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On a Merging Reduction of the Process Network 
Synthesis Problem* 

Cs. Holló t, z. Blázsik j Cs. Imreh t, Z. Kovács t 

Abstract 
Since the combinatorial version of the process network synthesis (PNS) prob-
lem is NP-complete, it is important to establish such methods which render 
possible the reduction of the size of model. In this work, a new method called 
merging reduction is introduced which is based on the merging of operating 
units. The mergeable operating units are determined by an equivalence rela-
tion on the set of the operating units, and all of the operating units included in 
an equivalence class are merged into one new operating unit. This reduction 
has the following property: an optimal solution of the original problem can 
be derived from an optimal solution of the reduced problem and conversely. 
Presentation of this reduction technique is equipped with an empirical anal-
ysis on randomly generated problems which shows the measure of the size 
decrease. 

1 Preliminaries 
The foundations of PNS and the background of the combinatorial model studied 
here can be found in [3], [4], [5], and [9]. Therefore, we shall confine ourselves only 
to the recall of the definitions here. The merging reduction is presented in Section 
2, while Section 3 contains the results of our empirical analysis. 

In the combinatorial approach, the structure of a process can be described by 
the process graph (see [4]) defined as follows. 

Let M be a finite nonempty set, the set of the materials. Furthermore, let 
l / O C p' (M) x p'(M) with M n O = 0 where p'{M) denotes the set of all 
nonempty subsets of M. The elements of 0 are called operating units and for an 
operating unit (a,¡3) € O, a and /3 are called the input-set and output-set of the 
operating unit, respectively. Pair (M, O) is defined to be a process graph or P-
graph in short. The set of vertices of this directed graph is JliUO, and the set 
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of arcs is A = Ai U A2 where Ai = { ( A , y ) : Y = (a,p) £ 0 and X G a } and 
A-2 = { (y , A') : Y = (a, P) £ 0 and X £ /3}. If there exist vertices A 1 ; X-2, . . ,A '„ , 
such that (Ai . X2), (X-2,X3),.... (A„_ i , Xn) are arcs of process graph (M, O), then 
the path determined by these arcs is denoted by [A'i, An]. 

Now. let o C O be arbitrary. Let us define the following functions on set o 

matin(o) = |J a, rnatout{o) = \J P, 
(«,¿3)60 (a,0)£o 

and 

mat(o) = mafin{o)[jmatout{o). 

Let process graphs (m, o) and (M, O) be given, (m, o) is defined to be a subgraph 
of (M, 0 ) , if 77i C M and oCO. 

Now, we can define the structural model of PNS for studying the problem from 
structural point of view. For this reason, let M* be an arbitrarily fixed possibly 
infinite set, the set of the available materials. By structural model of PNS, we mean 
a triplet (P,'R, O) where P, R, O are finite sets, i ^ P C M* is the set of the desired 
products, R, C M* is the set of the raw materials, and O C p'(M*) x p'(M') is the 
set of the available operating units. It is assumed that PC\R, = % and M* PI O = 0, 
furthermore, a and P are finite sets for every (a,P ) = u G O. 

Then, process graph ( M , 0 ) , where M = u { a U P : (a,P) G O}, presents 
the interconnections among the operating units of O. Furthermore, every feasible 
process network, producing the given set P of products from the given set R of 
raw materials using operating units from 0, corresponds to a subgraph of (M, O). 
Examining the corresponding subgraphs of (M, O), therefore, we can determine the 
feasible process networks. If we do not consider further constraints such as material 
balance, then the subgraphs of (M, 0) which can be assigned to the feasible process 
networks have common combinatorial properties. They are studied in [4] and their 
description is given by the following definition. 

Subgraph (m, o) of (M, O) is called a solution-structure of (P, R, O) if the fol-
lowing conditions are satisfied: 

(AI) P C in, 
(A2) MX G m, X G R O' no (y, X) arc in the process graph (m, o), 
(A3) VY0 6 o, 3 path [Y0,Yn] with Yn G P, 

• (A4) VA G in, B(q, p) G O such that X £ a U p. 

The set of solution-structures of M = ( P , R , 0 ) will be denoted by S(P,R,0) or 
S( M) . 

Let us consider PNS problems in which each operating unit has a weight. We 
are to find a feasible process network with the minimal weight where by weight of 
a process network we mean the sum of the weights of the operating units belonging 
to the process network under consideration. Each feasible process network in such 
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a class of PNS problems is determined uniquely from the corresponding solution-
structure and vice versa. Thus, the problem can be formalized as follows: 

PNS problem with weights 

Let a structural model of PNS problem M = (P. R. O) be given. Moreover, let 
iu be a positive real-valued function defined on O, the weight function. The basic 
model is then 

(1) min{J] w(u) : (m, o) e S(P, R,0)}. 
uÇ.0 

It is known (see [1],[2], and [10]) that this problem is NP-complete. In what follows, 
for the sake of simplicity, we call the elements of S(M) feasible solutions and by 
PNS problem we mean a PNS problem with weights. 

It is a basic observation that if (m,o) and (m',o') are solution-structures of 
M, then (m, o) U (m', o') is also a solution-structure óf M. This yields that 5 (M) 
has a greatest element called maximal structure provided that S(M) ^ 0. Indeed, 
the maximal structure is the union of all the solution-structures of M. Obviously, 
the P-graph of. an arbitrary PNS problem can contain unnecessary operating units 
and materials. On the basis of the maximal structure, we can disregard from 
these unnecessary operating units and materials as follows. Let (M, Ö) denote 
the P-graph of the maximal structure. Then, the P-graph of structural model 
M =_(P,Rr\M, Ö) is (Ö, M), and since each solution-structure of M is a subgraph 
of ( M , 0 ) , it is a solution-structure of M, and conversely. Consequently, ¿"(M) = 
S(M). On the other hand, M does not contain any unnecessary operating unit and 
material. Structural model M is called reduced structural model of PNS. 

To determine the reduced structural model for a PNS problem, an effective 
procedure is presented in [6], [7]; it can decide if S(M) is empty; if S (M) is not 
empty, the algorithm provides the corresponding maximal structure. Regarding the 
significance of this reduction, an empirical analysis is presented in [11], where the 
reduction procedure is executed on randomly generated PNS problems. It turned 
out that the decrease of size is about 47%. 

Now, we recall this algorithm. This procedure consists of two major parts. The 
first part is intended to reduce the set of available operating units by eliminating 
some or all inappropriate operating units. Even if one desired product cannot be 
generated by any of the remaining operating units, no solution-structure exists for 
the structural model of PNS under consideration; consequently, there is no maximal 
structure. If it is still possible to have the maximal structure, then the second part 
of the algorithm constructs a P-graph from a subset of the operating units left after 
the first part, which is exactly the maximal structure. To elucidate this procedure, 
let a structural model of PNS be given by M = (P, R.,0). 
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Algorithm for Maximal Structure Generation 

1. Reduction 

Initialization 

• Let O0 = 0 \ {(a,P) : (a, P) G 0 & /? n R ^ 0} and M0 = rnat(O0). If 
P 2 Mo, then terminate since there is no maximal structure for M. If not, 
then let T0 = {X : X G M0 \ R & ((a, P) G Oo —• A £ p)}. Finally, set 
r := 0. 

Iteration 

• Step 1.1. If Tr = 0, then proceed to the initialization for building. If not, then 
choose a material X from Tr and set Ox = {(¿*,/3) : {a,P) G Or & A G a}. 
Let Or+1 = Or\ Ox; moreover,M r +i — mat(Or+i). If P % Mr+then 
terminate since there is no maximal structure for M. If not, then construct set 
T; by T; = {Y :Y E matoui{Ox) & F $ matout{Or+1) k Y G matin(Or+1)}. 
Let Tr+i = (Tr (~l MT+1) UT;. Set r := r + 1 and proceed to the following 
iteration for reduction. 

2. Building 
Initialization 

• Let Wo = P, mo = 0 and OQ = 0; moreover, set s :— 0. 

Iteration 

• Step 2.1. If Ws = 0, then terminate. There exists at least one solution-
structure for M. In particular, (fh,os) is the maximal structure of M where 
m = mat{os). If Ws ^ 0, then proceed to Step 2.2. 

• Step 2.2. Choose one material from Ws; denote this material by A , and let 
m s +1 = m s U { A } . Then, form set 0*x = { (a,P) : (a,p ) G Or & A G P). 
Also, let os+1 = osUO*x and Ws+l = (WsUmatin(0*x))\{RUms+1). Then, 
set s := s -I-1, and proceed to the succeeding iteration for building. 

2 Merging reduction 
While the general reduction presented above renders possible to exclude the unnec-
essary operating units and materials from the investigation, the merging reduction 
compresses the P-graph by merging some of its operating units. If it] = (a i ,Pi ) 
and u-2 = (a-2,/3-2), then one can merge these two operating units into a new op-
erating unit defined by u = (ai U a2 ,Pi U /52). It is worth noting that after the 
merging of two or more operating units, we obtain a new structural model of PNS. 
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If we want to use this new structural model for solving the original problem, then 
a strong relationship must be established between the feasible solutions of the two 
problems. To establish this relationship, it is a basic question that which operating 
units are mergeable. 

For this purpose, let M = (P, R, O) be a reduced structural model of PNS. Then, 
operating units v,\, u-2 6 O are called mergeable if for any feasible solution, either 
both of them are contained in it or both of them are excluded from it. Formally 
stated, tii and u2 are mergeable if u\ G o implies u-2 G o, and conversely, for every 
feasible solution (m,o) G S(M). 

It can be readily seen that this relation is reflexive, symmetric, and transitive, 
and thus, it is an equivalence relation on set O which is denoted by =. Let us define 
structural model M / = = (P,R,0*) by 

O* = {(U{a t : ut = {au Pt) G C(u)}, U{& : ut = (at,Pt) & C{u)}) : u G 0} 

where C(u) denotes the equivalence class containing u. The visual meaning of M / = 
can be given as follows. For each equivalence class, we merge all of the operating 
units belonging to this class into a new operating unit. This new operating unit 
will substitute the original ones in M / =. Obviously, M / = is a structural model of 
PNS and its maximal structure is (M, O*). Now, we define a mapping ip of M UO 
onto M U O*. For every X G M, let <p(X) = X, furthermore, for every us G C(u), 
let ip(us) = (U{a/, : ut G C{u)},\J{pt '• ut G C(u)}). As it is usual, we shall use the 
notation <p(o) = {<p{u) : u G o} and ip(m) = {<p(X) : X G m} for a subset o of O 
and for a subset m of M, respectively. Using this extension, we can take the image 
of an arbitrary P-graph (m, o) of (M, O) under >p as (ip(m), <p(o)). This mapping is 
denoted also by (p. 

The following statement establishes a strong relationship between the two sets 
S(M) and S(M/ =) of feasible solutions. 

Theorem 1. Mapping ip is a bijective m,appi,ng of S(M) onto S(M/ =). 

Proof. Let (rn,o) G S'(M) be an arbitrary feasible solution. First, it is shown 
that (ip(m), ip(o)) is a feasible solution of M / =. Obviously, (ip(m), <p(o)) is such 
a P-graph which is a subgraph of (M,0*) . Consequently, it is enough to prove 
that (ip(m),ip(o)) satisfies conditions (Al) through (A4). Condition (Al) is clearly 
valid, since P Cm = ip(m). To prove condition (A2), let us observe that mapping 
<p preserves the sources. Regarding condition (A3), let u G tp(o) be an arbitrary 
operating unit. Then, there is at least one Uj G o such that <p(uj) = u. On the 
other hand, (m,o) G 5 (M) , and thus, on the base of (A3), there is a path 
in (m,,o) with Yn G P. Now taking the images under ip of the vertices of this path, 
we obtain a path in (ip(m), <p(o)) where G P which implies the validity 
of (A3). Finally, to prove (A4), let X G <p(m) be arbitrary. Then, X G m, and by 
property (A4), there exists an operating unit Uj = (aj,fij) such that X £ aj U flr 

Let <p(uj) = (q,/3). Then, by the definition of <p(v,j), X G aU/3, thereby validating 
(A4). 
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Now, it is proven that ip is an injective mapping. For this purpose, let (in, o) 7̂  
(m',o') £ S (M) . If m 7̂  m', then <p{m) ^ <p(m'), and thus, the images are 
different. Otherwise, o 7̂  d. To prove this case by contradiction, let us suppose 
that (ip{m), ip{o)) = (<p(m'),ip(o')). Since o 7̂  o', without loss of generality, we may 
assume that there exists a u' £ o' with u' o. Let <p(u') = u. Since (ip(rn), ip(o)) = 
(ip(m'),(p(o')), there exists a ü £ o with <p(u) = u. Then, by the definition of ip, 
ü = u1, and thus, by the definition of the equivalence relation, u' G o which is a 
contradiction. Consequently, is a one-to-one mapping. 

Finally, we show that <p is a mapping of S (M) onto S(M/ =) . For this purpose, 
let us consider an arbitrary feasible solution denoted by (m*,o*) of S ( M / = ) . Let 
m = to* and o = {Uj : Uj £ 0 & <p(uj) £ o*}. Obviously, ip(m, o) = (cp(m), <p(o)) = 
(m*, o*). Therefore, we have to prove that (m, o) is a feasible solution of M . It can 
be easily seen that (rn,o) is such a P-graph which is a subgraph of (M, O). Thus, 
we have to prove that (to,o) satisfies conditions (Al ) through (A4). 

Since (m*,o*) 6 S(M/ =) , condition (Al ) implies P C m*. On the other hand, 
m = TO*, thereby indicating the validity of (/11) for (m,o ) . 

Since the ancestor of a source in (m*,o*) is a source in (to,o) under </?, and 
(m*,o*) satisfies (A2), (to, o) satisfies condition (A2) as well. 

To prove (A3) by contradiction, let us suppose that (A3) is not valid for (m, o). 
Let us denote by oj the set of operating units in o from which there is no path in 
(m,o) into some required product, i.e., let 

0\ = {uj : Uj € o Sz no [uj, Y] path exists with Y £ P in (m, o) } . 

By our assumption, 01 / 0. Now, let us consider P-graph (to',o') where o' = o\o i 
and TO' = mat(o'). We shall prove that (m',o ' ) is a feasible solution of M . 

Since (m*,o*) £ S(M/ =) , (Al) implies that for any A' £ P, there exists an 
operating unit u producing A directly. Taking an ancestor of u, we obtain that 
there is an operating unit denoted by u' in o producing A directly, and thus, u' 
is not contained in o\. Consequently, u' £ d, thereby resulting in P C in', i.e., 
(to',o') satisfies condition (Al) . 

To prove (A2), let A G m' be arbitrary. If A G R, then A is a source in 
(m*,0*), and since the ancestor of X is a source in (m, o) under ip, X is a source of 
(m,o) . But (m',d) C (m,o), and thus, X is a source in (m',o') . Conversely, let us 
suppose that A is a source in (7??.', o'). Then, A is a source in (771, o). Indeed, in the 
opposite case, X would be an output material of at least one operating unit from 
0\. Let ttj denote such an operating unit. Then, there is a [ui, Y] path in (771,0) 
since X is a source in (to', o'), and thus, A is an input material for some operating 
unit in o'. This fact contradicts the definition of o\. Hence, A is a source in (m, o). 
In this case, A is a source in (m*,o*), and since (A2) is valid for {m*,0*), X £ R. 
Consequently, (m',d) satisfies (A2). 

The validity of conditions (A3) and (A4) follows from the definitions of o\ and 
(771', o'), and thus, we obtain that (m',o') is a feasible solution of M. 
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Now, let us observe that <p(m', o') = (m*,o*) = ip{m., o), which implies (m', o') = 
(ra, o) since ip is infective. Hence, oi = 0 which is a contradiction. Consequently, 
(A3) is valid for (m,o). 

In proceeding to prove the validity of condition (A4), let X e m be an arbitrary 
material. Then X ' e m * , and since (m*,o*) satisfies (A4), there exists an operating 
unit u = (a, P) e o* such that X e a U p. This implies that there exists an 
operating unit Uj = ((Xj,Pj) € o such that <p{uj) = u a n d X e ctj U Pj. Indeed, in 
the opposite case, we would have that I ^ q U j S which is a contradiction. 

This completes the proof of Theorem 1. 
Let us equip structural model M / = with the weight function w defined as 

follows. For every u e O*, let iu(u) = Y^UleC{u') w(ut) where <p(u') = u. Since the 
equivalent operating units have an identical image, function iu is well-defined. The 
constructed new model is then 

(2) m i n { ^ w ( u ) : (m,o) e S (M/ =) } . 

Extend the weight functions for the feasible solutions in the following way. For 
any (m,o) e S(M) and (m*,o*) g S(M/ =)",: let w(m,o)...= '• u e o} 
and iu(m*,o*) — : u e }• Then, w(m,o) = iu((p(m,o)J is valid,- for all 
feasible solutions (m,o) e 5(M). On the basis of this observation and Theorem'l, 
the validity of the following statement is obvious. 

Theorem 2. The image of an optimal solution of problem (1) under <p is an 
optimal solution of problem (2), arid conversely, the image of an optimal solution 
of problem (2) under (p-1 is an optimal solution of problem (1). 

To execute the merging reduction on an instance, we need to determine the 
equivalence relation introduced. For this reason, a further notation is introduced. 
Let M = (P, R, O) be a reduced structural model of PNS with S(M) ^ 0. Further-
more, let Uj e O be arbitrary. Then, we can construct a new structural model of 
PNS, M(tij) = (P, R, O \ {mj}). Let us denote the maximal structure of M(uj) by 
(Mj,Oj) provided that it exists. If it does not exist, then let Mj = Oj = 0. Then, 
we have the following statement. 

Theorem 3. For every Ui,Uj e O, Ui = Uj if and only if Ui e O \ Oj and 
v,j eO\Oi are simultaneously valid. 

Proof. Let us suppose that Uj e 0\ Oj and Uj e 0\0i for some Ui Uj 6 0. 
Let us consider an arbitrary feasible solution (m,o). We have to distinguish three 
cases. 

Case 1. (m,o) does not contain Uj. Then, (m,o) is a subset of (Mi,Oi), and 
thus, by our assumption, (m,o) does not contain iij. 

Case 2. (TO, o) does not contain Uj. In this case, (m,o) is a subset of (M. ; ,07), 
and hence, by our assumption, (m,o) does not contain Uj. 

Case 3. (m,o) contains both u, and Uj. 
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Since there is no further case, we have proved that ui = Uj. 

In order to prove the necessity of the condition, let us suppose that Uj = uj 
for some itj ^ Uj £ 0 . Let us consider the structural models M(itj) and M(uj ) . 
Then, ( M j , O j ) is the union of those feasible solutions which do not contain uj 
provided that there exists such a feasible solution. Since itj = Uj none of these 
feasible solutions contains Uj. Consequently, their union does not contain Ui, i.e., 
Ui £ 0\0j. We can obtain by a similar argument that Uj £ 0\0i. If every feasible 
solution contains Uj, i.e., Oj = 0, then from ut = Uj, it follows that every feasible 
solution contains ui as well, and thus Oj = 0, and the corresponding inclusions are 
obviously valid. 

From Theorem 3, we get immediately the following corollary. 

Corollary. If Oj = O \ {'Uj}, then Uj is not mergeable with any other operating 
unit. 

Now, by Theorem 3 and the Maximal Structure Generation algorithm, we obtain 
the following procedure to determine the required equivalence relation where it is 
assumed that O = { « i , . . . , un } . 

Procedure 

Initialization 

• Step 1. Set i := 1, k := 1, N = { l , . . . , n } . 

• Step 2. Determine the maximal structure of M(ttj) by the maximal structure 
generation algorithm. If Oj = O \ {«¿} , then let Vk = {«,;}, N — N \ {«'}, 
k = k + 1. Proceed to Step 3. 

• Step 3. If i = n, then proceed to Step 4. Otherwise, let i = i +1, and proceed 
to Step 2. 

• Step 4- Terminate ii N = Otherwise, let i denote the smallest element of 
N. Let J = {t: t £ N &cut £ O \ Oj}. Let V = 0, and proceed to Step 5. 

• Step 5. If J = 0, then let N = N \ {¿}, Vk = V U { « , } , k = k + 1, and proceed 
to Step 4. Otherwise, proceed to Step 6. 

• Step 6. Choose an element j from J. Let J = J \ { j } . I f £ O \ 0 7 , t hen 
\etV = VU {uj}, N = N \ { j } . Proceed to Step 5. 

As a result of this procedure, we obtain the equivalence classes belonging to the 
required equivalence relation as V\,..., . 

Regarding the merging reduction one can raise the following questions. 
(1) Does the merging reduction decrease the measure of practical problems or is 

it only a theoretical aspect? 



On Merging Reduction of the Process Network Synthesis Problem 259 

(2) Is the decrease of the measure able to balance the higher complexity of the 
operating units caused by the merging reduction with respect to the running times 
of the known procedures for solving PNS problems? 

Both questions were investigated empirically. The corresponding computational 
experiences and their results are presented in the following section. 

3 Empirical analysis 
The first empirical analysis is devoted to the estimation of the decrease of measure. 
More precisely, it was investigated that how large the decrease of the model size was 
in general. For this reason, we considered 1000 randomly generated PNS problems 
(for their generation cf. [11]), and for each problem, the maximal structure was 
determined, then the merging reduction was performed. Figure 1 shows the average 
numbers of the operating units in the initial problem, in the maximal structure, and 
in the problem after the merging reduction. Figure 2 presents the same information 
in percent. 

Operating units after the merging 

11,39 
Î9,37 -134,21 

I 
12,32 
—136,45 

45,05 

I 
• in i t ia l • Max.Struct. • Merging rad. 

Figure 1: Average number of operating units. 

As the results of the empirical analysis show, the merging reduction results in 
a decrease of 7% in general. It is obvious that the price of this decrease is that 
the new problem will be more complex than the initial one, namely, the operating 
units will have more input and output materials. Therefore, it is interesting to 
study the behaviours of the available procedures for solving PNS problems on the 
problems obtained by merging reduction. For this reason, we executed the follow-
ing empirical investigation. Three procedures, the Accelerated Branch-and-Bound 
Algorithm, ABBA in short (see [8]), the Modified Accelerated Branch-and-Bound 
Procedure, in short MABBA (cf. [9]), and a version of the Refined Modified Ac-
celerated Branch-and-Bound Procedure, in short RMABBA [11] were involved in 
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Operating units after the merging 

Operating 

• Merging red. nMax Struct DMtlal 

Figure 2: Average number of operating units in percent. 

the empirical analysis. 1000 PNS problems with 100 materials were generated ran-
domly, and for each of them the maximal structure was determined and the merging 
reduction was performed as well. Then, the two problems (problem belonging to 
the maximal structure and problem obtained by the merging reduction) were solved 
by the three procedures considered. Figure 3 shows the averages of the running 
times in percent for the different procedures. 

Running t imes after the m e r g i n g 
Time <%) 

100 

60 

40 

20 

0 

• Maximal structure • M e r g e d s t ructure 

Figure 3: Behaviours of the procedures. 

86,59 

67,76 68,86 

-

1 
A B B A M-ABBA M-ABBA 

l in ,rat Mlxb. rat 

Conclusions. The empirical analysis shows that the merging reduction is ap-
propriate to get further reduction of the model, moreover, the higher complexity of 
the operating units not necessarily implies longer running time for the procedures 
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considered. The smaller measure of the PNS problem resulted in a smaller running 
time for the procedures investigated even if the complexity of the operating units 
became higher. 
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