extension of h is a complete semiring morphism 
from A((TS(X U Y))) into A({TS(X U Y)}). It is a continuous mapping (see 
Corollary 2.15 of Kuich [7]). 

Let now s £ A((TY:(X U Y))). Then, by definition, the formal tree series 
s induces a mapping s : (A({TZ(X U Y))))Y -»• A({TE{X U Y ) ) ) as follows: 
given h : Y A((TZ(X U Y))), the value of s with argument h is simply h(s), 
where h is the extended mapping. If Y = {yi, • • • ,yn} is finite, we use the 
following notation: h : Y —> A((TZ(X U Y))), where h(YI) = Sj, 1 < i < n, is 
denoted by (si, 1 < i < n) or ( s i , . . . , sn) and the value of s with argument h 
is denoted by s(sj, 1 < i < n) or s(si,..., sn). Intuitively, this is simply the 
substitution of the formal tree series SI £ A((T^(X U Y))) into the variables YI, 
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1 < » < n, o f s 6 A((TE(X U Y))). T h e m a p p i n g s : (A((TS(X U Y))))Y 

A((TZ(X U Y))), i. e., the substitution of formal tree series into the variables 
of Y, is a continuous mapping (see Theorem 2.18 of Kuich [7]). Observe that 
s ( s i , . . . , s n ) = ^,TETS(XUY)(S'^)T(SI, • • • ,sN). 

In certain situations, formulae are easier readable if we use the notation 
s[si/yi, 1 < i < n] for the substitution of the formal tree series Si into the 
variables in, 1 < i < n, of s instead of the notation s(sj, 1 < i < n). So we will 
use sometimes this notation s[si/yi, 1 < i < n). 

In the same way, s 6 A((TZ(X U Y))) also induces a mapping s : 
{A((Tx(X))))Y-*A((Ts{X))). 

Our tree automata and tree transducers will be defined by transition ma-
trices. Let YK = {yi, • • • ,YK}, K > 1, and Y be sets of variables. A matrix 
M £ (A((TS(X U Yk)))Y'xlk, k > 1, V and I arbitrary index sets, induces a 

mapping 

M : ( A ( ( T E ( X U F ) ) ) ) / x 1 x ... x ( A « T E ( X U Y ) ) ) ) / X 1 (A((TX{X U Y))))1'XL 

(there are k argument vectors), defined by the entries of the resulting vector as 
follows: For Pu ... ,Pk G (A((TS (X U Y ) ) ) ) / X l we define, for all i € I', 

M(PU..., Pk)i = Ziu...,ikei MiAil_ik)m)u,..., (Pk)ik) = 

Throughout the whole paper, I (resp. Q) will denote an arbitrary (resp. a 
finite) index set. 

2 Tree transducers 
In this section we introduce tree transducers based on formal tree series and 
matrices. We show that these tree transducers are a generalization of a restricted 
type of root-to-frontier tree transducers as described in Gecseg, Steinby [4, 5]. 

In the sequel, £ and £ ' denote finite ranked alphabets, X and X' denote 
leaf alphabets and Z = {ZI \ i > 1} denotes an alphabet of variables. We denote 
ZK = {zi | 1 < i < k), k > 1, and Z0 = 0. 

A tree representation (with state set Q) is a mapping /J, from S i l l into 
matrices with entries in A((T-£,'(X' U Z))) such that 

(x:Zk^(A((Tv(X'UZk))))Q*Qk, K> 1, 

For / G Sfc, k > 1, fi(f) induces a mapping 

H(f) • (A((TS,(X'UZ)J)FXLx---x(A((TV(X'UZ))))<3*1 (A({TV(X'UZ)))FXL 

(there are k argument vectors), defined by the entries of the resulting vector 
as follows: For Pu...,Pke (A((TS,(X' U Z))))Qxl and q £ Q, the mapping is 
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given by 

M/)(P1,...,P*),= £ /*(/),.<„ q „ ) ( ( P i ) 9 1 , - - - , ( P k ) q k ) . 

Q1 

Observe that for Pu...,Pke (A{{TT' ( A ' ) ) ) ) 0 * 1 , the vector n(f)(Pu ..., Pk) is 
again in (A((Tx>(X'))))Qxl. This means that 

((A((Tv(X'uZ)))f*\(v(f) | / G £)) and <(-4<<TE,(A"))>)QX\(M(/) | / G E)> 

are E-algebras. Hence, the mapping p. : X (A{(T^i (X'))))Qxl can be uniquely 
extended to a morphism 

This morphic extension is defined inductively as follows: 

Mti,...,tk))=fi(f)(^(ti),...,n(tk)) 

for / G Eft, e TS(X). 
A tree representation fi is called polynomial iff ¿ i ( / ) e (A (T(A^ 'UZ f c ) ) ) < 3 x C ? ( : 

for / G EFT, k > 1, and m(/) G ( A ( T S . ( X ' ) ) ) Q x 1 for / G E 0 U A'. Observe that, 
for | Q | = 1 and = B, our polynomial tree representations are nothing else 
than tree homomorphisms (see Gecseg, Steinby [5], page 18). 

For s G A((Tz(X))) we define p.(s) = S t 6 T s ( x ) ( s > i ) ®M(i), where <g> denotes 
the Kronecker product (see Kuich, Salomaa [9], Section 4). We are now in the 
position to define the notion of a tree transducer. 

A tree transducer (with input alphabet E, input leaf alphabet X. output 
alphabet £ ' , output leaf alphabet X') 

T = ( Q , / I , S ) 

is given by 

(i) a nonempty finite set Q of states, 

(ii) a tree representation ¡J. with state set Q, 

(iii) S G (A((Tz> (X' U Z1)))lxQ, called the initial state vector. 

The 
mapping ||X|| : A((T^(X))) —> A((T£i (X1))) realized by a tree transducer 

1 = (Q,n,S) is defined by 
||T||(s) = S(»(s)) = S( £ (s,i)®M(i)). 

teTv(x) 

A tree transducer T = (Q,p.,S) is called polynomial iff ¡i is a polynomial 
tree representation, and the entries of S are of the form Sq = aqzi. aq G A, 
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We now connect our notion of tree transducer with the root-to-frontier tree 
transducers. By Gecseg, Steinby [5], a root-to-frontier tree transducer 

» = (£ ,X,Q,E',X',P,Q') 

is a system, where 

(1) E , E ' , X , X ' , Q are specified in the same way as in the definition of our 
tree transducer; 

(2) P is a finite set of productions of the following types: 
(i) qx t, where q E Q, x E X, t G TE - (X ' ) ; 
(ii) qf{zu. ..,zk)->t, where q E Q, f G Efe> k > 0, t £ TE,(X' U QZk); 

(3) Q' C Q is the set of initial states. 

A root-to-frontier tree transducer 21 is called nondeterministically sim-
ple iff for each production of type (ii) qf(zi,... ,zk) —> t there exists a set 
C,/->t = {q^zi,... ,qikzk} such that t E T E . ( I ' U C, / - , i ) . (Compare with 
Gecseg, Steinby) [4], Exercise 4 on page 213.) Observe that not all elements 
f/i1 z i , . . . , qikzk of C q f^t have to appear in t, i. e., 21 needs not to be nondeleting. 

For the forthcoming considerations in this section, our basic semiring is the 
Boolean semiring B and we use without mentioning the isomorphism between 
B((TE (AT))) and ?p(Tz(X)). Given a nondeterministically simple root-to-frontier 
tree transducer 21 = (E, X, Q, £', X', P, Q'), we construct a polynomial tree 
transducer T = (Q,/x, 5) that behaves analogous to 21. The polynomial tree 
representation p. is defined as follows: 

(i) For x£X,q£Q,tE TS,(X'), (fj.{x)q,t) = 1 if qx t £ P. 

(ii) For / G S fc, G Q, t{Zl,...,Zk) E Tv{X' U Zk), 
k > 0, (Kf)q,(.qill...,qik ),t(Zl,. . • ,Zk)) = 1 if qf{zu...,zk) ->• 
t(QhZi,---,qikzk) E P and Cqf^t = {?», ¿1, • • •, qikzk}. 

The initial state vector S is defined by Sq = z\ if q E Q1, Sq = 0 if q G Q — Q'. 
We claim that, for s G T^(X), t E Tv(X') and q E Q 

(fj,{s)q,t) = 1 iff qs =>* t 

and prove it by induction on the form of trees in T%(X). Clearly, the claim holds 
true for trees in X U So. Let now / £ £ t for some k > 1, . . . ,sk E Tz(X), 
and t = f(si,...,sk). By induction hypothesis, we have (fi(sj)qj ,tj) = 1 iff 
qjSj =>* tj, qj G Q, tj E Tv(X'), 1 <j<k. Let now {n(f(su.. .,sk))g,t) = 1, 
i. e., for some qi,..., qk E Q 

W ) g,(9i 9fc)(^(Sl)9i' • • • '/¿(Sk)<]k),t) = 1 
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Then there exist v £ T E / (A" U Zk) and tx,...,tk £ T^(X') such that 
(M/)r,,(9l,..„,,..) ^ = = 1. 1 < j < k, and t = v(ti,...,tk). 
This implies 

<7/(si, • • • »«&) =>* v( i f is i , . . . ,9 f csit ) =>* w ( i i , . . . = £. 

Similarly, we can show that qf{s\,..., s^.) =>* t implies ( ^ ( / ( s i , . . . . sk))q,t) = 
1. This yields our first theorem. 

Theorem 1 ¿ei 21 be a norideterministically simple root-to-frontier tree trans-
ducer and T be the polynomial tree transducer constructed from 21. Let 
L C rl\ (X) be a tree language. Then 21 maps L to the tree language 
supp{\\1\\(char(L))) CTz,{X'). 

3 Linear and nondeleting tree transducers 
In this section we introduce linear and nondeleting tree representations and 
tree transducers. The main result of this section is that a linear nondeleting 
representation can be extended to a morphism over matrices of formal tree 
series. 

A tree t £ Tz(X U Zk), k > 1, is called linear iff the variable zj appears 
at most once in t, 1 < j < k. A tree t. £ T^(X U Zk), k > 1, is called 
nondeleting iff the variable Zj appears at least once in t, 1 < j < k. A tree series 
s G A((Ts(X U Zk))), k > 1, is called linear or nondeleting iff all t £ supp(.s) 
are linear or nondeleting, respectively. A tree representation fi is called linear 
or nondeleting iff all entries of /¿(/), / G k > 1, are linear or nondeleting 
tree series, respectively. A tree transducer 1 = (Q,/t, S) is called linear or 
nondeleting iff p, is linear or nondeleting, respectively, and the entries of S are 
of the form Sq = aqzi, aq £ A, q £ Q. 

Before we can state and prove our main result of this section we need a series 
of technical lemmas. 

Lemma 2 Let, for some k > 1, t £ TE(X U Zk), and Sj £ A{{TS(X))), aj £ A, 
1 < j < k. Assume that the variable Zj appears mj > 0 times in t, 1 < j < k. 
Then 

i (aisi , . . .,ak.sk) = a"11 . . . a™kt(si,.. .,sk). 

Proof. The proof is by induction on the form of trees in T%(X U Zk). The 
lemma is trivial for t = x or t = Zj, 1 < j < k. Let now t be of the form 
f(ti,.. .,tm), where / G £ m for some m > 1, and ti,...,tm £ T^(X U Zk). 
Let Zj appear Uij times in U, 1 < j < k, 1 < i < m. Then we have by 
induction hypothesis ¿¿(aiSi, . . - , aksk) = a"'1 ... a%ihti(si,..., sk), 1 < i < 
m. Hence, i ( a i S i , . . . , aksk) = / ( i i ( a i S i , . . . , aksk),..., i m ( a i S i , . . . , aksk)) = 
/(ai11 • • • ap't i(Sl,..., sk),..., or™1 ... a^tm(Sl,..., sk)) = ... 
auklk+- •+Umkf(t1(su ..., sk), ...,tm(Sl,..., sk)) = ... 
t(si,... ,sk). • 
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Lemma 3 Let, for some k > 1, s G A({Ts(X U Zk))) be linear and nondeleting, 
and Sj G A((Tz(X))), aj G A for 1 < j < k. Then 

s(aisi,... ,aksk) = ai . . .afcs(si , . . . ,sk). 

Proof. We have s = *}2teTx{xuzk)( s 't)t- Since s is linear and nondeleting, we 
obtain, by Lemma 2, i ( a i S i , . . . , aksk) = ai... akt(si,... ,sk) for all i G 
Zk) such that (s,t) ^ 0. Hence s{aisu ... ,aksk) = T,teTs(xuzk) a i •••ak(s,t) 
t(si,... ,sk) = ai. ..aks(si,.. .,sk). • 

Lemma 4 Assume that the variable Zi appears exactly once int G T-£,{X{jZk), 
k> 1. Let Si G A({Tx(X))) for i G I and r2,... ,rk G A{(Tz(X))). Then 

t(Y2si,r2,...,rk) = Yt(si,r2,...,rk). 
iei iei 

Proof. The proof is by induction on the form of trees in T%(X U Zk). The 
lemma is trivial for t = z\. Let now t be of the form f(t\,..., tm), where 
/ G £ m , and ti,... ,tm G Tz(X U Zk). The variable zx appears in exactly one 
of the subtrees tj, 1 < j < k, say in tu. By induction hypothesis we have 
^ " ( S i e / si>r'2i • • • i rk) = Ei6 / i " ( s » ' 7 ' 2 , - - - , i ' f c ) - Hence, 

/ ( ^ ( E i e / Si,r2,..., rk),..., tu(J2i ei si'r 2> • • • > rk)i • • •, 
t™(T,ieisi,r2,---,rk)) = 

f{ti(r1,r2,...,rk),...,J2ieitv(si>r2,---,rk),...,tm(r1,r2,...,rk)) = 

for all ri G A((Ts{X))). Hence, the last sum is equal to 

E i e / f(* r2, • • •, rk),..., tu(si, r2, • • •, rk),..., tm(si, r-2,..., rk)) = 
£i€/(/(£l> • • • > tu, • • • , tm)){Si,r2,. ..,rk) = J^iel t(Si'r 2, • • • > rk) • 

• 
Lemma 5 Let, for some k>\,s£ A{(TY(X U Zk))) be linear and nondeleting, 
and Si G A{(Tz(X))), for i G I. Moreover, let r2,... ,rk G A « T E ( X ) ) ) . Then 

s(Y2si,r2,.. .,rk)= J2s(Si,r2,...,rk). 
ief iei 

Proof. We have, 
by Lemma 4, s ( £ i 6 / su r 2 , . . . , rk) = EteTs(xuzk)(s> ¿ M E i e / r 2 , • • •, rk) = 
J2iei ^2teT^(xuzk)(s' t)t{si,r2,... ,rk) = ¿i£/ s(si,r2,... ,rk). • 
Clearly, Lemma 5 also holds for argument places different from one. 

Theorem 6 Let, for some k > 1, s G A((Ts(XuZk))) be linear and nondeleting, 
and s^ G A((Tz(X))), a{j G A for ij G Ij; l < j < k . Then 

s( y ] Oj jSi1 , . . . , ^ ] a,ikSik) = .. • ^ ] dij • • • aiks(sil,..., Sik). 
i\€.h ik£lk ii6'i ik€h 
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Proof. By Lemmas 3 and 5. • 
Given a tree representation /J, we now extend /i to mappings 

: (A ( (E f c ) ) ) / x / t -4 {(A((Tv{X' U Zk)))f*V)I*,h for k > 0 , 

and 
ti : (A«TE (X))» / x l ( (A«rE i (X')) ) ) ( ? x l ) / x l 

by 
M M ) = ^ ( M , / ) ® ^ / ) , M E ( A ( ( £ F C ) ) ) / X I \ FC > O, 

/eSb 

and 
£ P e ( A « T s ( X ) ) ) ) / x l . 

teTE(X) 

Observe that M 6 (A((E f c ) ) ) / x / f c , k > 0, induces a map-
p i n g . M ( M ) : ( ( A ( ( T E ' ( X ' ) ) ) ) Q x 1 ) I x 1 x . . . x ( ( A ( ( T E ' ( X ' ) ) ) ) Q X 1 ) I X 1 

( (A( (T E ' (A") ) ) ) c ? > < 1 ) / x 1 (there are k argument vectors). The next theorem im-
plies that a linear nondeleting tree representation fi is a morphism from the 
E-algebra 

((A((TS(X)))YX\(Mf | / £ £ ) ) , for some Mf £ ( A ( ( £ , ) ) ) i x / l ; / £ E ^ > 0 , 

into the E-algebra 

(((A((Tz' (X'))))Qxl)Ixl, (fi(Mf) | / e £)). 

Theorem 7 Let M £ (A{(£*)))/x'\ Pu...,Pk £ (A((TE(X)))) / X l /or some 
& > 1, and p be a linear nondeleting tree representation with state set Q. Then 

m(M)(M(Pi), • • - ,!M(Pk)) = fi(M(Pu.. .,Pk)). 

Proof. We first compute the left side of the equality of the theorem for indices 
i £ I and q £ Q \ 

MM)MPi),...,n(Pk))i)g = 
¿.(»1,---.»»:)/9.(91 >--->9fe) 

mp1)il)qi,...:(KPk)ik)qk) = 
Yliu...,ikelTlq1,...,qkeQ((Tlf€Zk{MJ) ® li(f))i,(iu...,ik))q,ti1,...,qk) 

E i , ik.a E9 l l . . . , , f c€Q E / 6 S f c ( M . f)i,(h,...,h)Li(f)q 
(Ei1eTE( .Y)(-P l> i l) i i / i( i l)fi> • • •) Yltk£T7 :(X)(Pk' tk)iktl{ tk)qk) = 

( M , / ) ¿,(¿1 .•••.«») 
(P l . iOi ! . . . (.Pfc, , • - • • 
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Here the last equality follows by Theorem 6. We now compute the right side of 
the equality of the theorem for indices i € I and q £ Q: 

(/¿(M(Pi, . . .,Pk))i)q = 
Z t e T x ( x ) ( M ( p i > - - - , p k ) > t ) i K t ) q = 
E t 6 r = W (E i l l . . . , i f c e / (M i , ( i l , . . . l i k ) ( (P i ) i l , • • •, (Pfck) , t))n(t)q = 

/)/(№)n,.. • , (Pk)lk),tMt)q = 
S/esfc(Mi,(ii i„)>f) 

((Pl)u,h)-..((Pk)i„tk)Mtl,...,tk))g = 
12tlt...,tkeTt:(x) Eii,...,tfce/ J2qi,...,qkeQ^h(.h,--,ik)' f) 

«1 , ' ' ' , Mi*) 

Here the fourth equality follows by the fact that (f((Pi)i1,---,(Pk)ill),t) is 
unequal to 0 only if t is of the form f(h,... ,tk). 

Since both sides of the equation of our theorem coincide, the theorem is 
proven. • 

4 Recognizable tree transducers and recogniz-
able tree series 

It is easy to see that our tree transducers do not preserve the recognizabil-
ity of tree series. (See the example in the last paragraph of page 18 of Gec-
seg, Steinby [5].) On the other hand, linear root-to-frontier tree transducers 
do preserve recognizability of tree languages. (See Thatcher [10]; and Gecseg, 
Steinby [4], Theorem 2.7, Lemma 6.5 and Corollary 6.6.) In this section we show 
that linear nondeleting recognizable tree transducers do preserve recognizability 
of tree series. We show this by two different constructions: one is based on finite 
linear systems, the other is based on finite tree automata. 

We start with the construction based on finite linear systems. 
A finite linear system (see Berstel, Reutenauer [1], Bozapalidis [2, 3], 

Kuich [7, 8]) is a system of formal equations Zi = pi, 1 < i < n, for some 
n > 1, where each pi is in A((T^(X U Zn))). A solution to the finite lin-
ear system Zi = Pi, 1 < i < n, is given by a € (A((T:c(X))))™xl such that 
Oi = Pi(oi, • • - ,crn), 1 < i < n. A solution cr of Zi — pi, 1 < i < n, is termed 
least solution iff a C r for all solutions r of Zi = pi, 1 < i < n. The approxima-
tion sequence (cr-7 | j £ N), aj £ (A( (Ts(X) ) ) ) n x l , j > 0, associated to the finite 
linear system Z{ = pi, 1 < i < n, is defined as follows: 

= 0, ai+1 =Pi(o{, •••,<), 1<» <". i>0-

The least upper bound o = sup(<r:' | j £ N) of the approximation sequence 
exists and is the least solution of the finite linear system. 

A finite linear system = Pi, 1 < i < n is called proper iff (pi,Zj) = 0 for 
all 1 < j < n, i. e., iff there do not appear linear terms in pi. 
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A finite linear system Z{ = pi, 1 < i < n is called polynomial iff each pi is 
in A(Tz(X U Zn)). The collection of all the components of least solutions of 
finite polynomial linear systems is denoted by Arec((Tz(X))). The tree series in 
A"!C((T\z(X))} are called recognizable tree series. 

A finite linear system Zi = pi, 1 < i < n is called recognizable iff each pi is 
in Arec((Tx(XUZn))). 

An adaption of the proof of Proposition 6.1 of Berstel, Reutenauer [1] yields 
the following result. 

Theorem 8 For each finite (resp. recognizable finite or polynomial finite) linear 
system there exists a proper finite (resp. proper recognizable finite or proper 
polynomial finite) linear system with the same least solution. A proper finite 
linear system has a unique solution. 

We now show that the least solution of a recognizable finite linear system 
has recognizable components. 

Theorem 9 Let Z{ = pi, 1 < i < n, be a recognizable finite linear system with 
least solution a. Then cr, £ A re c((TE(A))) for all 1 < i < n. 

Proof. Without loss of generality let Zi =Pi, 1 < i < n, be a proper recognizable 
finite linear system. Since pi £ ATec((T^(XU Zn))), 1 < i < n, there exist proper 
polynomial finite linear systems y^ = qij, 1 < j < mi, mi > 1, where the yij 
are new variables and q^ £ A(T^(X U ZnU {yn,... ,yimi})), 1 < i < n, such 
that the qn-components of their least solutions Tj are equal to pi. Consider 
now the polynomial finite linear system Zj = qn(zi,..., zn, yn,... ,yimi), y^ = 
qij(zi,... ,zn,yn,... ,yinu), 1 < j < mi, 1 < i < n, and observe that this 
polynomial finite linear system has a unique solution. We claim that this unique 
solution is given by crU((ri)j(cri,... ,an) \ \ < j < mi, 1 <i <n). Substitution 
of this vector yields, for 1 < j < mi, 1 <i<n, 

qi 1(01,. • • ,an, (Ti)i(<Ti,... ,a„),..., (Ti)mi(ai,. .. ,an)) = 
{n)i{(Ti,... ,an) = Pi(ai,... ,crn) = Oi, 

qij{<J\,. • • ,an, (Ti)i(cri,... ,<r„),..., (ri)nii(cri,... ,an)) = (n)j(cri, • • • ,an). 

Hence cr U (C7"i)j (CTi > • • • > an) \ 1 < j < mi, 1 < « < ?i) is the unique solution of 
the polynomial finite linear system and a 6 

Let Y = {yi | i > 1} be an alphabet of new variables and denote Yk = 
foi, •••,!/*}, k>l,Y0=9. Let s(yu...,yk) £ A™C((TS(X I) Yk))) and T j £ 
A r e c ( (T s (A U Yk))), 1 < j < k. Then, by Bozapalidis [2], s ( n , . . . , r n ) is again 
in A r e c ( (TE (A U Yfc)))> i- e., Arec{(Tz(X U Yk))) is closed under substitution. 

Theorem 10 ,4rec((Ts(A U Yk))), k > 1, is closed under substitution. 

Consider a finite linear system y^ = Pi(yi, • • •, yn), 1 < i £ n, where pi £ 
A({Ts(X U Yn))), and a tree representation p. with state set Q, where fi: T,k —> 
(A((T^(X'UZk))))Qx^,k > 1, and p : E 0 UA (A((TS. ( A ' ) ) ) ) ° x l . Let ( y i ) „ 
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1 < i < n, q G Q, be new variables and denote YQ = {(yi)q | 1 < i < k, q G Q}. 
Extend the definition of fi to the domain E U X U Yn, by 

/x : Fn (-4(<TE ,(yQ"))))«x l , 

where p{yj)q = {yj)q, 1 < j < n, 9 € Q. By this extension, we obtain that 

p = U Yn) (A((TS,(X' U y ^ ) ) ) ) Q x l . 

Lemma 11 Consider s(yi,..., yn) G A((Tz(X UYn))) and a linear nondeleting 
tree representation /J, with domain E U X U Yn. Let Si,..., sn G A((T^(X)}). 
Then 

V(s)\p(sj)q/(yj)q, 1 <3<n, q G Q] = /i(s(si,. . . ,sn)) . 

Proof. We first consider a tree t G T j ; ( I U Y„) and show by induction on the 
form of t, that p{t)[p(sj)q/(yj)q, 1 <j<n, q G Q] = ^ ( ¿ ( « i , . . . , s„)) . 
(i) For t = yit 1 < i < n, we obtain n{iji)[n(sj) / 1 < j < n] = fi(si) = 
KVi{Sl, - • • ,sn)). 
(ii) For t = x, x G £ 0 U X, we obtain fx(x)[p,(sj)/fi(yj), 1 < j < n] = n(x) = 
fi(x(s i,...,s„)). 
(iii) For t = f(tu...,tk), f G St, i i , . . . , i f c G T s ( X u Y n ) , k > 1, we obtain 

/i(/(ii,...,ifc))[A»(Si)/M(yj). 1 < J < «] = 
M / X / ^ i M M ^ M j / j ) , 1 < J < n],. • • 1 < J < «]) = 
P i D i K h ( s i , • • •, sn ) ) , • • •, n(tk(si, • • •, sn ) ) ) = 
H(f(tl(si , • • • , Sn), . . • , ifc(Sl, • • • , Sn))) = 

Here we have applied the induction hypothesis in the second equality and The-
orem 7 in the third equality. 

Finally, we obtain 

p{s)[p{sj)/p(yj), 1 <j<n] = 
£i€rs(xuyn)(M) ® MiMsjOM?/,-). 1 < j < n) = 
T,teTs(xuYn)(s>® M(i(si, • • •, Sn)) = 

• 
Theorem 12 Consider a linear nondeleting tree representation fj. with domain 
S U l U Yn. Let V i = Pi(yu ..., yn), 1 <i<n, where pi G A((Tz(X U Yn))), be 
a finite linear system with least solution a. Then n(o) is the least solution of 
the finite linear system p(yi) = p(pi(yi,... ,yn)),' 1 <i <n. 

Proof. Let (oi | j G N) and (rJ | j G N) be the approximation sequences of 
'h = Pi{yi,---,Vn), I < i < n, and ¡x(yi) = n{Pi{yi, • • • ,yn)), 1 < i < n, 
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respectively. We claim that T- = ^(A?), 1 < i < n, j > 0, and show it by 
induction on j. The case j = 0 is clear. Let j > 0. Then, for 1 < i < n, 

r / + 1 = KPiiv• • • ,Vn))[Tiln{Vk), 1 < k < n] = 
v(Pi(yu • • •,Vn))[lJ-(^l)/iJ'{yk), 1 <k<n] = 

Here we have applied the induction hypothesis in the second equality and 
Lemma 11 in the third equality. The claim now implies our theorem. • 

A tree representation /x is called recognizable iff /¿( / ) £ (Arec((T^f (X' U 
Zk))))QxQk for / G k > 1, and M ( / ) G (^ r e c ( (T E , (A ' ) ) ) ) Q x l for / e E0 U X . 
A tree transducer T = (Q,fi ,S ) is called recognizable iff n is a recognizable tree 
representation and the entries of S are of the form Sq = aqz\, aq G A, q £ Q. 

Corollary 13 Consider a linear nondeleting recognizable tree representation /i. 
Let s be in Arec{{T^(X))). Then n(s) is in (A r e c ( (T E - (A ' ) ) ) ) Q x l . 

Corollary 14 Consider a linear nondeleting recognizable tree transducer T and 
a recognizable tree series s. Then ||T||(s) is again recognizable. 

We now turn to the automata-based construction. 
Our tree automata are a generalization of the nondeterministic root-

to-frontier tree recognizers (see Gecseg, Steinby [4, 5]) and are defined in 
Kuich [7, 8]. A tree automaton (with input alphabet E and leaf alphabet X) 

21 = (I, M, S, P) 

is given by 

(i) a nonempty set I of states, 

(ii) a sequence M = {Mk | k > 1) of transitioii matrices 
Mk£{A((Tv(XuYk)))y*'\k>l, 

(iii) 5 G ( A ( ( T z { X U Yi ) ) ) ) l x i , called the initial state vector, 

(iv) P £ (A((Tz(X))))Txl, called the final state vector. 

The approximation sequence (a^ | j G N), a3 
£ ( A ( ( T E ( X ) ) » / X 1 , j > 0 , 

associated to 21 is defined as follows: 

a°=0, ai+1 =YJMk{aj,...,(Jj) + P, j> 0. 
fc>i 

The behavior ||2l|| G A{{TY,{X))) of the tree automaton 21 is defined by 

||2l|| = £ 5 i ( ( 7 i ) = 5 ( a ) ! 

ier 
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where er 6 ( A { { T Z ( X ) ) ) ) I X L is the least upper bound of the approximation se-
quence associated to 21. 

A tree automaton 21 = (I, (Mk | k > 1), S, P) is termed simple iff the entries 
of the transition matrices Mk, k > 1, of the initial state vector S and of the 
final state vector P have the following specific form: 

(i) the entries of Mk, k > 2, are of the form E / e s * aff(Uiy • • ,Vk), a s € A; 

(ii) the entries of Mi are of the form a f f ( v i ) + a2/i> a h a e M 

(iii) the entries of P are of the form ]Cwe£0ux aw € 

(iv) the entries of S are of the form dyi, d E A. 

A tree automaton 21 = (I, (Mk | k > 1), S, P) is termed proper iff the entries 
of Mi do not contain a linear term ayi, a E A. 

A tree automaton 21 = (I, M, S, P) is called polynomial (resp. recognizable) 
iff the following conditions are satisfied: 

(i) M = (MK | 1 < k < k) is a finite sequence of transition matrices MK whose 
entries aie polynomials in A(Tz(XUYk)) (resp. tree series in Arec((Tj;(XU 
Yfc)))), 1 < k < k. (Technically speaking, this means that all transition 
matrices Mj.+j, j > 1, are equal to the zero matrix.) Moreover, the 
matrices Mk, 1 < k < k, are row finite. 

(ii) The entries of the initial state vector 5 are of the form Si = c?i2/i, i E I. 
Moreover, S is row finite. 

(iii) The entries of the final state vector P are polynomials in A(T^(X)) (resp. 
recognizable tree series in Arec((T^(X)))). 

By Bozapalidis [2], by Kuich [7], and by Theorem 9 we obtain the following 
result. 

Theorem 15 The following statements on a formal tree series in A((TY(X))) 
are equivalent: 

(i) s E ATec((Tz(X))), 

(ii) there exists a polynomial tree automaton 21 with finite state set such that 
s = 112111, 

(iii) there exists a simple proper polynomial tree automaton 21 with finite state 
set such that s = ||21||, 

(iv) there exists a recognizable tree automaton 21 with finite state set such that 
s = m\, 

(v) there exists a proper recognizable tree automaton 21 with finite state set 
such that s = | | 2 l | | , 
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Let 21 = ( / , (Mk | k > 1), 5, P) be a simple tree automaton and 1 = (Q,p,R) 
be a tree transducer such that Rq — aqy\, aq G A, q 6 Q. Then T(21) is defined 
to be the tree automaton 

1(21) = ( 7 x 0 , (n(Mk) \k>l),S®R, »(P)) • 

Theorem 16 Let 21 = ( / , ( M k \ k > 1 ),S,P) be a simple tree automaton and 
1 = (Q,n,R) be a linear nondeleting tree transducer. Then 

№ ) I I = PII(PII)-

Proof. Consider the approximation sequences (a^ \ j e N) and (rJ' | j G N) of 21 
and 1(21) with upper bounds a and r , respectively. Then we prove by inducion 
on j that T j = j > 0. The induction basis being clear, we proceed with 
the induction step. Let j > 0. Then 

r ] + 1 = E t > i • • • + M P ) = 
Zk>i»(Mk(<jj,...,oj))+KP) = 

Here the second equality follows by Theorem 7. Hence, we obtain r = H(<J). 
We now compute the behavior of 1(21): 

||1(2l)|| = (S ® R)(T) = E i e / E 9 6 Q ( ( 5 ® R)i)M°)i)<, = 
E ¿ 6 / RqSi J2tETz(X)(ai> Ovityq = 

P<7 EtgTs(.Y) ^ieiiSiCiiO/J-it))/ = 
J2qeQ R<1 J2t£Tx(X) 

№\\,tb(t)q = 
E , 6 Q ^ ( l i a | | ) 9 = ||i||(||2i||).. • 

Corollary 17 Let 21 be a simple polynomial tree automaton with finite state set 
and 1 be a linear nondeleting recognizable tree transducer. Then ||1||(||2l||) is 
in A r e c ( (TE (A))>. 

Acknowledgement. Many thanks are due to Ferenc Gecseg for discussions on 
root-to-frontier tree transducers. 
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