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Abstract 
There is no algorithm for the calculation of optimal fixed polarity expan-

sion. Therefore, the efficient calculation of polarity matrix consisting of all 
fixed polarity expansion coefficients is very important task. We show that 
polarity matrix can be generated as convolution of function f with rows of 
relates transform matrix. The recursive properties of the convolution matrix 
affect to properties of polarity matrix. In literature are known some recur-
sive algorithms for the calculation of polarity matrix of some expressions for 
Multiple-valued (MV) functions [3,6]. We give a unique method to construct 
recursive procedures for the polarity matrices calculation for any Kronecker 
product based expression of MV functions. As a particular cases we derive 

• two recursive algorithms for calculation of fixed polarity Reed-Muller-Fourier 
expressions for four-valued functions. 

1 Introduction 
Compact representation of switching functions is not only the mater of notation 
convenience, but highly relates to the analysis and synthesis of these functions. 
Both analysis and synthesis procedures, as well as final realizations, can be greatly 
simplified by choosing appropriate representations of switching functions. 

In the case of Reed-Muller (RM) expressions, the problem to determine the 
most compact representation reduces to the determination of optimal polarity for 
switching variables. By choosing between the positive or negative literals for each 
variable, but not both at the same time, the Fixed polarity R,M (FPRM) expressions 
are defined [5]. 

In a FPRM, the number of products, or equivalently, the number of non-zero 
coefficients may be considerably reduced by choosing different polarities for the 
variables. The FPRM with the minimum number of products is taken as the 
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optimal FPRM for / . If there are two FPRMs with the same number of products, 
the one with the smaller number of literals in the products is taken. 

There is no method to determine apriori the polarities of variables for a given 
function f . In practice, it is necessary to generate all the FPRMs and chose the 
optimal one. That can be efficiently done by generating the polarity matrices PRM 
whose rows are RM-coefficients for the given / with different polarities of variables. 
The efficiency of generation of PRM is based upon its recursive structure originating 
in the Kronecker product representation of the RM-transform matrix. 

Polynomial representations of Multiple-valued (MV) functions are very interest-
ing with advent of multiple-valued circuit technology, in particular recent experi-
ence with current-mode circuits that are very attractive for implementation of MV 
functions. Specially, the realization of the corresponding 4-valued circuit is very 
efficient. The problem of compact representations is even harder in the case of MV 
functions. Galois field (GF) expressions are a generalization of RM-expressions to 
MV case [7]. Optimization of GF-expressions. can be studied and solved in a way 
similar to that used for RM-expressions. In particular, efficient methods for genera-
tion of polarity matrices Pgf for GF-expréssions of ternary functions are reported 
in [6], while the corresponding methods for quaternary functions are reported in 
[3], and further elaborated in [1], [2], [4]. 

Reed-Muller-Fourier (RMF) expressions are an alternative extension of RM-
expressions to MV case [8]. It has been shown that RMF-expressions require on 
the average smaller number of products than GF-expressions to represent a given 
function / [9]. The optimization of RMF-expressions is performed in the same way 
as in the GF-expressions by choosing different polarities for the variables. As in 
the case of RM and GF-expressions, there are no mëthods to determine apriori 
the polarity for the variables in a given / to get the RMF-expression with the 
minimum number of products. For that reason, the efficient calculation of polarity 
matrices is a very important task. An analyse of present recursive methods for 
calculation of polarity matrix for some particular expressions shows that recursive 
approaches are more efficient than others methods. Therefore, the construction of 
recursive relations for polarity matrix calculation for various expressions are a very 
interesting problem. 

In this paper, we uniformly consider the coefficients in various expressions for 
logic functions as spectral coefficients in particular spectral transforms. We show 
that polarity matrix can be generated as convolution of / with columns of related 
transform matrix. The recursive properties of the polarity matrix result from prop-
erties of the convolution matrix. We give a unique method to construct recursive 
procedures for the polarity matrices calculation for any Kronecker product based 
expression of MV functions. 

This method involves existing methods as a particular cases and permits various 
generalizations. For illustration, we derive two recursive algorithms for calculation 
of fixed polarity Reed-Muller-Fourier expressions for four-valued functions. 
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2 Notations and Definitions 
Definition 1 Let E(ij) be the set of integers modulo q. n-variable q-valued logical 
function is mapping 

f : E(g)" E(g). 

Definition 2 Each n-variable q-valued logical function f can be represented in 
polynomial form 

/(Xi,...,Xn) = Co ffi C\Xn © C2X?n © . . . © Cg-iX^1 ffi CqXn-i 

^n^n— 1 © ... © Cqn —lXnXn—i . . . X\. 

The coefficient vector C, consisting from the coefficients Ci,i = 0 , . . . , q n — 1 
can be calculated as direct transform of function / , given by its truth vector F = 
[ / ( 0 ) , . . . , / ( i n - l ) ] T i . e . 

C = ( c 0 , c i ) . . . , c 9 »_ i ) = T n F = ^ 0 T i ^ - F 

.= ( ® [ 1 x? ... x f 1 -F , (1) 

where with is denoted the inverse matrix and ® denotes Kronecker product. T „ 
is transform matrix. 

The number of non-zero coefficients in vector C is usually used criteria of opti-
mality. Optimization can be made by using different polarities of variables. 

Definition 3 i-th polarity of variable x in notation %x is defined as: %x= x(Bi,i = 
0,..., q — 1, for q-valued functions. 

If each literal Xi in expansion (1) have complemented or noncomplemented form 
but not both this expansion is named fixed polarity expansion. For n-variable q-
valued function the number of different polarities is qn. 

Theorem 1 For polarity k — (ki,..., kn) (< k >= ^¿Li kiqn~l), the coefficient 
vector can be calculated as-[6]: 

C<k> =T< f c > - F = j(g)T[ fci ) J F, (2) 

where is the matrix Ti whose that columns are shifted for ki places in accord-
ing to the definition of operation ffi. 

Example 1 Let f is two variable function on Galois field GF(3). The operations 
• and ffi are multiplication modulo 3 and addition modulo 3 respectively. < k > 
polarity expansion coefficient vector of f is given as: 

C < k > = . p 
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If < k >—< 7 > then c<7> is calculated as: 

Tf1 = 

T ( D 

0 0 0 
0 1 1 
0 2 1 

0 0 1 
2 1 0 
2 2 2 

T x = 

T ( 2 ) = 

1 0 0 
0 2 1 
2 2 2 

0 1 0 
1 0 2 
2 2 2 

„<7> _ T(2) ) F \ 

0 1 0 " 0 0 1 " 
1 0 2 € 2 1 0 • 

2 2 2 2 2 2 
0 0 0 0 0 1 0 0 0 
0 0 0 2 1 0 0 0 0 
0 0 0 2 2 2 0 0 0 
0 0 1 0 0 0 0 0 2 
2 1 0 0 0 0 1 2 0 
2 2 2 0 0 0 1 1 1 
0 0 2 0 0 2 0 0 2 
1 2 0 1 2 0 1 2 0 
1 1 1 1 1 1 1 1 1 

• F . 

Lemma 1 The coefficient vector of polarity < p > can be calculated as 

C < P > = T < p > F = - ( g ) ! ^ j • F = T n • F < p > = T n • F < P l ,P2 ,...,pn> 

1 
= • T „ • F.(a;i ®P2,x2 ©P2,- • • ,xn ®pn). (3) 

Example 2 Let f is the two variable 3-valued function defined on GF(3) and 
represented by truth vector F = (122010210). The vector c<7> can be calculated as 

= T i ^ cg> T Y ' • F J 

" 0 0 0 0 0 1 0 0 0 ' ' 1 " " 0 " 
0 0 0 2 1 0 0 0 0 2 1 
0 0 0 2 2 2 0 0 0 2 2 
0 0 1 0 0 0 0 0 2 0 2 

F T = 2 1 0 0 0 0 1 2 0 1 = 2 
2 2 2 0 0 0 1 1 1 0 1 
0 0 2 0 0 2 0 0 2 2 1 
1 2 0 1 2 0 1 2 0 1 2 
1 1 1 1 1 1 1 1 1 0 0 



Recursive Algorithms for Polarity Matrices Calculation 267 

„ < 7 > = T 2 F < 7 > _ 

1 0 0 0 0 0 0 0 0 
0 2 1 0 0 0 0 0 0 
2 2 2 0 0 0 0 0 0 
0 0 0 2 0 0 1 0 0 
0 0 0 0 1 2 0 2 1 
0 0 0 1 1 1 2 2 2 
2 0 0 2 0 0 2 0 0 
0 1 2 0 1 2 0 1 2 
1 1 1 1 1 1 1 1 1 

atrix P of an n -variable 
f(xi,x-2, • • •, xn) is a (qn x qn) matrix where every row matches a coefficient vector 
in a different polarity < k >. i-th row corresponds to a coefficient vector in the 
< i >-th polarity, i.e., c<l>. 

Definition 5 The optimal polarity of junction f{x i,x2,...,xn) is defined as po-
larity kopt whose coefficient vector has the minimal number of nonzero elements. 

Example 3 The polarity matrix of a two variable quaternary function f , given by 
truth vector F = (0311132322321002) is given as 

P = 

0 3 1 3 1 1 2 ' 2 0 3 2 2 2 2 2 2 c<o> 
3 2 2 1 0 3 0 2 1 1 0 2 0 0 0 2 c<i> 
1 0 1 1 1 3 2 2 0 1 2 2 0 0 2 2 f . <2> 

1 3 0 3 2 1. 0 2 3 3 0 2 0 2 0 2 c < 3 > 

1 2 3 1 1 2 0 0 2 1 0 0 2 0 2 2 c < 4 > 
3 3 2 3 3 2 0 0 1 1 0 0 2 2 0 2 c < 5 > 

2 1 3 3 1 2 0 0 0 1 0 0 0 2 2 2 c < 6 > 

3 2 0 1 3 2 0 0 3 1 0 0 2 0 0 2 c < 7 > 

2 0 3 1 3 1 0 0 0 1 2 2 2 2 2 2 c < 8 > 

2 1 2 3 2 1 0 0 3 3 0 2 0 0 0 2 C<°> 

3 3 3 3 1 1 0 0 0 3 2 2 0 0 2 2 c < 1 0 > 

2 0 0 1 0 1 0 0 1 1 0 2 0 2 0 2 C<11> 
1 3 3 1 3 0 2 2 2 3 0 0 2 0 2 2 r d 2 > 

0 0 2 3 3 2 0 2 3 3 0 0 2 2 0 2 c < 1 3 > 

0 2 3 3 1 2 2 2 0 3 0 0 0 2 2 2 c < 1 4 > 

2 3 0 1 3 0 0 2 1 3 0 0 2 0 0 2 c < 1 5 > 

3 Convolution 
Definition 6 Convolution of n-variable q-valued logic functions f and g is defined 

<7n-i 

/ * S O O = J2 f(x"> ' 0{x(Bs), s = 0 , 1 , - 1, 
2 = 0 
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/ * . 0 ( s i , - " , s n ) = 

x = 

9-1,9-1,-,9-1) 
f(xi> ' ' ' 'xn) • 9ÍX1 © S i , " • jZn © Sn), 

x=(0,0,—,0) 
n 

( s i , S 2 , • • • , s „ ) , 
i= 1 

n 

(x ' i , X'2, , — ^ ^ X{ • (] 
i=l 

Operations © and - are defined on corresponding algebraic structure. 

The convolution matrix is given as: 

<7(0 ©0) 
s(oei) 

.9(1 © 0) 
© 1 ) 

< 7 ( ( 9 n - l ) © 0 ) 
g((qn - 1) © 1) 

• (4) 
<7(0 © (g" - 1)) g(l © (qn - 1)) ••• g{{qn - 1) © (qn - 1)) 

Now, the convolution of / and g, in according to (4) can be write in form 

/ * 9 = Gconv • f. (5) 

Theorem 2 Convolution of k-t.h row in transform matrix tk, with function vector 
F gives the vector of k-th coefficients in polarity matrix i.e. P* — tk* F. 

The proof of theorem can be done from the structure of convolution matrix. 
Proof: 

Pn = 

C ( 0 ) 

C ( l ) 

T„ • F<°> 
T n • F (1 ) 

Tn • F^"" 1 ' 

E j ' = 0 T » ( ° . i ) F ( j © o ) 

E , C Ô 1 t » ( ° . j ) f ( J © 1 ) 

p o p i . . . ] _ 

E U ' T n í d l , j ) F ( j © 0 ) 
E C ' W - I . j W J ® ! ) 

E^o1 - i, j)F(i © qn - i) 

where 

P* = [Pfc(0), Pfc(l), • • • ,Pfc(gn — 1)] , k = 0, 1. 
9 n - l 

PA(¿) = Y , Tn( fc , j )F( j© 2), ¿ = 0,- •.,qn- 1. 
j=o 
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It follows from equation (4) 

Pfc = T^ * F. 

Example 4 Tenth column from polarity matrix for function f from example 3 can 
be calculated as convolution of tenth row in transform matrix and truth-vector F; 

" 3 ' " 0 " 3 " 
1 3 1 
0 1 1 
0 1 
2 1 1 
2 3 1 
0 2 1 
0 
3 

* 
3 
2 = A + B = 

1 
1 

1 2 3 
0 3 3 
0 2 1 
0 2 3 
0 0 3 
0 0 3 
0 2 3 

where 

" 3 0 + 1 3 + 0 1 + 0 1 + 2 1 + 2 3 + 0 2 + 0 3 
3 3 + 1 1 + 0 1 + 0 0 + 2 3 + 2 2 + 0 3 + 0 1 
3 1 + 1 1 + 0 0 + 0 3 + 2 2 + 2 3 + 0 1 + 0 3 
3 1 + 1 0 + 0 3 + 0 1 + 2 3 + 2 1 + 0 3 + 0 2 
3 1 + 1 3 + 0 2 + 0 3 + 2 2 + 2 ,2 + 0 3 + 0 2 
3 3 + 1 2 + 0 3 + 0 1 + 2 2 + 2 3 + 0 2 + 0 2 
3 2 + 1 3 + 0 1 + 0 3 + 2 3 + 2 2 + 0 2 + 0 2 
3 3 + 1 1 + 0 3 + 0 2 + 2 2 + 2 2 + 0 2 + 0 3 
3 2 + 1 2 + 0 3 + 0 2 + 2 1 + 2 0 + 0 0 + 0 2 
3 2 + 1 3 + 0 2 + 0 2 + 2 0 + 2 0 + 0 2 + 0 1 
3 3 + 1 2 + 0 2 + 0 2 + 2 0 + 2 2 + 0 1 + 0 0 
3 2 + 1 2 + 0 2 + 0 3 + 2 2 + 2 1 + 0 0 + 0 0 
3 1 + 1 0 + 0 0 + 0 2 + 2 0 + 2 3 + 0 1 + 0 1 
3 0 + 1 0 + 0 2 + 0 1 + 2 3 + 2 1 + 0 1 + 0 0 
3 0 + 1 2 + 0 1 + 0 0 + 2 1 + 2 1 + 0 0 + 0 3 
3 2 + 1 1 + 0 0 + 0 0 + 2 1 + 2 0 + 0 3 + 0 1 
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3 2 + 1 2 + 0 3 + 0 2 + 0 1 + 0 0 + 0 0 + 0 2 " 
3 2 + 1 3 + 0 2 + 0 2 + 0 0 + 0 0 + 0 2 + 0 1 
3 3 + 1 2 + 0 2 + 0 2 + 0 0 + 0 2 + 0 1 + 0 0 
3 2 + 1 2 + 0 2 + 0 3 + 0 2 + 0 1 + 0 0 + 0 0 
3 1 + 1 0 + 0 0 + 0 2 + 0 1 + 0 0 + 0 3 + 0 1 
3 0 + 1 0 + 0 2 + 0 1 + 0 0 + 0 3 + 0 1 + 0 0 
3 0 + 1 2 + 0 1 + 0 0 + 0 0 + 0 1 + 0 1 + 0 3 
3 •2 + 1 1 + 0 0 + 0 0 + 0 2 + 0 1 + 0 0 + 0 1 
3 0 + 1 3 + 0 1 + 0 1 + 0 0 + 0 1 + 0 3 + 0 3 
3 3 + 1 1 + 0 1 + 0 0 + 0 3 + 0 3 + 0 2 + 0 1 
3 1 .+ 1 1 + 0 0 + 0 3 + 0 1 + 0 2 + 0 3 + 0 3 
3 1 + 1 0 + 0 3 + 0 1 + 0 1 + 0 3 + 0 1 + 0 2 
3 1 + 1 3 + 0 2 + 0 3 + 0 2 + 0 2 + 0 3 + 0 2 
3 3 + 1 2 + 0 3 + 0 1 + 0 2 + 0 3 + 0 2 + 0 2 
3 2 + 1 3 + 0 1 + 0 3 + 0 3 + 0 2 + 0 2 + 0 2 
3 3 + 1 1 + 0 0 + 0 2 + 0 2 + 0 2 + 0 2 + 0 3 . 

4 Calculation of the Polarity Matrix 
The polarity matrix can be calculated directly with equation (2). The complexity of 
this direct method is (<7n)3 i.e. practically unuseful for large q. For the calculation 
of polarity matrix can be used the FFT-like method. The complexity of this method 
is n(qn)2. In [3,6] is shown that the polarity matrices can be generated efficiently 
by recursive relations. Proposed procedure is given only for GF(3) "recursion by 
column" and "recursion by row" for GF(4). In this section, we give the unique 
method for the generation of recursive relations for the calculation of polarity matrix 
for arbitrary finite fields. Both "recursion by columns" and "recursion by rows" 
are considered. Our method is generalization of methods proposed in [3] and [6]. 

4.1 Unique method for the generation of recursive relations 
for the polarity matrix construction 

If we have in mind that transform matrix is given in Kronecker product form, the 
next theorem is obviously. 

Theorem 3 Let T(n) is transformation matrix given as: T(n) = Tj where 
the dimension of matrix Tj is qi * qi • Element from p row and r column C ' < i n 
polarity matrix P is given as: 

. ' « ¡ - l 
C<P> _ p<Vl,P2, •••,P.V",Pn> _ ITI./ 1\ . r > < P l , P 2 , ••,1, -,Pn> • _ 1 ... 
^ < r > — °<ri,r2,•••,)•;,•••,r„> — ¿_J ° < r i , r 2 ) —,0, — , r „ > ' 1 ~~ 1 ' ' " 

1=0 

If T j = T j , V i . j e { 1 , 2 , - - . , « } then 
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r<<P> — n<V\ o < r > — o < r i 

or in matrix form 

,v 2,-
r2,-

;P n> E ^ - ' i ' C P2, 
- ,r„> > i = 1, 

1=0 

P — Pq n X (7" (n) = [p^Hhj)}, p^iij) 
9 - 1 
y£T(j,i)-P

n-\i(ôi]o), j ^ o. (6) 
1=0 

This relation is recurrence by columns. ¿From recurrence relation (6) by first 
columns where we start from the first column i.e. 0-column it can be derived 
recurrence matrix relation started from any column fc. Derived recurrence matrix 
relation we called "recurrence by k-th column". Recurrence by fc-th column can 
be derived if we each element in fc-th column from (6) denote with one letter and 
calculate relations. In this manner can be calculated "recurrence by fc-th row", too. 

The formal method for construction recurrence matrix relation for polarity ma-
trix calculation may be presented through following steps: 

1. The generation of q x q simbolic matrix B as B = [B2®-7] , 0 < i, j < q — 1. 

2. The generation of q x q matrix Q = T - 1 • B. 

3. If it wish the recurrence by fc-th column/row, the elements from fc-th col-
umn /row are substituted with one letter Pl, 0 < i < q — 1 . These substitu-
tions give equations system consisting of q equations. 

4. Solving the generating equations system. 

5. The modification of the matrix Q in according to the solutions of previous 
equation system. 

6. The substitution Q with Pn and P* with P^-i • 
This method can be generalized to the case when matrices T, are different, e.i. 

T n — Ti ^ T j if i / j. In this case, it is not possible to generate 
polarity matrix by only one recurrence matrix equation. The polarity matrix can 
be generated by means n recurrence matrix equations similar to the above matrix 
equations. For each of n steps, we generate recurrence matrix relations based on 
the matrix Tj. Namely, we run above method n.times, substituting Tj"1 with 
T~2 , 1 < z < n . Obviously, dimensions of matrices B and Q are equal Çj x </j. This 
will be illustrated in following example. 

Example 5 Let T = Ti ® T2, Ti = 1 0 
1 1 T f 1 = 

1 0 
1 1 

T2 = 

1 0 0 0 
1 1 1 1 
1 2 3 1 
1 3 2 1 

T i " = 

1 0 0 0 
0 1 3 2 
0 1 2 3 
1 1 1 1 
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The recurrence matrix equations are: 

pO pO , pi 
1 n — 1 n — 1 T Tl — i 

Pn-l Pn-l+Pn-1 
r P„°_. PU + 3P*_i + 2 PL 1 P1 + 2 PL i + 3 PL i s -

P2 — PÎ-! PU + 3 PLi + 2P„°_i P2 1 1i — 1 + 2P,?_i + 3P°_i s Pfl - PL i + 3 Pn°_: + 2P,Î_, p3 1 Tl — 1 + 2Pn0_! + 3Pn-l s 
. P„3-. + 3 PLi + 2 PLi pO n — 1 + 2PLi + 3 PL 1 s 

where 

S = P ° _ 1 + P ? _ 1 + P „ 2 _ 1 + P n 3 _ 1 . 

Proposed above method we explain in next section for the case of polarity matrix 
of Reed-Muller-Fourier expression of quaternary functions. 

5 RMF-expressions for Quaternary Functions 
To make the paper self-contained, we present in this section basic definitions for 
RMF-expressions for quaternary functions. Then, we consider their optimization by 
choosing different polarities for variables. It is assumed single polarity for a variable 
in the expression. In that way the Fixed polarity RMF (FPRMF) expressions are 
defined. 

Let E(4) be the set of integers modulo 4 with the .addition and multiplication 
modulo 4 shown in Table 1 and Table 2. • 

Table 1: Addition modulo 4. Table 2: Multiplication modulo 4. 

© 0 1 2 3 0 1 2 3 
0 0 1 2 3 0 0 0 0 0 
1 1 2 3 0 1 0 1 2 3 
2 2 3 0 1 2 0 2 0 2 
3 3 0 1 2 3 0 3 2 1 

Define the exponentiation 4EXP and multiplication 4AND, denoted by * and 
o , respectively, as in Table 3 and Table 4. Denote by J the space of ?i-variable 
quaternary functions, i.e., / : E(4)'1 E(4). 

Definition 7 The operator D(n) in J is defined, in the matrix notation, by a 
(4n x 4") diagonal matrix given by D(n) = diag(3,1, • • •, 1). 

Definition 8 RMF-expression of a function / £ J given by its truth-vector F = 
[/(0), • • -, / ( 4 " x 4n)]T is given by [9] 
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Table 3: Exponentiation 4EXP. 

* 0 1 2 3 
0 3 0 0 0 
1 3 1 0 0 
2 3 2 3 0 
3 3 3 1 1 

Table 4: Multiplication 4AND. 

o 0 1 2 3 
0 0 0 0 0 
1 0 3 2 1 
2 0 2 0 2 
3 0 1 2 3 

f(xir--,xn)=\B(n)\^[l Xi x? xfYJj-A, (7) 

where A = [o(0),..., a(4n — 1)]T is the vector of RMF-coefficients determined by 
the matrix relation 

A = R(n) • F, 

where 

R - H = S ^ L i R i , R j = 

1 0 0 0 
1 3 0 0 
1 2 1 0 
1 1 3 3 

In this relation, <g> denotes the Kronecker product and x*3, j £ {2,3} denotes 
the j-th power of Xj with respect to 4EXP. 

In (7), the addition and multiplication are performed modulo 4. 

6 Fixed Polarity RMF-expressions 
Similarly as for RM-expressions for switching functions, and GF-expressions for 
MV functions, optimisation of RMF-expressions means reduction of the number 
of products, i.e., the number of non-zero RMF-coefficients. As noted above, the 
optimisation of RMF-expressions is possible if we use different polarities for the 
variables. For a p-valued variable, we consider p — 1 complements defined by %x = 
x © i, i e {1, • • • ,p — 1}. Thus, in a FPRMF-expression, a variable can appear as 
the positive literal x^ or any of p — 1 negative literals %x , but not as few of them at 
the same time. Therefore, there are pn different polarity FPRM-expressions for a. 

1— 2 — 3— 
given n-variable function / . For p = 4, the complements 3X6 X } CE . x , and thus, 
there exist 4n different FPRMF-expressions for a quaternary function f . These 
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different possible FPRMF-expressions are determined through the polarity vector 
H = (/ij, • • •, /in), where the value of hi € {0,1,2,3} determines polarity of the 
literal chosen for the variable xt. 

Definition 9 For / € J given by the truth-vector F ; the FPRMF-expression with, 
the polarity vector H = (h.\, • • •, hn) is given by 

/ (*! ,•••,*») = ( d h ( ® [ I v , v ; 2 v ; 3 ] ) ) (8) 

where R,'1' is derived from Rj by the cyclic shift of its columns for hi places. Thus. 

R ? = R I = 

R? 

1 0 0 0 " 
1 3 0 0 
1 2 1 0 
1 1 2 3 
0 0 1 0 " 
0 0 1 3 
1 0 1 2 
3 3 1 1 

, R{ = 

, R 3 = 

0 0 0 1 
0 0 1 
1 0 1 
3 3 1 

0 1 0 0 
0 1 3 0 
0 1 2 1 
3 1 1 3 

Example G The zero-polarity FPR.MF-expression (H = [0,0]) for two-variable 
function f , given by the truth vector F = [0311132322321002]r is 

f = 3x2 8 X*2- © 3^2 © -T1 © X1 ° x2 © 2xl 0 X2~ © 2X] O X*/ © 3Xj" O X-2 0 
(8)2xf o xf © 2xf o xf © 2xf © 2xj3 o x2 © 2xf ° x f © 2x*3 o xf. 

Definition 10 For a given f £ J, the FPRMF-expression with the minimum num-
ber of non-zero coefficients is the optimal FPRM-expression for f. 

Example 7 The optima,I polarity RMF-expression for function f in Example G 
corresponds to the polarity vector H = [2,3], and is given by. 

3 - * 3 2 - 3 - 2 - * 2 2 - * 2 3— 2 — *~ 
f - 2© X 2 © x ] O X 2 © X í © X J O X 2 ©2 X j O X 2 

©2 "x ! O X 2 ©2 ~x\ o 'x 2 . 

7 RMF-polarity Matrix 
Similarly as in RM and GF expressions, an efficient way to determine the optimal 
polarity FPRMF-expression for a given function / is to calculate first the corre-
sponding polarity matrix. Therefore, in this section we define polarity matrix for 
FPRMF-expressions for quaternary functions. 
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Definition 11 The RMF polarity matrix PRMF for f 6 J is a (4ra x 4n) matrix 
whose the i-th row consists of the coefficients in the F PRMF-expression for f , for 
the polarity vector H = [ii, • • • ,in] where (ji, - • • ,in) is the quaternary representa-
tion of i. 

Example 8 The RMF polarity matrix for function f in Example 6 is given by 

RMF = 

0 3 1 3 1 1 2 2 0 3 2 2 2 2 2 2 
1 2 2 1 0 3 0 2 1 1 0 2 0 0 0 2 
3 0 1 1 1 3 2 2 0 1 2 2 0 0 2 2 
3 3 0 3 2 1 0 2 3 3 0 2 0 2 0 2 
3 2 3 1 1 2 0 0 2 1 0 0 2 0 2 2 
1 3 2 3 3 2 0 0 1 1 0 0 2 2 0 2 
2 1 3 3 1 2 0 0 0 1 0 0 0 2 2 2 
1 2 0 1 3 2 0 0 3 1 0 " 0 2 0 0 2 
2 0 3 1 3 1 0 0 0 1 2 2 2 2 2 2 
2 1 2 3 2 1 0 0 3 3 0 2 3 3 3 2 
1 3 3 3 1 1 0 0 0 3 2 2 0 0 2 2 
2 0 0 1 0 1 0 0 1 1 0 2 0 2 0 2 
3 3 3 1 3 0 2 2 2 3 0 0 2 0 2 2 
0 0 2 3 3 2 0 2 3 3 0 0 2 2 0 2 
0 2 3 3 1 2 2 2 0 3 0 0 0 2 2 2 
2 3 0 1 3 0 0 2 1 3 0 0 2 0 0 2 

8 Calculation of RMF Polarity Matrix 
Harking and Moraga in [6] gave a method for the calculation of polaxity matri-
ces PGF for GF-expressions of ternary functions. Their method starts from the 
truth-vector F of / . Unlike to that, Falkowski and Rahardja proposed method for 
calculation of polarity matrices PGF for GF-expressions of quaternary functions 
starting from zero-polarity GF-expression coefficients vector [3]. In this section, 
we give two recursive methods for FPRMF polarity matrix calculation. The first 
method, named "recursion by columns", starts from the truth-vector F while the 
other named "recursion by rows", starts from the zero-polarity RMF-coefficient 
vector A. 

Recursion by columns 

Now, we will construct the recurrence matrix relation for RMF polarity matrix 
calculation using proposed formal method. First, we define matrix B. 

Definition 12 For an n-variable quaternary function f(x\,x-2, • • • ,xn) the (4" x 
4") matrix B is defined as B = [JB1®-7], where © is the operation addition modulo 
4• 
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B 

' B° B1 B2 B3 ' 
B1 B2 B3 B° 
B2 B3 B° B1 

B3 B° Bl B2 

Based on matrix B we generate the recursive square matrix Q, 

Qn = ( R f B)3 ' = 

B° 
B1 

B2 

B3 

1 
1 
1 
1 

B° + 3 B1 

B1 + 3 B2 

B2 + 3 B3 

B3 + 3 B° 

B° 
B1 

B2 

B3 

B1 

B2 

B3 

B° 

B2 

B3 

B° 
Bl 

B3 

B° 
B1 

B2 

B° + 2 B1 + B2 

B1 + 2 B2 + B3 

B2 + 2B3 + B° 
B3 + 2B° + B1 

B° + B1 + 3 B2 + 3B3 

B1 + B2 + W3 + 3 B° 
B2 + B3 + 3B° + 3 B1 

B3 +B° + W1 +3 B2 

QL1 Q°n-i + w13 

QL 1 QL 1 + 3 QLi w23 w2i 

QL 1 QL 1 + 3 QLi w33 W34 
QLi QL 1 + 3 QLi w43 W44 

(9) 

where 

W13 

T'̂ 23 
"Ql 
--QI 

^33 = QVI + 2<5; 
w 4 3 = Q3 . + 

.1+2 Q 11— 1 ' ^n-1 ' 

.l + 2Q2n_1 + Ql_1, 
.i+Q°n-i, 
l + Qn-1> 

n 
i~ + 2Q° 

= QLi + g1 _i + 3QÎU + 3Qn-], 
^24 = Qi-! + g?,_! + 3Q 3 _ ! + 3 0 ° . ! , 
W34 = Ql , + 0?, , + 302 , + 30.1. ,. 

- ! -r o v „ _ 
-1 -t- + 3Q3 _1 + 3Q°_ 

M/34 = + Q'Li + 3Q°_j + 3Ql_ 
w44 = Q3_i + Q°_i + 3 Q U + 3Q 2_ 

In this equation, Q ^ ^ {i = 0,1,2,3) is a square matrix, which is one order lower 
than the matrix Qn. 

Now we rewrite equation (9) in the usually used form [1,2,3,6]. 
Assume that the truth-vector F of / £ J is split into 4 subvectors of 4 n _ l 

successive elements 

F = {F[n_ l i 0 ] ,F[n_ l i l ] ,F[n_ l i2] ,F[„_ l i3]} . 

Then, based 011 (9) RMF polarity matrix PRMF for quaternary functions can be 
calculated by recursive method named "recursion by columns", given in Theorem 
4. 

Theorem 4 The polarity matrix PRMF for f £ J can be calculated as 

P RMF = Qn(F). 

Qk, k = 1,... ,n is determined by the following recurrence matrix relations 
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Qfc(F[M) 

where 

W13 

W23 
w 2 4 

w 3 3 

W34 

w 4 3 

w 4 4 

Qjfc-i(F[fc_li0] Qk-i(F[k-i,o]+3F[k_ul]) W13 W14 

Q*-i(F[fc-i,i] Q*-i(F[ft-i,i] +3F [Jfc_ l i2]) W23 w24 

Q*-i(F[fc_i,2] Qfc-i(F [t_i i2]+3F [Jfc_ l i3]) ^33 W34 
Q*-i (F [ f c_ l i 3 ] Qfc-i(F [ J t_ l i 3 ]+3F [ f c_ l i 0 ]) W43 W44 

Qfc-i(F[fc_lio] + 2F [ f c_ l i l ] + F[fe-i,2])j 
Qfc-i(F[fc_i>0] + + 3F[fc_li2] + 3F[fc_ii3], 
Qk- i (F{ k - 1 A ] +2F[ fc_i )2] +F[ f t_i )3]), 
Qfe-i(F[t_i,i] + F(fc_i,2] + 3F[fc_i;3] + 3F[fc_i)0], 
Qfe-i(F[A;-i,2] + 2F[fc_1>3] + F[fc_lj0]), 
Qfc-i(F[fc_i)2] + F [A;—1,3] + 3F[fc_li0] + 3F[fc_lil], 
Qfc-i (F[jfc-i,3] + 2F[fc_li0] + F[Jfe_i,i]), 
Qfe-i(F[ft-i,3] + F[fc_it0] + 3F[fc_1>1] + 3F[fc_i,2]. 

(10) 

P r o o f : The proof follows from the Kronecker product structure of RMF transform 
matrix R ( n ) . Thanks to this structure, the columns of P R M F can be expressed as 
the convolution of f with the corresponding columns 0 / R ( n ) (Theorem 2). Then, 
the proof follows from the convolution properties of RMF-expressions [8]. 

We define three auxiliary vectors 

T [ f c _ 
• 1 . 1 ] = 3 F [ f c _ • 1 . 0 ] 

• 1 . 2 ] = 2 F [ f c _ •1,2] 
T [ f c _ •1,3] = 2 F f f c _ •1,3] 

Then, (10) can be written as 
Qfc-i(gn) 

Q* (F [M) 
Qfc-l(Ç2l) 
Qfc-l(?3l) 
Qfe-X (?4l) 

Qfc-1 (<?12) 
Qfc-1 fe) 
Qfc-l(?32) 
Qfc-1 fe) 

Qfc-i(?i3) 
Qfc-l(?23) 
Qfc-i (933) 
Qfc-1 fe) 

Qfc-i(gi4) 
Qfc-1 (924) 
Qfc-1 (?34) 
Qfc-1 (944) 

Qfc-i (F[fc_i)0]) 
Qfc-1 (F[fc_i,i]) 
Qfc-1 (F[fc_i,2]) 
Qfc-1 (F[fc_ij3]) 

Qfc-1 (?22 +Ç13) W13 W14 
Qfc-1 (932 + 923 ) ^ 2 3 W 2̂4 

Qk-1 (942 + 933) W33 W34 
q k - i (g« + T[Jb_i,ij) w4 3 w 4 4 

( i i ) 

where 

W-: 
W 1 3 = Q f c _ i (923 + 914) 

= Q f c _ i (921 + 941 + T[ fc_ 

W33 = Qfc-i (911 + 93i + T[Jt_ 
W43 = Qfc-i (933 + 914) 

1,2]) > 
1,3]) , 

w% 4 = Q f c - 1 (923 + 933), 

W 2 4 = Q f c - i (933 + 943), 

W34 = Qfc-i (913 +943), 
W44 = Qfc-1 (li3 + 923) • 
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The number of operations needed to calculate P RMF, is reduced significantly if we 
first calculate these auxiliary vectors T, and then the vectors that are arguments 
of the matrices Q t - i , as given in (11). 

Recursion by rows 

If we know the zero-polarity RMF-coefRcient vector A of / , then the RMF polarity 
matrix PRMF, tan be calculated through the following "recursion by rows" method, 
given in Theorem 5. This "recursion by rows" can be induced from (9) if we apply 
the 3-th, 4-th and 5-th step in proposed method for generation recurrence relations 
for polarity matrices calculation. 

Let the vector A of zero-polarity RMF-coefficients is split into 4 subvectors of 
4"""1 successive elements, i.e., 

A = {A[n_i>0], A^ - i^ j , A[n_ l i 2] , A[„_ l i 3 ] } . 

Theorem 5 The RMF polarity matrix PRMF for f £ J can be calculated as 

PRMF = Q» (A) , 

where the following recursive matrix relations are used for the calculation of 
Qfc, k = l,...,n: 

Q* ( A [ M ) 

• Q f c - i ( i i i ) . Q * - l ( i l 2 ) 
Q f t - i ( < 2 i ) Q f c - i ( i 2 2 ) 
Q f c - l ( ¿ 3 l ) Q t - l ( Í 3 2 ) 
Q f c - l ( ¿ 4 l ) Q f c - l ( Í 4 2 ) 

Q f c - i ( í i s ) Q t - i ( í i 4 ) 
Q f c - l ( ¿ 2 3 ) Q f c - l ( Í 2 4 ) 
Q k - Á h z ) . Q f c - i ( ¿ 3 4 ) 
Q f c - l ( ¿ 4 3 ) Q í t - l ( ¿ 4 4 ) 

(12) 

'where 
t íi = A[fc-i,o]i 
¿13 = A[fc_i)2], 
t'21 = A[¿._li0] + 3A[fc_li]], 
t'2'í = A[fc_1]2] +'3A[ fc_ l i3], 
¿31 = A [ fe—1,03 + 2A [ f e — 1 , 1 3 + A [fc-1,2], 
Í33 = 3A[ fc_ l i2j + 2A[fc_li3], 
<41 = A[fc_i,0] + A[fc_Xil] + 3A[&_1>2] 
+3A[fc_i i3], 
Í43 = 3A[A._ii2] + 3A[ f c_ i 3], ; 

¿12 = A[j(. _!_!], 
¿14 = A[fc_i]3], 
¿22 ='A[ f c_i ]1] + 3A[fc_i2], 
í24 = 2A[i._ii2] + A[fe_ii3], 
¿32 = A[fc_1]i] + 2A[fc_ii3] + A[ fc. 
¿34 = 3A[fc_ii3], 

1 , 3 ] . 

¿42 - A[fc_iilj + 3A[fc_ii2] + 3A[ fe_ l i3], 
¿44 = 2 A [ í . _ i i 2 ] -I- 3 A [ ¿ _ i i 3 j . 

Qfc(A[0j]) = A[0 j ] , j =0,1,2,3. 

Similarly to the "recursion by columns" method, the number of additions and 
multiplications can be reduced significantly if, instead (12), we use the following 
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Qfc-l(<7l4) 
Qfc-l(<7-24) 
Qfc-l (Ç34) 
Qft-l(?44) 

W\3 W14 

W23 w 2 4 

W 3 3 w 3 4 

W 4 3 W 4 4 

W13 = Ch-i (A [ f c_ l i 2 ]) , Wu = Qk-! (A [ f e_ l i3 ]) , 
W23 = Qfc-i (<713 + S[fc—1,3]) , W24 = Qfc-1 (<714 + Srft_i,2]) , 
W33 = Qfc-i (Q'23 + Q44), w34 = Qk-i (S[A._lj3j) , 
W43 = Qft_] (</13 + f/44) , = Qfc-l (S[fc_i,2] + S[fc-1,3]) , 

S[fc-•1.1] = 3A[fc_ •1.1] 
S[fc-•1.2] = 2A[fc_ •1,2] 

s [ f c -•1.3] = 3A[ fc_ 1,3] 
Calculation of the auxiliary vectors S precedes calculation of arguments in Q^-i 

like in the previous method. 

9 Calculation Complexity 
In this section, the efficiency of the presented methods for calculation of RMF 
polarity matrix is estimated through the number of operations required to calculate 
P R M F for a quaternary function. For comparison, we give the number of operations 
in the corresponding methods for GF-expressions. 

There are few methods to calculate the polarity matrix for GF-expressions of 
quaternary functions. A direct calculation by definition of P g f for GF-expressions 
of ?i-variable quaternary functions requires 11™ — 4" additions and § ( l l n — 5") 
multiplications [5]. In FFT-like algorithms proposed in [5], the number of addi-
tions and multiplications is 7n4n _ 1 and n4", respectively. The recursive algorithm 
proposed by Falkowski and Rahardja in [3] requires An — |(13n — 4") additions 
and Mn = |(3n - 1)4'1 multiplications. 

By the analogy to GF-expressions, we considered few ways to calculate the RMF 
polarity matrix. In a direct implementation of (6), the number of required additions 
and multiplications is Ar(\ = 42"(4n - 1) and = 43n, respectively. The number 
of additions and multiplications required for the polarity matrix calculation with 
FFT-like algorithm is A%FT = ^ 1 6 n and M £ F T = 7-fl&\ respectively. 

The computational cost of methods proposed in Section 8 is stated by the 
following theorem. 

Recursive Algorithms for Polarity Matrices Calculation 

formula 

Q'. ( A i m ) 

where 

QA-i(<7H) 
Qfc - i f e i ) 
Qk-i(qzi) 
Qfc-l (i4l) 

Qfc-i (A [ fc_i i0]) 
Qfc-i (911 + S[fc-i,i]) 

Qfc-i (<721 + qi3 + S[fc_i,i]) 
Qfc-i (511 + 942) 

QA-I(9I2) Qjt-i(gi3) 
Qfc-l fe) Qfc-l (<723 ) 
Qfc-i(<732) Q f c - i f e ) 
Qfc-i (942) Qfc-i(ï43) 

Qk-i (A [ t ._ i a ] ) 
Qfc-l (?42 + 914) 
Qfc-l (<724 + <712) 

Qfc-l ((724 + S[fc_i,3]) 
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Table 5: The number of additions and multiplications in calculation of ~PRMF-

direct FFT-like 
n An 

Ad M2 An 
AFFT 

1 48 64 24 28 
2 3840 4096 768 896 
3 258048 262144 18432 21504 
4 16711680 16777216 393216 458752 
5 1072693248 1073741824 7864320 9175040 
6 6.87027el0 6.8719477E10 150994944 176160768 

recursion by columns recursion by rows 
n A" Mc" An M;1 

1 14 3 12 3 
2 280 57 240 57 
3 4704 903 4032 903 
4 76160 13737 65280 13737 
5 1222144 206823 1047552 206823 
6 19568640 3105417 16773120 3105417 

Theorem 6 The number of additions required to calculate B.MF polarity matrix 
for an n-variable quaternary function, by using the recursive matrix relation (11) 
(recursion by columns) is A" = j|(16n — 4"). If the relation (13) (recursion by 
rows) is used, the number of additions is A™ = (16™ — 4"). In both cases, the same 
number of M™ = ^-(15™ — 4") multiplications is required. 

For illustration of this theorem, the Table 5 shows, the number of additions and 
multiplications in calculation of the RMF-polarity matrix for different, values of the 
number n of variables for different methods. Figures 1 and 2 show the number of 
additions and the number of multiplications needed for the calculation of the RMF 
polarity matrix with different methods. 

It is obvious that methods proposed in Section 8 are more efficient than direct 
computation or FFT-like methods for the calculation of the RMF polarity matrices. 
It is important to note that the efficiency of our method increases with the number 
of variables. 
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10 Conclusion 
We have proposed a method for construction of recursive procedures for the polarity 
matrices calculation in polynomial logical function representation. As particular 
cases the recursive methods proposed in [3] and [6] can be derived by our method. 
Based on our method we have constructed two algorithms, denoted as "recursion 
by rows" and "recursion by columns", for generation of polarity matrices for R.MF-
expressions of quaternary functions. To estimate their efficiency, we determined the 
number of operations required in each of them, and provided a comparison to other 
algorithms for generation of P R M F , as well as to the corresponding algorithms for 
polarity matrix for GF-expressions. 

We showed that the proposed algorithms are more efficient than both direct 
calculation of P R M F and related FFT-like algorithms. An important feature is 
that the efficiency of the proposed algorithms grows with the number of variables 
n in the represented functions. For example, the ratio between the number of 
additions in direct calculation of P R M F and "recursion by rows" method is 4". 
The corresponding ratio for multiplications is greater than y 4 " . 

Our method can be used for construction of recursive relations for polarity 
matrices calculation for any Kronecker product based expression of MV functions. 
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Figure 1: The number of additions needed for calculation P R M F -
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Figure 2: The number of multiplications needed for calculation PRMF-
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