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Test Suite Reduction in Conformance Testing 

Tibor Csöndes * Sarolta Dibuz * Balázs Kotnyek t 

Abstract 
Conformance testing is based on a test suite. Standardization committees 

release standard test suites, which consist of hundreds of test cases. The main 
problem of conformance testing is that we do not have enough time to execute 
them all. Therefore, test selection is required to maximize the test coverage. 
In our earlier papers [6,7] we outlined a new method of selecting an optimal 
test suite which can detect the errors with better probability' and réduce the • 
time of testing. In this paper we will expound the mathematical optimization 
method for test suite optimization based on cost and test coverage, and we 
will apply this method to an ISDN protocol. 

1 Introduction , 
The main aim of conformance testing is to check whether the protocol implementa-
tion conforms to the standard. The procedure of conformance testing as well as the 
protocols are standardized [1]. The two main terms of testing are the test purpose 
(TP) and the abstract test suite (ATS). The test purpose is the description of the 
well defined objective of testing to focus on a single conformance requirement or 
a set of related conformance requirements. The ATS consists of several test cases 
(TC) created to test one or more TPs. In real-life conformance testing, the testers 
choose some of the TPs and execute all the TCs that are related to the chosen set 
of TPs. The challenge in conformance testing is this selection, choosing this set so 
that the coverage, the fault detection capability, be maximal. Of course, the best 
selection is when we choose all the TPs or - what means the same - all the TCs. 
The problem that arises here is the time limitation. Usually we do not have enough 
time to do this, so we can only execute some of the TCs. 

The existing approach of handling this problem is the test generation. The goal 
of such procedures is briefly to generate optimal ATSs from the protocol specifi-
cation , i.e. that contain as few parallelisms as possible so they can be entirely 
executed within the time limit. The theoretical background, of this kind of op-
timization is the finite state machine (FSM). If a FSM model of the protocol is 
already given, there are several algorithms for generating good, or better test suites 
(Transition Tour, Unique Input/Output method, Distinguishing Sequence) [4]. We 
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need this FSM model, however and real life protocols are so complicated that it is 
not possible to create their usable FSM model. 

Our approach, which we outlined in our earlier papers [6,7], is based 011 practice. 
We suppose that we are given an ATS and we cannot generate any new TCs. That 
is what test laboratories do, they use only those test cases which are provided by 
the standards. By now, the selection of TCs from ATS is based on the subjective 
decision of the test laboratory. Our aim is to create a theoretical background of 
such selection. We found that mathematical optimization could be a suitable one. 

The rest of the paper is organized as follows: first, we introduce a model of 
conformance testing mathematics could operate on. In Section 3 we describe this 
operation, in Section 4 we present how this method could be applied to an existing 
protocol the ISDN DSSl Layer 2 protocol[2]. We chose this protocol because it is 
widely used, well known, and its ATS exists. 

2 The model 
In our model, we create a mathematically formulated relation between the test cases 
and test purposes by introducing the purpose-test incidence matrix. The purposes 
are placed in the rows and the tests in the columns. As a result we get an A matrix 
of size k x n where Pi,... ,Pk are the purposes and T\,..., Tn are the test cases 
defined in the ATS (Figure 1). The jth element in the ith row is 1 if, and only if 
Tj is necessary to check Pi, otherwise it is 0. In other words, if we want to check a 
purpose (e.g. Pi) completely, we have to execute all test cases having 1 in the row 
of the purpose (namely in the ith row). Let us introduce the number bi designating 
the number of such test cases and let b = (f>i,..., bk)T be the vector made of these 
numbers. 

Ti T2 

Pi 1 0 1 
Pi 1 1 0 

Pk 0 1 0 

= A 

Figure 1: Purpose-test incidence matrix 

There are protocols the ATSs of which define one-to-one connection between 
the test cases and the purposes, hence their incidence matrix is diagonal. There 
exist, however, ATSs the matrices of which are not diagonal, thus there are more 
than one necessary test cases to check a test purpose. In this paper, we are dealing 
with these kind of protocols. 

Let us assign the value cov(Pi), (i = 1 , . . . , k) to every purpose describing its 
coverage. This value may be obtained from a theoretical consideration or we can 
simply mark the priority of the purpose with it. Similarly, let us designate the cost 
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of test Tj with c(Tj), (j — 1 , . . . ,n). This cost function can be defined -.to-represent 
the resources (time) required to execute the test case. The cost of a set of test cases 
can be defined simply as the sum of the cost of the individual test cases in the set. 
Let us do the same with the coverage of a set of purposes. 

Let us introduce the increasing functions fi : {0 ,1 , . . . , bi} -4 [0, cov(Pi)], (i = 
1 , . . . ,k) describing the coverage we get if we execute m tests among the tests that 
correspond to Pi (to = 0 ,1 , . . . , bi). Of course /¿(0) = 0 and fi{bi) = cov(Pi) for all 
i = 1,2,... ,k. The different models differ from each other in choosing functions 
fi. We introduce three models below. 

1. Linear model: The coverage is in direct proportion to the number of exe-
cuted tests i.e. 

7TI 
fi(m) =—cov(Pi) m = 0,...,bi , 

bi 

2. "All or nothing" model: We only consider the purpose being checked 
when we executed all the necessary tests. 

/¿(0) = /¿(1) = . . . = fi(bi - 1) = 0 . and fi(bi) = cov(Pi) ... 

3. "One is enough" model: If only one test is executed among the ones that 
correspond to Pi, we get the whole coverage. 

/¿(0) = 0 and fi( 1) = ... = Mbi) = cov(Pi) 

3 Optimization 
We introduce two possible optimization problems. In the first one our aim is to 
select a test set from the test suite with minimal cost supposing a constraint 
bounding the coverage from below. Let x G {0,1}™ be the decision vector, so 
Xj = 1 if Tj is executed and x = 0 if it is not. The minimization can be formalized 
in the following manner: 

min cx 
k 

subject to ^ f i ( a i x ) > K (1) 

'xe {0 ,1 } " 

where c = (c (Ti) , . : . , c(Tn)) is the cost vector, K is the lower bound for 
the coverage, and Oj is the ith row of the matrix A. Furthermore, let v — 
(cov(Pi),... ,cov{Pk)) be the coverage vector. Let us see how this formula looks 
like in the case of the three introduced models. 
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1. Linear model 

t < \ shaix mi (V^ aicav{Pi)\ 
f i M = -—cov(Pi) = ^ x 

t=i t=i % \i=i 1 / 

Thus (1) turns into a binary minimization with a single linear constraint: 
mm cx 

k 
subject to j , > K (2) 

x G~{0,1}" 

2. "All or nothing" model 
Let us introduce a new variable vector 2 = ( z i , . . . , Zk) defined in the following 
manner: 

_ J 1 if a,iX = b{ 
1 \ 0 if a,iX < bi 

In other words, z = max{yla: — b + e, 0}, where e = (1 ,1 , . . . , 1) and the 
maximization is made componentwise. Using this vector problem (1) can be 
written in the following manner 

min cx 
subject to vz > K 

z = max{>la; — b + e, 0} 
x G {0,1}'1 

It is easy to see that this is equivalent to 

min 
subject to 

cx 
Zi < ^x bi 
z > Ax - b + e 

vz > K 
X e {0 ,1 } " 
z e {0, i } f c 

This is a binary minimization with linear constraints. The number of the 
variables is n + k, the number of the constraints is 2k + 1. 

3. "One is enough" model 
This model can be handled similarly to the previous one. Let now 2 be the 
following vector: • 

_ J 0 ha aiX = 0 
1 ( 1 ha diX > 1 



Test Suite Reduction in Conformance Testing 233 

namely z = min-j^x, e}. In this case (3) can be transformed into thetfollowing 
problem: 

min cx ' • 
subject to Zi > f:X i = l,...,k 

I (4) 

Zi > qi bi J' 
z < Ax 

vz > K 
X € {0,1} 
z e {0,1} 

Our second optimization problem is to find a maximal coverage test set supposing 
an upper bound for the cost (L). This optimization problem, as the previous one, 
can be formulated as a binary minimization problem with the functions /¿: 

k 
max y ^ /¿(a {x) 

г=l (5) 
subject to cx < L 

' x e {0 ,1 } " 

Without further details let us see the formulas for the three models. 

1. Linear model 

a,iCov{Pi)\ max > x 

subject to cx < L 
x e {0,1} 

i=i bi I (6) 

nothing" model 

max vz 
subject to Zi < f;X 

z > Ax - b + 
cx < L 
x e {o,i}" 
z G {0,1}* 

enough" model 

max vz 
subject to 

z < Ax 
cx < L 
x e {0 ,1}" 
z e . {o , i } f c 

i = 1,..., k 

• (7) 

i — 1,.. :,k 

(8) 
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4 The results of optimization 
Having described the method, let us look at the experiments now. As it was 
mentioned in the introduction, we applied the method to the ISDN DSSl Layer 2 
protocol [2]. This TBR4 standard contains 27 test purposes (k=27) and 52 test 
cases (n=52) as well as the relation between the TCs and the TPs. The TCs that 
are necessary to check a TP are given for each purpose. Based on this standard 
the purpose-test incidence matrix can be easily constructed. 

We fixed the coverage vector v in the value of e = (1 , . . . , 1 ) because we did 
not want to distinguish the TCs with respect to the coverage. We defined three 
different cost, vectors: 

• In the first, c\{Tj) = 1 for j = (1 , . . . ,n). This cost can be used if we are 
interested in only the number of the test cases; for example if their costs are 
all equal. 

• The second cost vector (02) is based on the timers contained by the test cases. 
We estimated c2 using the sum of the default times of the timers in the jth 

test case. This time can be an upper bound for the execution time, of Tj. The 
exact value of c-i is as follows: 

c2 = (6,3,33,3,3,8,4,5,3,9,6,35,3,13,2,4,34,6,6,2,34,5,3,5,2,5, 
1,8,33,7,8,3,2,1,2,35,4,2,2,3,2,4,6,2, 2,2,33,33,31,6,1,2) 

• The definition of the third cost vector (03) is based on the assumption that 
the main time consuming steps of testing are the preparation and, in case of 
fault, the search for its cause. That is why we added a constant value (100) 
to every c-i{Tj) referring to this time, so C3 = Co + 100.' 

To solve the integer (binary) programming problems with the described parameters, 
we used the CPLEX program tool [5] . 

4.1 Minimal costs 
1. Linear model 

This model is less interesting than the others so we examined only the c-2 cost 
vector. The cost of the optimal test set for K = 1 , . . . , 27 is shown in Figure 
2-a. 

2. "All or nothing" model 
We examined all the three cost vectors. The results of the optimization 
problem (3) for K — 1 , . . . , 27 for the three cost functions are shown in Figure 
2-b, Figure 3-a, Figure 3-b. 
We can see in all cases that increasing the coverage bound, the cost of the 
optimal test set does not increase linearly. This means that using our method 
we can obtain better (shorter in time) test sets to execute, than we would 
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TtW eovarago bound (K) TM csvMaga bound (K) 

(a) Linear model, c-2 cost vector (b) "All or nothing" model, c\ cost vec-
tor 

Figure 2: Minimal costs in Linear model and "All or nothing" model 

(a) "All or nothing" model, 02 cost vector (b) "All or nothing" model, C3 cost vector 

Figure 3: Minimal costs in "All or nothing" model ' 
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! 

(a) Minimal cost in "One is enough' 
model, C2 cost vector 

» (b) Maximal coverage in Linear model, c-2 
cost vector 

Figure 4: Minimal cost in "One is enough" model and maximal coverage in Linear 
model 

get if we chose at random. In fact, our method gives us the best possible test 
set within the constraints. 

The figures also show that the biggest increase in the rate of the cost 
in coverage is in the case when the cost vector c-2 is used (Figure 3-a). 
This is because the variation of the cost values is the biggest in this 
case. That means we can reduce cost with only a small loss of test 
coverage. The cost jumps when, in order to reach the required test cov-
erage, it is necessary to execute those test cases which have bigger cost values. 

Where the variation of the cost vector is less, as in case C3 and espe-
cially in ci, the graph is smoother. This is quite logical as the execution of 
a given test case does not increase the total cost significantly regardless of 
which test case we select. 

3. "One is enough" model 
Figure 4-a shows the optimal cost in the " One is enough" model using cost 
vector C2 

4.2 Maximal coverages 
1. Linear model When we are looking for a maximal coverage test set we 

have an upper bound for the cost (L). Different cost vectors have different 
maximal upper bounds (Lm a x =52, 477 or 5677). We present only one graph 
for this model, Figure 4-b, which shows the results using cost vector C2 and 
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(a) "All or nothing" model, C2 cost vector (b) "One is enough" model C2 cost vector 

Figure 5: Maximal coverage in "All or nothing" model and "One is enough" model 

2. "All or nothing" model 
Figure 5-a shows the result of the maximal coverage problem for "All or 
nothing" model using the cost vector c-2-

3. "One is enough" model 
The results of the maximal coverage problem for the " One is enough" model 
using cost vector c-i are shown in Figure 5-b. We can observe that the graph 
reaches the highest cost value at L = 160, so in this model only the third of 
the total cost is enough for the whole coverage. 

4.3 Conclusions 
The reduction of the time or effort put into conformance testing while keeping the 
test coverage under control is very important for those who perform conformance 
testing. If the time of executing conformance testing is limited, then we have to 
select the more efficient test cases from the whole test suite in order to make testing 
possible within a shorter period of time. 

Our method is based on selecting test cases from the ATS of a protocol, when 
we can select what portion of the test coverage we are willing to devote to shorten 
the time of test execution. To achieve minimal testing time for a given lower 
bound of coverage the method determines which test cases have to be selected for 
execution. The method is protocol independent, so it can be used in the testing of 
any protocol. In the ATS of some protocols, however, the incidence matrix looks 
different. If there is a one-to-one relation between the test purposes and test cases, 
then the method cannot give us usable results. 
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Since the first step in the application of our method is the construction of the 
incidence matrix, it determines if the method is well applicable to a given protocol. 
For those protocols the incidence matrix is a diagonal one, we are working on other 
approaches to be able to give selection criteria for the test cases based on the 
coverage and the time constraints. 
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