
Acta Cybernetica 14 (2000) 419-453.

Hybrid Concurrency Control and Recovery for
Multi-Level Transactions

Klaus-Dieter Schewe * Torsten Ripke * Sven Drechsler *

Abstract

Multi-level transaction schedulers adapt confiict-serializability on different
levels. They exploit the fact that many low-level conflicts (e.g. on the level
of pages) become irrelevant, if higher-level application semantics is taken into
account. Multi-level transactions may lead to an increase in concurrency.

It is easy to generalize locking protocols to the case of multi-level transac-
tions. In this, however, the possibility of deadlocks may diminish the increase
in concurrency. This stimulates the investigation of optimistic or hybrid ap-
proaches to concurrency control.

Until now no hybrid concurrency control protocol for multi-level transac-
tions has been published. The new FoPL protocol (Forward oriented Con-
currency Control with Preordered Locking) is such a protocol. It employs
access lists on the database objects and forward oriented commit validation.
The basic test on all levels is based on the reordering of the access lists.
When combined with queueing and deadlock detection, the protocol is not
only sound, but also complete for multi-level serializable schedules. This is
definitely an advantage of FoPL compared with locking protocols. The com-
plexity of deadlock detection is not crucial, since waiting transactions do not
hold locks on database objects. Furthermore, the basic FoPL protocol can be
optimized in various ways.

Since the concurrency control protocol may force transactions to be
aborted, it is necessary to support operation logging. It is shown that as
well as multi-level locking protocols can be easily coupled with the ARIES
algorithms. This also solves the problem of rollback during normal processing
and crash recovery.

Keywords . [H2.4] Transaction Processing, Concurrency [H2.7] Logging and
Recovery

General Terms. Algorithms, Reliability

"Computer Science Institute, Clausthal Technical University, Julius-Albert-Str. 4, 38678
Clausthal-Zellerfeld, FRG [schewe|ripke|sdrechsl]@informatik.tu-clausthal.de

419

420 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

1 Introduction

One of the major intentions underlying the development of database systems was
data sharing. As a consequence user programs must be realized as atomic units,
which leads to the well-known notion of a transaction. Roughly spoken a trans-
action is the sequence of database operations resulting from program execution.
Although these sequences must be interleaved to achieve acceptable performance,
the effect must be the same as if transactions were executed sequentially.

Transaction throughput is a crucial issue for all databases. The common ap-
proach in practice considers conflict-serializable schedules, where conflicts corre-
spond to read- and write-operations on database objects [8, 20]. No matter which
granularity is taken for these objects - pages, records or even relations occur in
practice - this approach rules out acceptable, but formally not serializable sched-
ules.

In order to increase the rate of concurrency multi-level transactions (as a special
form of nested transactions) have been introduced. They already occurred in Sys-
tem/R supporting both short-time locking on pages and locking on records [17]. A
general theory of multi-level transactions has been developed in [1] and extended to
a discussion of suitable protocols in [23, 24]. The basic idea of multi-level conflict-
serializability is that sequences of low-level, e.g. page-level, database operations
represent application-dependent operations on higher levels, and there are usually
less conflicts on higher levels. Consequently, some of the conflicts on lower levels
may be ignored. We shall present the gist of the multi-level transaction model in
Section 2. In this context we also extend some notions of basic serializability the-
ory to the case of multi-level transactions. These notions consider recoverability,
cascade-freeness and strictness.

In distributed databases multi-level transactions occur naturally [4, 19]. E.g.,
in distributed object bases we may think of a global level, a local logical object
level, a local level of physical objects and a page level. This is the view adopted in
the DOMOCC project currently under investigation at Clausthal.

The general approach to concurrency control is the use of locking protocols,
especially two-phase locking [20]. It will be shown how to generalize lock protocols
to multi-level transactions. This will fill Section 3. The major problems with
this approach are transaction throughput and the possibility of deadlocks due to
transactions waiting for each other to release locks. There are several algorithms for
deadlock detection in distributed databases with non-negligible complexity, e.g. [5,
18]. In addition, in interactive systems or applications with long-term transactions,
waiting for the release of any lock may be not acceptable.

Therefore, alternatives to locking protocols dominate the research in concur-
rency control. The solutions comprise timestamp protocols [13, 14]. optimistic
protocols [2, 7, 9, 12] and hybrid protocols [3, 10, 11] combining at least two of
the other approaches. Unfortunately, none of the existing optimistic or hybrid
concurrency control protocols has been generalized to multi-level transactions so
far. For example, the optimistic dummy lock (ODL) protocol [11] is basically orga-
nized as an optimistic scheduler using read/write-labels instead of locking objects.

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 421

Then certification tests for the existence of these labels and the final write phase
locks objects to be updated. Unfortunately, a direct generalization to multi-level
transactions is not possible.

In this paper we present a new hybrid protocol called FoPL (forward oriented
concurrency control protocol with preordered locking), which is a provably correct
protocol for multi-level transactions [21]. FoPL exploits that multi-level schedulers
can be composed from schedulers for each of the involved levels [23, 24]. Then
the ODL idea is refined such that access lists are defined for all such levels. More
precisely, labels are kept in a list according to the time points when they have been
set. Commit handling then requires the labels of a validating transaction to be
shifted to the head of the list. In contrast to ODL the new FoPL protocol will use
forward oriented validation. FoPL will be presented in detail in Section 4.

When combined with queueing and deadlock detection, the protocol is not only
sound, but also complete for multi-level serializable schedules. This is definitely an
advantage of FoPL compared with locking protocols. The complexity of deadlock
detection is not crucial, since waiting transactions do not hold locks on database
objects.

Given the basic FoPL protocol we are able to discuss several optimizations.
These comprise a more optimistic locking strategy, the processing of earlier or
partial rollbacks, and specific capabilities related to absorption. Section 5 is devoted
to the discussion of these extensions.

In this context we start with initial considerations concerning the comparison
of FoPL with locking protocols. We focus on implementation costs and transaction
throughput. This will be done in Section 6.

Since the concurrency control protocol may force transactions to be aborted,
it is necessary to support operation logging. For this the sophisticated ARIES
algorithms [16, 22] are generally accepted as a good starting point. We show how
to extend the algorithms to multi-level transactions, both for locking protocols and
FoPL. This also solves the problem of rollback during normal processing and crash
recovery. The extension called ARIES/ML [6] also enhances the work by Lomet
[15]. The solution to recovery will be presented in Section 7. We conclude with a
short summary.

2 The Multi-Level Transaction Model
A multi-level transaction is a special kind of an open nested transaction, where the
leaves in the transaction tree have the same depth. Each node in the tree corre-
sponds to some operation implemented by its successors. The root is a transaction.
The lowest level Lq corresponds to operations that access directly the physical
database. Therefore, we first define the operations of a multi-level system.

Definition 1 An n-level-system £ consists of n levels Li = Si) (i = 0 , . . . , n —
1), where 2)j is a set of objects and Si a set of operators. An Li-operation is an
element of Oi = Si x £>»• D

422 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

We write £ = (L n - i , • • • ,Lo). The levels are numbered in a bottom-up manner.

Example 1 In the D O M O C C project at Clausthal Technical University we inves-
tigate distributed object bases. For these it is imaginable to use a 4-level-system.
The highest level L3 should correspond to global logical objects, the next lower level
1/2 to local logical objects associated with a unique site, level L\ to local physical
objects, i.e. records, and finally L0 should correspond to the page level.

Then operations on L3 as defined before schema fragmentation will be imple-
mented by operations on L2, these again by operations on the record level L i t

which finally give rise to reading and writing pages of the physical store. •

2.1 Multi-Level Transactions

An n-level transaction is defined next exploiting the notion of an index tree, which
is a finite set of finite sequences over N — {0 } . We let (N — {0})* denote the set of
all such sequences. | a | denotes the length of q £ N*. Furthermore, we identify
numbers with sequences of length 1 and denote the empty sequence by e.

As a syntactic convention we shall use small Greek letters a, /3, /.¿, v,... for such
number sequences and small. Latin letters i,j,k,t,... for the numbers in these
sequences.

Definition 2 An index tree of depth n is a finite subset I C (N — {0 })* with

•eel,

• a(k + 1) G I =>• ak G I and

• A£LA\A\<N<3>AL£L

for all a e (N - {0 })* and k G N.

An n-level-transaetion Tj consists of

• an index tree I of depth n,

• a mapping which assigns to each a G I an L?l_|Q|-operation, denoted as Oja

and

• partial orders on each D ^ = {oja \ | a | + i = n } , such that Ojak
Oj0(k < I holds.

(1) (i) We call the L\ -precedence relation of the transaction Tj. •

By abuse of notation we shall talk of the transaction Tj over the index-tree I .
Furthermore, we write opja(x) for the operation Oja = (op,x). In order to have a
uniform notation for all levels we also allow to write Oj for Tj.

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 423

f l l l W WlV2(x) r2u{x) №212(2:) î'221 (y) ™222 {y) rl21(y) W122 ill)

Figure 1: Serializable multi-level schedule

Since precedence relations are meant to express a necessary ordering of imple-
menting operations it is natural to require

Ojc <\j) Ojp <£> ojak <\3\ Ojpe for all k and I, (1)

whenever the involved operations exist. In this case, the transaction Tj is well-
defined. In the sequel we shall tacitly assume that all transactions are well-defined.

Example 2 The trees rooted at Ti and T2 in Figure 1 define two 2-level-
transactions over the same index tree I = {e, 1,2,11,12,21,22}. Here w and r
correspond to read- and write-operations, inc and dec to incrementation and decre-
mentation. Thus, we may assume to be defined by

. n 11(2;) <oJ) №112(2:) and 7*121 (2/) <o1) w\22{y)

and as being empty.
Analogously, define <q2 ' by

7-211(2:) <qX) №212(2;) and 7-221(2/) <0^ w222{y)

and let < j •' be empty.
However, if we claimed also №112(2;) Cg1' 7-121(2/) ~ i-e-; <0^ t o t a l ~ then the

well-definedness condition (1) would imply inci\{A) dec\2(B). •

The edges in a transaction tree represent the implementation of a Li-operation
by a set of ¿¿_i-operations. If Oĵ k is an ¿¿-operation of a transaction Tj, then
trans(ojfik) = Oj> (0 < i < n) is the ¿¿+i-operation that invokes In particular,
for i = 71 — 1, i.e. n is empty, we get trans(ojk) = Tj. Conversely, act{ojv) = {ojvi \
vt 6 J} defines the set of ¿¿-l-operations implementing the Li-operation Oju.

More generally, for i' > i we may define iteratively the ¿¿'-operation that indi-
rectly invokes an ¿¿-operation OjM by

trans? (oj^) = trans1 ~1{ojll) . (2)

Note that i' = i +1 leads to the direct predecessor in the transaction tree as defined
by trans.

424 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

Figure 2: Non-serializable 1-level-schedule

Conversely, for an ¿/¿-operation ô v let aci;_i (o^v) = act(oj„) and

acti>{ojV)= [J actii{ojwk) fori — ¿ ' > 1 . (3)
Ojvk^acti.Ojv)

i.e. acti'{ojv) denotes the set of L^-operations implementing Oj„ indirectly through
several levels.

Example 3 Consider again transaction 7\ in Figure 1. Here we have

act{T\) = act\(Ti) = {incu{A), decl2{B)} ,
acto(Ti) = {rm{x) ,wiu(x),r12i{y) .w122(y)} ,

act(incn(A)) = act0{incn(A)) - {rm(i),!Uii9(i)}

and

trans(incu(A)) = trans2(incu(A)) = T\ ,
trans (wn2(x)) = trans i (w i r2 {x)) = incu(A) ,

trans2{u>ii2(%)) = T\

•

2.2 Multi-Level Schedules
The execution of concurrent transactions is described by an n-level-schedule. These
are illustrated by forests in Figures 1 and 2.

D e f i n i t i o n 3 For a set D „ = { T i , . . . ,Tfc} of n-level-transactions let Oi =
(J*=1 be the set of all ¿^-operations in these transactions (0 < i < n). Then
an n-level-schedule on D n is given by a partial order <o on Do containing all L^-
precedence relations. •

We write S = (D „ , D n - • • •, Oo, <o) f° r s u c h a schedule defined on On. Then < 0

induces a partial order < , on each level by

oM <i+1 ov & VoMfc 6 act(olM).yo„(e act{o„). <t o„t . (4)

Using this, we may define the level-by-level schedule Sij (j < i .< n) as the one-
level-schedule (Di,Oj, <j).

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 425

Example 4 The schedule in Figure 2 is the level-by-level schedule S2,o of the one
in Figure 1. We dispense with a discussion of how to reorganize the underlying
index-trees. •

The well-definedness assumption for transactions implies two simple properties as
shown in the next lemma. The first one was originally used in [24] to define the
partial order <» on level Li. The second property is the plausible conformity-
condition from [21]. Informally, it states that whenever two operations in some
transaction have to occur in a certain order, then they must do so in every schedule.

Lemma 1 1. For any two Li-operations oM,o„ in a n-level-schedule S we have

<i ov VoMe G aci 0 (oM) .VoF (T e act0(ou). oM(? <0 ova . (5)

2. For each n-level-schedule S we have <^C<j for all i and j.

Proof. For the proof of (i) we proceed by induction on i. For i — 1 the claimed
equivalence in (5) is just the definition (4). For % > 1 we have

On <i o„ O VoM)t £ acij_i(oM).Vo„f <E acti^i{pv). o^k <i-i ovt

by definition (4) and

<¿-1 ovi & Vo^kg G acio(oMfe).Vo^CT 6 act0(o„e). o^e <o ovia

by the induction hypothesis. Taking both equivalences together, the claimed state-
ment (5) follows from the definition (3) of act0.

For the proof of (ii) we also apply induction on i, the case i = 0 being captured
by Definition 3. For i > 0 and OjU the well-definedness condition (1) implies
Ojfik <i-1 Ojvt for all Oj^k G act{ojn), Oju(6 act{ojU). By induction hypothesis we
get Oj^k <i-i Oj„i. Hence, the claimed result o ^ <j Oj„ follows from the definition
of <i in (4). •

2.3 Partial Schedules
The notion of n-level-schedule describes the interleaved execution of n-level-
transactions. Temporal precedence on level Li is expressed by the partial order
<i. Since transactions are built at run-time, we are also interested in partial sched-
ules, where some of the later operations are omitted. These will be composed
from n-level-prefixes of transactions in the same way, as (complete) schedules are
composed from transactions.

Definition 4 Let Tj be an n-level-transaction. An (n-level-)prefix of Tj consists
of subsets «pP C D ^ (i = 0,...,n) such that

• Oja <[j) ojf) A Ojp G =>• oja G and

426 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

Figure 3: Partial 2-level-schedule

• Oja e => trans(Oja) £

hold, whenever the involved operations are defined. •

Formally, a prefix is different from a transaction unless we have = Q\ j) for
all i. On the other hand the selection of subsets for a prefix also defines an under-
lying subtree of the index-tree. Therefore, we may treat prefixes, as if they were
(complete) transactions. In particular, we also have precedence relations on
prefixes which result from restricting the corresponding relations associated with
the transaction.

Furthermore, we may define schedules on the basis of prefixes using Definition
3. In this case we talk of a partial n-level-schedule and write . . . < o) f° r

this. Here tyn = { P i , . . . , P^} is a set of n-level-prefixes, ^ = |J and <o is a

(i)
partial order on containing all Lq -precedence relations restricted to iPo-

If all Pj are transactions, i.e. Pj = Tj, then we talk of a complete schedule.
Example 5 Figure 3 shows a partial schedule, where the tree rooted at Tj is a
prefix of the 2-level-transaction Tj in Figure 1 (j = 1,2). •

It is easy to see that each partial schedule can always be extended to a complete
schedule by simply extending < 0 in some way compatible with the required exten-
sion of the I/o-precedence relations.

Conversely, given a complete schedule (D„, • • •, Do, <o)> we may choose a subset
<Po C Do such that oa <o op with op £ implies oa £ Then iPo induces
a canonical partial schedule . . . <o |<p0)- Such a partial schedule will be
called a prefix of the given complete n-level-schedule. In this way partial schedules
describe the interleaving of transactions in progress.

2.4 Conflict Serializability

The basic idea of multi-level concurrency control is to use the semantics of opera-
tions in level-specific, symmetric conflict relations CONi C OiXOi. Non-conflicting

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 427

operations should commute. In particular, it is natural to assume that conflicts can
only occur on the same object, i.e. ((opi,x) , (op2,y)) G CONi =$> x = y.

Same as with precedence relations the intention behind the conflict relations
forces us to require the following conformity condition: If (0^,0,,) G CONi holds
for some G D{, then there should exist o^k G aci(oM) and ovt G ac£(o„) with
(Ofj.k,Ove) G CONi-i. The fundamental idea of multi-level transactions is that there
may be low-level conflicts that do not stem from higher-level conflicts. Thus, the
opposite of this condition need not to hold. In the sequel we shall tacitly assume
that the conformity condition is satisfied by all schedules.

Example 6 Increments and decrements commute with one another. Therefore,
for the transactions in Figure 1 we would like to use

((opi,x), (op2,y)) G CONi & (opi = upd V op2 = upd) A x —y

assuming Ji = {inc,dec,upd}. Analogously,

((opi, x), {op2,y)) G CON0 & (opi = w V op2 = w) A x = y

assuming 3o = {T ,W} . Note that the Lo-conflict relation is the usual one used for
flat transactions.

Intuitively, the schedule in Figure 1 seems to be acceptable, but the level-by-level
schedule S2io in Figure 2 is not. The reason is that by omitting the Li-operations
we lost the information that the schedule is equivalent to the sequence T\\T2. Oth-
erwise said, there are no conflicts on level L\. Thus, multi-level transactions may be
expected to increase concurrency, which will be made explicit in the following. •

We have to extend the notion of conflict-serializability to multi-level transactions
to make these arguments rigorous. First, an n-level-schedule with a total order < n

is called serial. Then serializability means equivalence to a serial schedule in the
following formal sense.

Definition 5 Let (Dn , £> n _ i , . . . , D0, <o) be an n-level-schedule with induced par-
tial orders <i on level i. Let CONi (i = 0 , . . . ,n — 1) be conflict relations. Define

Ojn Oj'u & j j' A (°J>) Oj'u) G CONi A Ojn <i Oj!V (6)

for o„ G Dj.
Then two n-level-schedules are called (conflict-)equivalent iff their associated

relations —>i coincide for all i = 0 , . . . , n — 1. An n-level schedule which is conflict-
equivalent to a serial one, is called (n-level-)serializable. •

From the early studies of multi-level transactions [1, 24] it is well known that n-
level-serializability can be detected from the level-by-level schedules £¿,¿-1.

428 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

Lemma 2 An n-level-schedule S is n-level-serializable iff all its level-by-level
schedules (0 < i < n) are serializable. •

It is opportune to add a remark on partial schedules here. We shall call a partial
schedule serializable iff it can be extended to a complete serializable schedule.

Example 7 Using the conflict relations from Example 6 it is easily verified that
the schedule in Figure 1 is conflict serializable, whereas the one in Figure 2 is not.
This was already stated above.

The partial schedule in Figure 3 can be extended to the one in Figure 1, hence
is also serializable. •

Note that transactions in a serial schedule may leave the system and need not be
considered any more. Serializability implies that transactions - not prefixes - may
leave the system, if they can be brought into the first position in an equivalent
serial schedule.

2.5 Recoverable Schedules
One desirable property of schedules for the flat transaction model was recoverability.
Informally, this means that committed transactions should never be rolled back
later. This can be expressed by the fact that if a transaction Tj reads from another
transaction Ti, i.e. Wikl(x) —>o rjk2(x) holds for some Lo-object x and suitable
indices ki, k2, then whenever Tj commits, Tj must do so, too. In order to guarantee
this property the commit of Ti must occur before the commit of Tj.

In order to generalize these notions to multi-level transactions, we first consider
the read-from-relation. Wikx{x) —>o i'jk2(x) represents a strong conflict in the sense
that an abort-dependency is implied: if Ti aborts, then Tj must do so, too. It is not
sufficient to consider just the associated relations — F o r example, we could also
have ran (x) —»o Wjk2 (x) without abort-dependency. Hence, Tj may commit before
Tj. If accidentally Tj aborts later on, this will not influence Tj anymore.

The difference between these two situations cannot be explained without re-
garding the "effects" of the operations. Roughly spoken, an object x on any level
Li has a value, say a{x) before the execution of an ¿¿-operation opa{x) and a value
r(X) after that execution. The effect of the operation can therefore be expressed
by the set {—a(x) , +r(a;)} or by 0 in the case we have a{x) = T(X).

Now note that in our motivating example Wi(x) —>o i'jk2 (x) for Lo-operations
the effect of the sequence Wikx (x)\Tjk2 (%) differs from the effect of (x), whereas
for rtkjix) - »o Wjk2{x) the effects of the sequence rikl{x)\Wjk2(x) and of Wjh2(x)
coincide. We now take this observation as a cornerstone for the generalization of
recoverability on level Li.

Definition 6 Let £ = ((5)n_i, 5 n - i) , • • •, (2>o, So)) be an n-level-system and as-
sume sets Vi of values for each level Li (i = 0 , . . . ,n — 1). A state of an Li-object
x G Di is an element a(x) £ Vi. An effect on an ¿¿-object x e £); is either a set
{— A(x), r(a;)}, where A{x) and T(X) are different states of x, or 0. •

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 429

Now, we may assume that each Li-operation opa{x) - more generally: each sequence
of Li-operations on the same object x - has an effect on x. Of course, this effect
depends on the content of the database. With these initial remarks we can now
generalize the read-from-relation.

Definition 7 Let Tj, Tj> be two n-level-transactions (j ^ j') and Oj>„(x)
be two of their Li-operations. We say that Ojiu{x) strongly depends on x)
(notation: o ; (i (x) - » j Oj'V{x)) iff Oj)1(x) —Oj<v(x) holds and the effect of the
sequence (:r); cy „ (x) differs from the effect of oyv{x). •

Note that for the flat transaction model the chosen definition turns only write-read-
conflicts into strong dependencies - as desired.

Example 8 Consider Li-operators upd for update, inc and dec for increment and
decrement and a read-only operator fetch. Then again, we have updikl(A) - » i
fetchjk2{A), but fetchikl(A) > i incjk2(A). •

The second task is to generalize the abort-dependency resulting from Ojfl(x) - » j
Ojtv{x). For this we may assume that each operation in a partial schedule may
abort or commit. This can be expressed by marking the operations in a partial
schedule by c or a, respectively. Let m(o) be the marking of the operation o. If
we consider transactions in progress, it may happen that some operation which
implements o has not yet been committed nor aborted. In this case we cannot
assign a mark to o, which turns a marking m into a partial mapping.

Furthermore, all operations that implement an operation o, i.e. all operations
o' £ act(o), must commit before o can commit. Formally, this can be expressed
by m{o) = c => m(o') = c. Analogously, all operations d that must preced o,
expressed by the precedence relation d <f o, must commit before o. This leads
to the following definition.

Definition 8 Let S = OPm • • • i^Po, <o) be a partial schedule. A marking of S is
n

a partial mapping m : |J -/» {c, a} such that the following holds:
¿=o

1. If (o) C iPi_i holds for o E then m(o) must be defined.

2. Whenever m(o) = c and d £ act(o) hold, m(o') is also defined with m(o') = c.
Whenever m(o) = a holds, there must exist some o' £ act{o) with m(o') = a.

3. Whenever d < j o holds, then m(o') = c must hold.

A pair (S, m) with a partial schedule S and a marking m of S will be called a
marked schedule. •

The first condition simply restricts attention to marked schedules, in which all
operations are marked if they can be marked. The second condition expresses the
requirement that all operations that implement a committed operation must have

430 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

lecp_{B)

7-111 (a:) | |№ii2(x)| [r2n(a;) | |w2i2(^)| \t22\{v) \ r]2\(y) W122 ('</)

Figure 4: Marked multi-level schedule

been committed, too. Secondly, this condition expresses the analogue that among
the operations that implement an aborted operation there must be at least one
which has been aborted, too. The third condition expresses that if an operation
has been completed before another one, it must have committed.

Example 9 Consider the marked schedule in Figure 4 with a boxed entry marking
a committed operation and a crossed out operation marking an aborted one. The
underlying schedule is the one from Figure 1. •

The notion of a marked schedule now allows recoverability to be generalized to
multi-level schedules.

Definition 9 A schedule (O n , . . . , Do, <o) is called recoverable on level Li iff for
all prefixes 5, all markings m of S and all j j1

Oĵ k -»¿-1 oyvl A m(ofv) = c => m(oj>) = c

holds. •

Note that in contrast to recoverability for flat schedules recoverability on level Li
does not completely exclude committed operations from being rolled back later.
However, the abort of a committed ¿¿-operation will only be triggered by the
abort of trans (o^). We discuss recoverability together with the protocols presented
in Sections 3 and 4.

Finally, we may also generalize the stronger notions of cascade-freeness and
strictness to multi-level schedules.

Definition 10 Let S = (D n , . . . ,O 0 , <o) be an n-level-schedule.

1. 5 is called cascade-free on level Li iff for all prefixes S' of 5. all markings
m of S' and all j ^ j' it is true that whenever oj^k -»¿-1 Ojvi holds, then
mfajn) must be defined.

2. S is called strict on level Li iff for all prefixes S' of S, all markings m of S'
and all j ^ j' it is true that whenever Oĵ k —>«-1 holds, then m(oJM)
must be defined. •

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 431

We shall discuss cascade-freeness and strictness together with the protocols pre-
sented in the next two sections. As a first result which is obvious from the defini-
tions we notice that strictness implies cascade-freeness.

Example 10 Consider the schedule from Figure 1 with a total order <o- Then
we have the strong dependencies №112(2;) -»0 ''211(2;) and №222(2/) ^121(2/) 011

level Lq and no such dependencies on level Li. Obviously, in the marked schedule
in Figure 4 the conditions for strictness, cascade-freeness and recoverability are
satisfied for level L\.

More generally, we can show that the schedule from Figure 1 is indeed recover-
able on level L\. If №112(2;), r2n(2;) and inc2i (A) with m(inc2i{A)) = c (or №222(y),
i"i2i(y) and deci2(B) with m{deci2{B)) = c, respectively) occur in a marked prefix,
then m(incn{A)) = c (or m{dec22{B)) = c, respectively) must hold by the third
condition in Definition 8.

We can also show that the schedule is cascade-free on level Li. If we consider a
prefix, in which №112(2:) (or №222(2/), respectively) occurs, then by the first condition
in Definition 8 m(incn(A)) (or m(dec22{B)), respectively) must be defined.

The same argument applies, if we consider —>0, which gives

r m (x) ->o №212(2:), №112(2;) -»0 7-211(2;), №112(2;) ->o №212(2;)

and

7-221(2/) №122(2/), W222(y) №121 (2/), №222(2/) w\22(y) •

This shows that the schedule is even strict on level ¿1. •

3 Locking Protocols
Locking protocols for multi-level transactions have been investigated from the very
beginning [24]. Therefore, we shall only describe very briefly the gist of these
protocols.

According to our assumption that only those operations give rise to conflicts,
which access the same object, it is sufficient to concentrate on the operators. Thus,
for each ¿¿-operator op G Si we define a specific lock lockop. Then, each ¿¿-
operation op^kix) may only be executed after setting a lock, namely lockop, on
the object x. In addition we associate with this lock the index fi of the issuing
operation oM = trans^^k)- After its commit, must release all its locks.

Same as with read-locks for flat transactions, an ¿¿-object x may hold several
locks at a time, provided the associated operations do not conflict with each other.

Definition 11 Let lockopi and lockop2 be locks on object x G £>, issued by the
¿¿-operations o^k and o^e, respectively. These locks are called incompatible iff
oMfc out or out - » i O/ifc holds. •

432 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

Thus, an operation may only set a lock on x, if this is not incompatible with any-
existing lock on x. Otherwise, the operation has to be aborted or must wait until
all incompatible locks on x are released.

This basic idea underlying multi-level locking protocols can be extended in
the usual way to define two-phase locking (2PL) as well as conservative or strict
variants. In 2PL we have a growing phase, in which all locks are acquired, but
none can be released, followed by a shrinking phase in which existing locks will be
released, but no new lock can be acquired. In conservative 2PL (con-2PL) all locks
are set before the operation actually starts. In strict 2PL (str-2PL) no lock will be
released before commit or abort.

Example 11 Consider the schedule in Figure 1 assuming a total order < 0 from
left to right. On-level L$ we have the usual read- and write-locks, i.e. lockr and
lockw using our current notation. Only two read-locks are compatible with each
other. Thus, all locks on Lo-objects can be set and released by 2PL without any
problems.

On level Li we have locks lockinc, lockdec and lockupd for the increment-,
decrement- and general update-operation. Only the update-lock is incompatible
to all other locks. Then, also all locks on Li-objects can be set and released by
2PL. Hence, the schedule will be accepted by 2PL. •

The example indicates that schedules accepted by 2PL will be serializable. Such a
result stating the correctness of 2PL for multi-level schedules is well-known from
the early literature [24].

Theorem 1 A multi-level-schedule accepted by the use of 2PL on each level is
always serializable.

Proof. Suppose we have Oj^ — o y v t for j ^ j' on level Li. The conformity
assumption for conflict relations implies (ojM, o.,•'„) £ CONi+\. The incompatibility
of the corresponding locks and the 2PL-strategy to keep the first of these locks until
OjM has committed implies OjM <¿+1 cy„ .

Taken together, we obtain — o y u and by induction Tj <n Ty.
If 2PL accepted a non-serializable schedule, we would also have oy —>»' OjV'v

on some level L^. Hence, Ty < n Tj holds, too, which is impossible for a partial
order. •

Example 12 Now consider the schedule in Figure 5. Taking the same locks and
incompatibility relations as before, T2 will not be able to set the update-lock on
object A before the commit of Ti, because T\ holds an incompatible increment-lock
on A. This implies that the shown interleaving in Figure 5 is not acceptable by
2PL.

Nevertheless, the shown schedule is serializable, which demonstrates that the
converse of Theorem 1 does not hold. •

As a straightforward result we show that strict 2PL leads to recoverable and strict
schedules.

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 433

Figure 5: Serializable schedule, not acceptable by 2PL

Proposition 1 If strict 2PL is used on level Li, then the resulting schedule is
recoverable and strict on level Li.

Proof. Assume -»¿_i Oj'„e(x) and rn(oj<v) = c. Then Oj'„ must have
acquired a lock on x, which is only possible in the shrinking phase of OjM. According
to the definition of str-2PL this happens after the commit of Hence rn(oJM) = c
holds, i.e. the schedule is recoverable on level Li.

Next assume Oj^k{x) ->¿-1 Ojt„i(x). According to the definition of str-2PL,
Oj<„ can only appear in marked schedules with m(ojM) being defined. Hence the
schedule is strict on level Li. •

4 A Hybrid Concurrency Control Protocol

We now present the FoPL (Forward oriented Concurrency Control with Preordered
Locking) protocol, which ensures serializability by exploiting the level-by-level
schedules S^i-1. Then we shall discuss its correctness and completeness with re-
spect to serializability and the issues of recoverability and strictness.

4.1 The Basic FoPL Protocol

The basic structure follows the idea of optimistic protocols or hybrid protocols such
as ODL [11]. Thus, FoPL consists of three phases: the propagation, validation and
commit-phase. In the propagation-phase the operations at the various levels Li
are executed. In addition, some kind of control-structure consisting flaglists for
the objects and access-lists for the operations is built up and will be used later to
decide, whether on operation commits or aborts.

The task of the validation-phase is to perform this decision. The flaglists are
used to detect, whether the interleaved execution of the operations has lead to a
situation that forces an abort or not. Finally, in the cornrnit-phase the commit or
abort is executed. We shall see that the commit-case is the easier one: if in-place
updates are used, then the only task is to remove flags from flaglists. The abort-
case requires additional efforts for rollback. This will be postponed to Section 7 on
recovery.

434 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

4.1.1 Propagation

In the propagation phase the operations of a schedule are executed according to
some order < which extends <o- In practice this order is built dynamically accord-
ing to the invocation of transactions. In centralized systems < may be assumed
to be total, but in distributed systems this is not necessary. In contrast to other
optimistic or hybrid protocols changes to the database are made persistent imme-
diately. We shall also discuss what happens, if changes are only stored in private
buffers made persistent in the commit phase if at all.

Since an Li-operation oM is implemented by actfo^), we mark the objects in
that are accessed by oM. If o^k 6 ac£(oM) is the operation (op, A), then we use

the flag (op, fx) on A. We use a flaglist ZLa for each object A 6 Di-i (and each
i = 1 , . . . , n), which is built dynamically extending < j_ i .

In addition, we use access lists ASto keep track of the objects accessed by
oM. In order to see not only the accessed objects but also the way they are accessed,
we take ASju) = acti-i(oM), i.e. we use the implementing operations.

Example 13 In Figure 1 the flaglists ZLa and ZLb on level L\ are constructed
as ZLA = inc\inc2 and ZLB — dec2dec\. •

When appending a flag to a flaglist an exclusive short-term-lock on the flaglist is
used. This guarantees that the append-operation is atomic. In particular, con-
current access to the same flaglist can be executed without the risk to loose flags.
Deadlocks are not possible, because an operation holds only one lock at a time.
Flags will be removed again from flaglists during the commit-phase.

In addition, we may assume that setting the flag is executed before the execution
of the operation. For Lo-operations it is necessary to keep this short-term-lock until
the operation itself is finished, because this guarantees that there is is no undesired
interference with other Lo-operations.

4.1.2 Validation

If all operations in aci(oM) have been executed, oM initiates its validation. For this,
FoPL has to test if all flags that stem from ac£(oM) are still set. As we shall see
below in the paragraph on the commit-phase, flags may have been discarded from
a flaglist by another operation.

For the flaglists of all objects A 6 ® i - i , which were accessed by aci(oM) during
the propagation phase, exclusive locks will be requested and kept until the end of
the commit-phase. To avoid deadlocks the locks are requested in a total order,
which justifies the naming of the protocol. It is not necessary to request locks on
the Li_i-objects themselves, since only the flaglists are analyzed. In Section 5 we
shall discuss an alternative strategy, which dispenses completely with locks.

The involved objects can be recognized from the access list ASIn particular,
A S ^ indicates all the flags that should still be set.

If at least one flag is missing, the operation oM must abort. Otherwise, FoPL
tests, whether oM was successful. This is the case, if none of the objects in £>¿-1

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 435

accessed by oM was accessed by some other operation o„ before. This can be detected
from the flaglists.

Definition 12 An ¿¿-operation oM is blocked on an object A £ £>¿-1 iff there are
flags (opi, v) and (op2, /-0 in ZLa with v ^ fj, such that (opi, v) precedes (opo, n)
and ({opuA),(op2,A)) £ CON^ holds.

An ¿¿-operation oM is successful on an object A £ iff it is not blocked on
A. An ¿¿-operation is successful iff it is successful on all objects accessed by
aci(oM). •

If the operation oM is successful, it can commit, otherwise it must abort. Both
actions (commit/abort) are accomplished during the commit phase.

4.1.3 Commit

If an ¿¿-operation oM may commit, the flaglists of all objects A £ ©¿-1, which were
accessed by ac£(oM) during the propagation phase, have to be updated. For this
the locks requested in the validation-phase are kept. Then all flags from ac£(oM)
have to be removed. After removing the flags, the locks will be released thereby
terminating the commit-phase.

If an ¿¿-operation oM must abort, all operations in act(oM) must abort. In this
case the flags from o^k may still be set or not. In the first case, a compensation
is executed, if possible. If not, the object updated by o^k has to be replaced by
its before image. Finally, all remaining flags and all dependent flags have to be
deleted.

Definition 13 A flag 2 from o^ depends on another flag z' from o„, iff z' precedes
z in ZLa and (0^,0^) £ CONi holds or 2 depends on z" and z" depends on z' for
some flag z". •

If a compensation operation is initiated to abort o^k, it must be applied to
the before image of the first operation o„;, whose flag depends on the flag of o^k-
Because all operations which depend on oltk have to abort later on, it is also possible
to abort those operations before aborting o^k- Therefore, a rollback recovery can
be invoked.

In the second case there is nothing to do, because an earlier abort from another
operation has overwritten the update from o,tk or the operation was already aborted
by the rollback-recovery.

4.2 Lazy Aborts: The FoPL+ Protocol
In order to minimize the number of aborts we may employ the alternative to force
an operation to wait and to restart after some time period. We call this lazy abort.
If FoPL is combined with lazy-abort, the resulting protocol is called FoPL+.

Since conflicts on higher levels are assumed to occur not too often, we may hope
that the preceding conflicting flag has been deleted in the meantime. Thus, aborts
will only occur, if they are really unavoidable.

436 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

As a disadvantage note that deadlocks may occur, if the (transitive closure of
the) waiting-for-relation contains a cycle, e.g. an operation waits for ov and o„
waits for On- In this case the easiest solution is to abort both operations, because
o„ has read from o^ and has read from o„. We shall discuss alternatives in the
next section. Thus, phantom deadlocks cannot occur. If a deadlock is detected, it
can be resolved by deleting one flag, which is involved in the deadlock. Deadlocks
can be detected with known techniques [5, 18].

Note, however, that a waiting operation does not prevent any object from being
accessed. Thus, the possibility of deadlocks is less critical compared with lock
protocols.

Example 14 First consider the schedule in Figure 1. Then the progress of the
flaglists on Lo-objects x, y and Li-objects A, B is as follows:

1 2 3 4 5 6
ZLa

ZLB

inc\ inci inc\ inc2 inC\ inC2 inc 1 inC2

dec2

inc 1 inC2
dec 2

ZLX

ZLy

rn n 1 »11 r2i r21 W21
r2 2 7*22 W22

7 8 9 10
inc\ inc 1

deci
inc i
dec i

ZLa

ZLb

ri2 H-2 Wi2
ZLX

ZLy

Here we assume that the commit of mcn (A) occurs between columns 2 and 3,
the commit of inc2i(A) between columns 4 and 5, the commit of dec22{B) and T2

occur between columns 6 and 7, and finally, the commits of deci2{B) and T\ occur
between columns 9 and 10. Thus, the schedule will be accepted. •

Example 15 Consider the schedule in Figure 5, which was not acceptable for
2PL. Looking only at flaglists on Lx-objects we obtain (with FoPL+) :

1 2 3 4
ZLA inci m c i upd2 inci upd2 upd2
ZLB dec i

with Ti committing between 3 and 4, T2 committing after 4 and T2 waiting from
the beginning of 3 to the end of 4.

Thus, FoPL+ will accept this schedule, but FoPL would abort since ZLA
cannot be permuted. •

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 437

4.3 Private Buffers
As an alternative to immediate in-place updates we may think of using private
buffers as in other optimistic or hybrid protocols [11, 12]. Changes to the database
objects are only stored in these private buffers during the propagation phase and
made persistent in the commit phase if at all.

Since higher-level operations are by assumption implemented by lower-level op-
erations, there is only a need for such buffers on the level LQ. Consequently, we
may only expect changes to the protocol on that level.

The crucial point is now that results of operations affecting the database are
not visible to other Lo-operations, as long as the corresponding Li-operation has
not finished its commit phase. Hence, after a successful commit of an Li-operation,
all its flags and all dependent flags on level L0 have to be deleted. Furthermore,
since the actual changes to the object are only performed at commit-time, it is
insufficient to lock only flaglists. The referred objects must be locked, too. On the
other side, the deletion of dependent flags is no longer necessary in the abort case.

Example 16 Consider the development in Example 14, but now assume assume
that incu(A) validates and commits after 7'2ii(a;) has been performed. In this case
the flag i'2i in ZLX will be removed causing the later abort of inc2i(A). This is
correct, since otherwise a wrong value might be used by inc2i(A) ("dirty read"),
and the update by incn(A) will get lost ("lost update"). •

Whether it is advantageous to apply FoPL with in-place updates or private buffers
on level L0 depends on the probability of conflicts occurring on level L0. Note
that it is even possible to mix both strategies, i.e. to let some transactions - or
Li-operations - use private Lo-buffers, whereas others use in-place updates. As a
rule of thumb, if it can be expected that Li-operations will commit, then choose
in-place updates, because this will trigger less rollbacks.

4.4 Correctness and Completeness
Let us now investigate the correctness and completeness of the FoPL protocol with
respect to serializability. In order to distinguish between the basic FoPL protocol
and the optimization through lazy aborts we use FoPL+ to indicate the enhanced
protocol.

Theorem 2 Every n-level-schedule accepted by the FoPL protocol is n-level-
seriahzable.

Proof. If a transaction Tj commits, this also applies to all operations defining
it - at different levels. This is only possible, if all these operations are successful
on all objects. These implies that ov -fti oM holds for all other operations o„ issued
by different transactions, and the schedule is conflict-equivalent to a serial schedule
with first transaction Tj.

Proceeding inductively and exploiting the fact that flags from submitted trans-
actions will be removed, we obtain an equivalent serial schedule. •

438 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

Obviously, since commit for FoPL+ works in the same way as for FoPL, the cor-
rectness result carries over to the optimized version with lazy abort.

Corollary 1 Every n-level-sehedule accepted by the FoPL+ protocol is n-level-
serializable. •

In addition to this correctness result, we may also obtain a completeness result
for FoPL+ , i.e. if we adopt the alternative waiting strategy discussed above. The
central argument of the proof states that a deadlock in the waiting graph may only
occur iff oM — o „ and ov —>i oM both hold. But this means that the schedule is
not serializable.

Lemma 3 A deadlock in FoPL+ occurs iff the corresponding partial schedule is
not serializable.

Proof. Suppose we have a deadlock between Li-operations indicated by flaglists
ZLa = o^pv and ZLb = q^s^. For the corresponding -operations we obtain
Ofxk(A) —Pvt{A) and qum{B) —>i-i s^B) for suitable indices k,l,m,n. This
states that the level-by-level schedule S,,¿_i is not serializable.

Conversely, assume a non-serializable level-by-level schedule Si, i - i , i.e.
o^.k{A) 1 Pvt(A) and qvm(B) sm(B) holds for Li_i-objects A, B, Li-
operations oM, o„ and o^kiA), 6 aci(oM), p„i(A),qvm(B) e act{ou). This
implies the flaglist to contain ZLa — o^p,, and ZLb — IvS^. Since no permutation
is possible in ZLa nor ZLb , oM waits for o„ and vice versa. Hence, there is a dead-
lock. •
From this lemma and the preceding remarks the claimed completeness result follows
immediately.

Theorem 3 Every n-level-serializable schedule will be accepted by the FoPL+ pro-
tocol. •

4.5 Recoverability and Strictness
Finally, we investigate recoverability and strictness.

Proposition 2 If FoPL (or FoPL+) is used on level Li, then the resulting schedule
is recoverable.

Proof. Assume O j ^ i x) Oj<„f and m(ojiv) = c. The first assumption implies
that ZLX contains Pj^qj'^ with the corresponding Li_i-operators p, q. The second
assumption implies that qj'v could be removed from ZLX. According to the defini-
tion of FoPL this is only possible, if pjM was removed earlier from ZLX, i.e. m(ojM)
is defined.

If we had m(ojM) = a, then the removal of p]IL would have triggered the removal
of the dependent flag qj<v which contradicts the fact that Oj<„ committed. •
However, in contrast to strict 2PL, FoPL (and FoPL+) cannot guarantee strictness,
not even cascade-freeness as can be seen from the next example. This is reflected

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 439

Figure 6: Partial FoPL schedule with cascade

in the protocol by the removal of dependent flags. Non-cascade-freeness is usual
with optimistic or hybrid protocols. It is the price to be paid for the increase in
transaction throughput resulting from the visibility of operation results before the
final commit of a transaction.

Example 17 Consider the schedule sketched in Figure 6. Omitting the dotted
parts we obtain a partial schedule with incn(A) - » i set2\(A), but without m(T\)
being defined. Hence, the schedule is not cascade-free on the top level L2 . •

5 Optimization of the Basic FoPL Protocol

We shall now discuss various optimizations of the basic FoPL protocol or the FoPL+

protocol with lazy aborts. First we ask, whether the exclusive locks in the validation
and commit phase are really needed. This will lead to the debatable noPL-strategy.

Next we shall handle rollbacks. The first optimization concerns the ability to
detect necessary aborts before entering the validation phase. The second optimiza-
tion discusses the use of partial rollbacks.

Finally, we consider the absorption of operations. If the effect of an operation
does not depend on the execution of a preceding operation, this enables some
rollbacks to be dispensed with or the enforcement of validation success.

5.1 Optimistic Locking

In principle, since validating operations only read flaglists, it is not necessary to
lock these lists during validation. Furthermore, any other active operation may
only add new flags at the end of the lists. Such new flags do not influence the
validation result and consequently do not require locks either.

As a further optimization related to optimistic locking [21] it is not even nec-
essary to keep the used exclusive locks during the whole commit-phase, but to
release them immediately after changing the flaglist, since all other changes to the
objects in question have been detected in the validation phase to commute. Thus,
it is only necessary to guarantee the atomicity of the changes to the flaglists via
short-term-locks. We shall talk of the noPL-strategy (no preordered locking).

440 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

Figure 7: Deadlock in a FoPL+ schedule

However, in the case of an abort such an early release of locks may lead to
the removal of flags from operations that are uncritical otherwise. For example, it
might not be possible to execute the operation at all due to the locked flaglist. In
this case the noPL-strategy may lead to unnecessary aborts. The same applies for
the commit, if private buffers are used.

On the other hand, with such an early release of locks we risk the removal of
flags from operations that are uncritical otherwise, which may lead to unnecessary
aborts.

Example 18 Consider the development in Example 14. Since all operations will
commit, there will be no change, if we adopt the noPL-strategy.

However, things change, if we decide to abort incn (.4) and this decision is taken
before the execution of r2u(x). With the noPL-strategy flaglists are not locked, so
it would be possible to execute r2\\{x) before changing the flaglist ZLX. Then the
flag T2i in ZLX would be removed causing the later abort of inc2\{A). Thus, with
noPL we risk the unnecessary abort of T2.

Similarly, consider the schedule in Example 15. With the noPL-strategy the
commit of m c n (A) does not lead to a problem, but in the case of an abort the
changes to the unlocked flaglist ZLX may occur after r2u(x). Then r 2] will be
deleted from ZLX, which causes upd,2\{A) and T2 to abort. •

It depends on the probability of concurrent access to the same object, whether the
noPL-strategy is advisable or not.

5.2 Early and Partial Rollback

In the basic FoPL protocol the necessity to abort an operation and to trigger a
rollback will be detected in the validation phase, if a corresponding flag is missing.
As an alternative it is possible to inform an operation immediately, when one of its
flags will be removed. This strategy of early rollbacks will probably prevent further
operation from being executed, if we already know about their later abort.

It depends on the duration of operations, whether the communication overhead
caused by early rollbacks is small compared with the time waste for operations to
be aborted later. In general, early rollback may be advantageous on higher levels.

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 441

No matter, whether early rollbacks are applied or not, it is not necessary to roll-
back operations completely. Since only dependent flags are deleted, it is sufficient
to do a partial rollback to the earliest time point, where none of these flags were
set.

Partial rollbacks are also useful for removing deadlocks as seen in the next
example.

Example 19 Consider the partial schedule in Figure 7, which leads to a deadlock
with the flaglist ZLX = r i i ^ i u ^ u ^ i . It is only necessary to partially rollback until
we have ZLX = r n , and then to restart №112(0;) again. In this case T2 has been
aborted, but not T\. •

5.3 Absorption
Consider the case of a conflict OjM(x) —^ Oj'V{x), where the second operation does
not strongly depend on the first one. According to the definition of - » j this means
that the second operation absorbs the first one.

Definition 14 Let Tj, Tj> be two n-level-transactions (j j') and oJM(x), Ojiu(x)
be two of their ¿¿-operations. Then Oj>v{x) absorbs Ojli(x) (notation: Ojft(x)
Oj>v{x)) iff Oj^x) Oj'v{x) A Oj^x) Oj<v{x) holds. •

Absorption Oj^kix) Oj'vt(x) allows a brute force strategy to be used when
validating Oj<„. We simply remove the flag pj^ set by Oj^kix) in ZLX, if this makes
Oji„ successful on i . Of course, the deletion of pj^, will cause o ^ to be aborted
later. Furthermore, we delete all dependent flags which stem from operations that
strongly depend on Oj^kix).

This strategy immitates a schedule, where ¡¡{x) was not executed. The strat-
egy will be called commit enforcement strategy.

Example 20 As an alternative to the processing in Example 19 we could have
used the commit enforcement strategy with incn(A) which immediately gives
ZLX — i02i. This will also cause T2 to abort, but without rolling back w m W - n

6 Comparison of FoPL+ with Locking
We start with a comparison of FoPL+ with strict two-phase locking (str-2PL). As
a probabilistic model for multi-level transactions is still missing, this discussion
will necessarily remain preliminary. Nevertheless, we discuss both protocols with
respect to implementation costs and transaction throughput.

6.1 Implementation Costs

FoPL+ uses access lists to keep track of the objects accessed by the ¿¿-level >
operation oM. If str-2PL is used, we must also keep track of the accessed objects to

442 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

be able to request and release locks. So, with respect to the costs of implementing
these access-lists there is no difference between the protocols.

FoPL+ uses fiaglists for concurrency-control, and short-term-locks are always
necessary when fiaglists are accessed. Similarly, str-2PL must support a lock-table
to keep track of the locks. This could be arranged as a list of locks for each object.

The first task for str-2PL is to check a locklist for conflicts each time a new lock
is requested. This can be achieved by linear search. Even, if an Li-operation oM

already holds a lock on an Lj_i-object x requested by some o^k, it is in general not
possible to avoid conflict checking, when another operation wants to access the
same object x. Let us illustrate this by a simple example.

Example 21 Suppose Oja holds a fetch-lock on the Li-object A due to some
operation fetchjak(A). Then it is possible, that another operation Oj'p also holds
a fetch-lock on A due to some operation fetchj<0e(A). The two fetch-locks are
compatible to one another.

If Oja now requires another lock on A, say an ¿nc-lock due to inCjak '(A), this
request must be rejected, as the required lock is incompatible with the fetch-lock
held by Ojip. • ' •

On the other hand, FoPL+ does not check anything on appending a flag to a
flaglist. The check for conflicts is done in the validation-phase. For each operation
opjak{x) 6 act(oja) the first entries in the flaglist preceding (op, ja) have to checked
for conflicts. This again leads to linear search.

Thus, for conflict-checking we may state that FoPL+ produces an overhead
over str-2PL: fiaglists may be longer than locklists and they are accessed more
frequently. However, this overhead seems not to be dramatic. In particular, the
main parameter to validate this overhead is the number of different operations
accessing the same object x within a short period of time. One major assumption
for introducing multi-level transactions was that this number is rather small except
for level Lo- So the only critical overhead could appear on level L0 , but here we
usually have only short read-write sequences.

After commit, str-2PL has to access the lock-table again to release locks. This
can be realized by linear searching the locklists associated with the relevant objects.
FoPL+ has to delete flags in the case of commit and abort. For abort - and also
for Li-commit, if private buffers are used - dependent flags have to removed either.
For this there is no significant difference concerning the implementation costs of
str-2PL and FoPL+.

Finally, we must look at the implementation costs for deadlock detection. For
this str-2PL has to implement a waiting graph on Li-operations, which is updated
each time a lock-request has been rejected and on commit and abort. The same
applies to FoPL+ . In particular, the costs for deadlock detection are the same
for both protocols. The major difference, however, is that with str-2PL locks are
held on objects, whereas with FoPL+ the operations on the waiting graph are
independent from the execution of the transactions. This may have an impact on
transaction throughput, as we shall discuss next.

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 443

incfi (A) decp(B) fetchii (B) upds-iiC) upiTpiB)

r 111(2:) 10112(2;) 7-211(2;) «212(2;) 7*221 (2/) W222(2/) 7-311(2/) 7-321(2:) 70322(2;) 7-121(7/) 10122(1/)

Figure 8: Non-serializable multi-level schedule with FoPL+-overhead

As a first conclusion we may already state that there is no significant increase
in implementation costs, when FoPL+ is used instead of str-2PL. In any case, an
increase in transaction throughput would justify the implementation overhead.

6.2 Transaction Throughput
As to transaction throughput the discussion will be based on three examples. The
first one is Example 15, where we could show that FoPL+ accepts the serializable
schedule from Figure 5, whereas str-2PL would not. According to our completeness
result (Theorem 3) for FoPL+ this is no longer astonishing. With str-2PL the
operation upd2\(A) could first be started after the commit of T\. This causes an
overhead of one Li-operation and two Lo-operation. In this case the advantages of
FoPL+ are evident.

Next we consider two other examples shown in Figures 8 and 9. The first of
these examples shows an non-serializable schedule with an overhead for FoPL+ .
The last example demonstrates the power of FoPL+ , when the optimizations with
absorption on level L0 and early rollbacks are employed.

Example 22 Consider the non-serializable schedule from Figure 8. In this case
FoPL+ would produce the following flaglists on Li-objects:

ZLA upd 1 inC2
ZLB dec2 fetchs upd\
ZLC upd3

Then FoPL+ would abort 022, because it removes the shortest cycle in the waiting
graph, and consequently also 031, 032 and 012- A restart - 022 must be restarted
later than 031 and 012 may lead to the flaglists

ZLA updi i'iiC2

ZLB fetchz upd 1 dec2

ZLC upd3

and all transactions would commit now. In this case four Li-operations composed
from seven Lo-operations must be repeated.

For str-2PL the schedule could not occur. Howeverr, due to the upd-lock on
A held by T\ the operation 021 can only start after T\ has committed. Thus, the
overhead of FoPL+ consists only of two Li-operations composed from three Lo-
operations. •

444 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

fetchu(A) incoi(B)

rm(a;) r2n(y) wo}2{y) r121{ij) r 3 u (z) r22i(z) w222{z) r32i(x) w322(x)

Figure 9: Non-serializable multi-level schedule with str-2PL-overhead

Note that the overhead for FoPL+ occurring in Example 22 is only possible, if we
have concurrent access to the same object. On the other hand, the overhead is
not as large as expected. Again, the decisive parameter is the number of different
operations accessing the same object x within a short period of time.

Example 23 Now consider the schedule in Figure 9. Here str-2PL would request
the following locks on Li-objects:

A fetchi updz
B inc2 fetchi
C fetchi dec2

Since all these pairs of locks are incompatible, the request for the second lock
would be rejected. This leads to a deadlock, which can be resolved by aborting
and restarting T3. In addition, fetchi2(B) and dec22(C) could first be started after
this abort. This means that four Li-operations had to be repeated. These were
composed from six Z/0-operations.

If FoPL+ were taken instead, this would result in the following flaglists:

ZLa fetchi updz
ZLb inc2 fetchi
ZLC fetchi dec2

As in the previous example we have to abort and redo fetchsi(A), upd32{A) and
dec22(A), i.e. three Li-operations composed from five Lo-operations.

However, with could apply the absorption optimization to commit dec22(A) and
hence T2 immediately. In addition, T\ would also commit. Since the flag fetchz
would be removed, fetch3i(A), and upd32(A) still must be aborted and redone, but
this causes only two L\-operations composed from three Lo-operations.

Finally, since T2 validates before upd$2(A) started, we could even apply early
rollback. This means that only fetchsi(A) would be repeated, i.e. one Li-operation
composed from one Lo-operation. With these optimizations the overhead caused
by str-2PL occurs to be even worse. •

It is not yet possible to draw a general conclusion from these three examples in the
sense that FoPL+ is preferable. We could only see, that FoPL+ had advantages, if
no abort occurs or an abort occurs for both FoPL+ and str-2PL. Only the situation,

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 445

where FoPL+ acted "too optimistically" lead to slight advantages for str-2PL. In
order to base such investigations on solid theoretical grounds, a probabilistic model
for multi-level transactions must be used.

7 Recovery
In our discussion of concurrency control protocols in the preceding three sections
we always provided the necessicity of aborting operations or transactions. This
means that we have to undo all the effects issued by such operations, which is a
significant part of the recovery component. We usually talk of the rollback of an
operation.

One possible solution to this problem is to employ the principle of write-ahead-
logging (WAL), i.e. before updating the database rollback data are stored at some
safe place, which is usually a log-file. A accepted good solution based on WAL
is ARIES (Algorithm for Recovery and Isolation Exploiting Semantics) [16]. and
we shall adopt ARIES to our purposes here. We start giving a short list of the
fundamental features of ARIES:

• Recording is not restricted to normal transaction processing, but also happens
during rollback through so-called compensation log records (CLRs), which
prevent UNDO-operations to be executed more than once.

• The storage overhead - besides the logging data - is kept small. On each
page only the number of the log record which marks the last change to that
page has to be stored.

• ARIES supports partial rollbacks through savepoints and fast crash recovery
through checkpoints, at which information about buffered pages are stored.

• ARIES uses only short-term-locks - so-called latches - to access pages,
whereas long-term-locks as required by locking protocols are reserved for
records.

In [22] an extension ARIES/NT of ARIES to nested transactions has been pre-
sented. This extension is tighly coupled with locking protocols and does not em-
ploy inverse operations, which are possible in multi-level transactions. In particular,
locks are not released after finishing operations that are not transactions. The alter-
native MLR discussed in [15] exploits inverse operations, but unfortunately assumes
them to exist in any case. If they do not exist, the restrictions of ARIES/NT are
kept.

In the following we present the extension ARIES/ML for multi-level transactions
[6]. ARIES/ML is rather close to MLR, but is not necessarily coupled with a
locking protocol. Furthermore, we explicitly differentiate between operations for
which there exists an inverse and those for which there exists none.

The major features of ARIES will be preserved. We describe necessary exten-
sions to the data structures and their usage during normal processing and rollback.

446 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

The extension allows a coupling with a locking protocol and FoPL and provides the
necessary extensions to FoPL with respect to operation aborts. In this way we are
also able to support crash recovery.

The data structures used in ARIES/ML comprise various types of log records
stored in the log-file, an operation table and a dirty pages table. Each log record
has a log serial number (LSN) and a field indicating its type, which is ULR, CLR,
CCR, RCR, CR, SP or CP. Concretely, we distinguish update log records (ULRs),
compensation log records (CLRs), committed child records (CCRs), reactivate child
records (RCRs), commit records (CRs), savepoints (SPs) and checkpoints (CPs).

Update log records are created during normal transaction processing. Com-
pensation log records record UNDO-operations corresponding to some operation.
Committed child records are created, when an operation on a level Lj (i ^ n) has
finished. Reactivate child records are created during rollback; they correspond to
CCRs. Commit records are created, when a transaction commits.

Savepoints are only used to support partial rollback. Thus, it is sufficient to
provide their LSN and their type. Checkpoints are used to fasten crash recovery.
They are created regularly. Besides LSN and type they contain the dirty pages
table, the operation table and some additional data about the database files. The
actual storage of buffered pages is left to the buffer manager. We dispense with an
intensive discussion of savepoints and checkpoints.

7.1 Log Records for Normal Processing
In order to define the structure of these records for an ¿¿-operation o we assume a
total order on D ^ that includes For simplicity assume that the indices
are chosen in such a way that Ojpu E ^ °jpe k < i holds.

Definition 15 Let o = opjak(x) be an ¿¿-operation (i ^ n) of the n-level-
transaction Tj. The update log record ulrjak corresponding to o has the form

ulrjak = (lsnjak, ULR, ja, Isnjak-1, P, eff jak)

with the log serial number lsnjak, the type ULR, the identifier j a of the parent
operation trans(o), the log serial number lsrijak-\ of the previous operation in
act(oja), a pointer p to the page containing the object x affected by o and the
effect of o according to Definition 6. •

In general, to refer to the components of a ULR, we write (LSN, type, Opld,
PrevLSN, Pageld, data). If o is the first operation in act(o'), then PrevLSN is
undefined, indicated by the null value ± . Pageld may also be left undefined, if the
object is only virtual, i.e. realized by a set of other objects. Note that ULRs were
already present in the basic ARIES algorithms.

CCRs are created, when an ¿¿-operation o (0 < i < n) has finished. Same as
ULRs they contain LSN, type, Opld and PrevLSN. Furthermore, they have a field
LastLSN containing a pointer to the last log record created by some operation in
act(o), a field Childld containing the identifier of o itself and a field Op containing

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 447

the operator of o to indicate, whether a compensation will be possible or not. Thus,
we may write (LSN, type, Opld, LastLSN, Childld, LastLSN, Op).

Definition 16 Let o = opjak(x) be an ¿¿-operation (0 < i < n) of the n-level-
transaction Tj. The committed child record ccrjak corresponding to o has the form

ccrjak - (Isrija, CCR, ja, Isrijau, jak, lsnjak-1: op)

with the log serial number lsrija, the type CCR, the identifier j a of the parent
operation trans(o), the log serial number lsrijake corresponding to the last operation
in act(ojak), the identifier jak of the operation itself, the log serial number lsrijak-1
of the previous operation in act(oja) and the operator op. •

Commit records are created, when a transaction Tj commits. They are described
by LSN, type and Opld. Formally, a commit record for an n-level transaction Tj
has the form crj = (Isrij, CR, j, lsrijk) with the meaning of these components as
in Definition 15 before.

7.2 Log Records for UNDO

Since CLRs record UNDO-operations, they also contain LSN, type, Opld, PrevLSN,
Pageld and a field containing the data which is necessary for REDO. This can
be either a before image expressed by the effect as in ULRs or a compensation
operation. In addition, CLRs have a field UNDOnextLSN containing the LSN of
the log record for the next operation to be undone. Thus, we have the form (LSN,
type, Opld, PrevLSN, UNDOnextLSN, Pageld, data)

Definition 17 Let o = Ojak(x) be an ¿¿-operation (i n) of the n-level-
transaction Tj. A compensation log record clrjak corresponding to o has the form

clrjak = {lsnfak, CLR, jak, lsnjak, Isnf^i, p, d)

with the log serial number lsnc^k, the type CLR, the identifier jak of the rolled back
operation, the log serial number lsnja k~i of the ULR for the previous operation in
act(oja) the log serial number lsn^k_1 of the log record for the next operation to
be undone and a pointer p to the page containing the object x affected by o. The
last field d is either the effect effjak of o according to Definition 6 or a compensation
operation o - 1 . •

CLRs existed already in ARIES. The only difference here is that the data part of
a CLR may now contain a compensation operation, unless o resides on level LQ.

Reactivate child records are also created during rollback, when a finished ¿¿-
operation has to be reinstalled in the operation table. Besides LSN and type a
RCR has fields Opld, PrevLSN, Childld, LastLSN and UNDOnextLSN with the
same meaning as for the other kinds of log records.

448 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

7.3 Normal Transaction Processing
During normal transaction processing the corresponding ULRs, CCRs, CRs, SPs
and CPs are written into the log-file. In addition, each page will contain a field
PageLSN, in which the LSN of the last entry writing to that page is recorded. For
page access, latches are used also by ARIES/ML.

Finally, ARIES/ML manages an operation table and a dirty pages table. The
operation table contains information about active operations. Each record in this
table contains

• an operation identifier Opld,

• the status of that operation, which may be 'propagate' (p), 'validate1 (v) -
not used with locking protocols - 'commit' (c) or 'abort' (a),

• LastLSN and UNDOnextLSN.

Whenever a CCR is created the corresponding operation does not need to be kept
in the operation table. The same applies to CRs for top-level operations, i.e.
transactions.

The dirty pages table contains information about buffered pages. Each of its
records contains a Pageld and a recovery LSN (RecLSN), which marks the first
entry in the log file from which updates to that page were not yet made persistent.

Example 24 Consider the schedule from Figure 1. Assume that x is stored on
page p, y on page q and that p is made persistent by the buffer manager after
finishing 021. Then the log records in the following list will be created. The list
also indicates the dirty pages table (abbreviated as d.p.t.), the operation table and
the pair of PageLSNs for p and q.

log-entry operation table d.p.t. Page LSNs
(1,ULR,11,-L,p, . • •) (l ,p ,L ,±) (11,p,1,1) (-L.-L)
(2,ULR,ll , l ,p, .

• •) (l , p , ± , l) (l l ,p,2,2) (P.2) (2,JL)
(3,CCR,1,-L,11,2 inc) (l,p,3,3) (P.2) (2,-L)
(4,ULR,21,±,p, . • •) (l,p,3,3) (2,p,L,L) (21,p,4,4) (P.2) (2,-L)
(5,ULR,21,4,p, .

• •) (l,p,3,3) (2,p,L,L) (21,p,5,5) (P,2) (2,-L)
(6, CCR, 2, _L, 21,5 inc) (l,p,3,3) (2,p,6,6) (J-.-L)
(7,ULR,22,L,9, .

• •) (l,p,3,3) (2,p,6,6) (22,p,7,7) (q.7) (-L.7)

Dots indicate some data which are left unspecified. •

7.4 Rollback
Rollback may be started at any time and can be executed until a specified savepoint
is reached. Thus, to start a rollback we need a set OpIdSet of operation identifiers
and a SaveLSN with SaveLSN = 0 corresponding to a complete rollback.

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 449

The first activity is to create a rollback list containing the LastLSN from all
active operations with a parent in OpIdSet. For this the operation table has to be
accessed. Then UNDO-operations will be processed by decreasing LSN following
the PrevLSN-entries in log records. Only LSNs that are larger than the given
SaveLSN will be considered. Rollback stops, when the rollback list becomes empty.

Depending on the type and the content of the log record r with LSN in the
rollback list different actions will be triggered:

• In the case r.type = ULR an UNDO-operation will be performed and the
PageLSN of the page affected by the operation underlying r will be reset. The
necessary data are kept in the ULR. Furthermore, r.PrevLSN will be added
to the rollback list and a CLR r' with r'.UNDOnextLSN = r.PrevLSN will be
created. Finally, the fields LastLSN and UNDOnextLSN in the corresponding
operation table record will be updated. In this case there is no difference to
ARIES.

• In the case r.type = CCR we have to distinguish two different subcases.
If there exists a compensation operation, it will be executed. If we assume
a locking protocol for concurrency control, there is a risk for deadlocks now.
ARIES/ML circumvents this problem by allowing only one compensation op-
eration to be active. If it is involved in a deadlock, one of the other operations
will be chosen for abort. Thus, in this subcase there is not a big difference to
the ULR-case before. In particular, a single CLR will be created.
Now assume that there is no compensation operation. In this subcase the
child operation has to be reactivated and an RCR will be created. Both
LastLSN and PrevLSN give rise to new entries in the rollback list.

• The cases r.type = CLR and r.type = RCR can only occur, if a partial
rollback has already been performed. In both cases there is nothing to do;
just add PrevLSN to the rollback list.

Example 25 Consider the following sequence of log records:

(1,ULR,111,X, . . .) (2,CCR,11,±,111,1, . . .) (3,ULR,112,_L, . . .)
(4,CCR,11,2,112,3, . . .) (5,CCR,1,_L,11,4, . . .) (6,ULR, 121,X, . . .)
(7,ULR,121,6, . . .) (8,CCR,12,X,121,7, . . .) (9,ULR,122,X, . . .)
(10,CCR,12,8,122,9, . . .) (11,ULR,123,X, . . .) ,

where the underlined type CCR refers to a compensable operation and dots are
used to indicate page identifiers and data entries we are not interested in in this
example. A complete rollback of 0\ will start with the rollback list (11,10,5) and
create the following continuation of the log sequence:

(12,CLR,123,11,X,...) (13,CLR,12,10,8,...) (14,RCR,12,13,121,7,X)
(15,CLR,121,7,6, . . .) (16,CLR,121,15,X, . . .) (17,CLR,1,5,X, . . .) .

Here the fifth field in CLRs contains the UNDOnextLSN. Fields in RCRs are listed
in the order described above. •

450 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

7.5 Crash Recovery
Crash recovery in ARIES/ML follows the same ground procedure as ARIES, i.e.
we have three consecutive passes for analysis, REDO and UNDO.

The analysis pass is based on log records starting from the last checkpoint. The
goal is to discover where to start the REDO-pass and the set of operations to be
undone. The last checkpoint allows an initial reconstruction of the operation table
and the dirty pages table. Then log records r following the checkpoint entry are
read one after the other. Depending on the type and content of r different actions
will be triggered:

• If r.OpId exists, then an entry for Opld must be added to the operation table
unless a corresponding record exists. In both cases, the LastLSN will be set
to r.LSN.

• If r.type = ULR or r.type — CLR, then the dirty pages table may contain a
wrong RecLSN entry for the page indicated by r.Pageld. If this is the case
RecLSN will be set-to r.LSN.

• If r.type = CCR, then the entry for r.Childld will be deleted in the operation
table.

• If r.type = RCR, then (r.Childld, p,r.LastLSN,r.LastLSN) has to be added
to the operation table.

• If r.type = CR, then the entry for r.OpId has to be removed from the opera-
tion table.

After analysing these log records, the starting LSN for the REDO-pass will be
set to the minimum of all RecLSNs in the dirty pages table. The set OpIdSet of
operations to be undone contains all operation identifiers from the operation table
which do not have the status 'commit'.

For the REDO-pass there are no changes to ARIES, i.e. log records r starting
from REDO-LSN as discovered in the analysis pass will be excuted again, if r.Pageld
occurs in the dirty pages table and RecLSN < r.LSN A PageLSN < r.LSN holds.

In the UNDO-pass ARIES/ML starts a complete rollback with OpIdSet from
the analysis pass and SaveLSN = 0.

8 Conclusion
In this paper we investigated concurrency control and recovery for multi-level trans-
actions which occur naturally in distributed databases. The general idea is to
exploit application semantics to reduce the number of conflicts.

Two-phase locking (2PL) can be easily generalized to the multi-level case keep-
ing the advantages of locking protocols. All schedules accepted by 2PL will be
serializable. Furthermore, strict 2PL leads to schedules that are recoverable and

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 451

strict on all levels. As with locking for flat transaction systems the major draw-
back results from the possibility of deadlocks with the well-known time-consuming
detection algorithms.

As an alternative we developed the hybrid FoPL protocol (Forward oriented
Concurrency Control with Preordered Locking). Same as 2PL, FoPL only accepts
serializable schedules. If combined with a waiting strategy for the case of not
successful validation (lazy abort), the modified FoPL+ protocol will accept all se-
rializable schedules. Possible deadlocks in the waiting graph are not critical, since
objects are not locked. Moreover, the accepted schedules will be recoverable on all
levels. In contrast to 2PL the FoPL protocol is deadlock-free. However, as with
other optimistic or hybrid protocols strictness nor cascade-freeness cannot be guar-
anteed. Finally, we were able to discuss several optimizations of the basic FoPL
protocol.

Which choice - strict 2PL or FoPL/FoPL+ - is the better one, depends on
various factors. The most important one concerns the probability of conflicts. In
general, it is assumed - and this is one of the major motivations behind multi-level
transactions - that at least on higher levels the conflict rate will tremendously
decrease, which is an argument favouring FoPL. We currently start to realize a test
bed in order to compare transaction throughput for various multi-level protocols.
We plan to extend these examinations also to generalizations of hybrid protocols
that employ time-stamps [3, 10].

The basic idea underlying FoPL stems from the ODL (Optimistic Dummy Lock)
protocol [11]. Therefore, it is worth to spend a few words on a comparison. Since
ODL has been developed for flat transactions, we must base this comparison on
this special case. ODL also uses flags - the so-called "dummy locks" - in the
propagation phase. When a transaction Tj issues a read-operation on object x, a
flag Fj is set on the object x. Fj can be deleted by Tj itself during its validation
phase or by another transaction Tk, when Tk performs an actual write-operation
on x. Validation basically consists in checking, whether flags are still set.

Compared with FoPL (applied to 1-level-transactions) the major differences are
that FoPL uses flaglists, whereas ODL uses a single flag, and that ODL employs
a backward validation strategy. Thus, for each commit ODL will force all other
operations accessing the same object to abort, no matter whether this is necessary
or not. Furthermore, as shown in [21] the backward validation strategy makes a
generalization of ODL to multi-level transactions nearly impossible.

As to recovery we adapted ARIES [16] to work both with multi-level locking
protocols and FoPL. In the former case one crucial point was to avoid deadlocks
during rollback. The extension ARIES/ML preserves the advantages of ARIES
such as partial rollbacks, different locking granularities, small storage overhead and
the avoidance of multiple UNDO.

References

[1] C. Beeri, A. Bernstein, N. Goodman. A Model for Concurrency in Nested

452 Klaus-Dieter Sehe we, Torsten Ripke. Sven Drechsler

Transactions Systems. Journal of the ACM, 36(2) : 230-269, 1989.

[2] B. Bhargava. Performance Evaluation of the Optimistic Approach to Dis-
tributed Database Systems and its Comparison to Locking. In Proc. 3rd In-
tern. Conference on Distributed Computing Systems. IEEE 1982.

[3] C. Boksenbaum, M. Cart, J. Ferrie, J.-F. Pons. Concurrent Certifications by
Intervals of Timestamps in Distributed Database Systems. IEEE Transactions
on Software Engineering, 13(4) : 409-419, 1987.

[4] A. Bernstein, N. Goodman. Concurrency Control in Distributed Database
Systems. ACM Transactions on Computer Systems, 13(2) : 121-157, 1981.

[5] K. Chandry, J. Misra. A Distributed Algorithm for Detecting Resource Dead-
locks in Distributed Systems. In Proc. ACM Conference on Principles of Dis-
tributed Computing : 157-164, 1982.

[6] S. Drechsler. Kopplung des ARIES-Recovery-Systems mit hybriden
Mehrschichtschedulern. Master Thesis, Clausthal Technical University, 1998.

[7] A. Elmargamid, Y. Leu. An Optimistic Concurrency Control Algorithm for
Heterogenous Distributed Database Systems. IEEE Transactions on Data and
Knowledge Engineering, 10(6) : 26-32, 1987.

[8] J. Gray, A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishing, 1993.

[9] T. Härder. Observations on Optimistic Concurrency Control Schemes. Infor-
mation Systems, 9(2) : 111-120, 1984.

[10] U. Halici, A. Dogac. Concurrency Control in Distributed Databases Through
Time Intervals and Short-Term Locks. IEEE Transactions on Software Engi-
neering, 12(8) : 994-1003, 1989.

[11] U. Halici, A. Dogac. An Optimistic Locking Technique for Concurrency Con-
trol in Distributed Databases. IEEE Transactions on Software Engineering,
17(7) : 712-124, 1991.

[12] H. Kung, J. Robinson. On Optimistic Methods for Concurrency Control. In
Proceedings of the 5th VLDB-Conference, 1979.

[13] V. Li. Performance Model of Timestamp Ordering Concurrency Control Al-
gorithms in Distributed Databases. IEEE Transactions on Computing, 1987.

[14] W.-T. Lin, J. Nolte. Basic Timestamping, Multiple Version Timestamp, and
Two-Phase Locking. In Proceedings of the 9th VLDB-Conference : 109-119,
1983.

[15] D. B. Lomet. MLR: A Recovery Method for Multi-level Systems. In M. Stone-
braker (Ed.). Proc. SIGMOD 1992: 185-194, San Diego 1992.

Hybrid Concurrency Control and Recovery for Multi-Level Transactions 453

[16] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, P. Schwarz. ARIES: A
Transaction Recovery Method Supporting Fine-Granularity Locking and Par-
tial Rollbacks Using Write Ahead Logging. ACM Transactions on Database
Systems, 17(1) : 94-162, 1992.

[17] C. Mohan, B. Lindsay, R. Obermarck. Transaction Management in the R*
Distributed Database Management System. ACM Transactions on Database
Systems, 11(4), 1986.

[18] R. Obermarck. Distributed Deadlock Detection Algorithm. ACM Transactions
on Database Systems, 7(2), 1982.

[19] M. Ozsu, P. Valduriez. Principles of Distributed Database Systems. Prentice-
Hall International, 1994.

[20] C. Papadimitriou. The Theory of Database Concurrency Control. Computer
Science Press, 1986.

[21] T. Ripke. Verteilte hybride Synchronisationstechniken in Mehrschichten-
Transaktionssystemen. Ph.D. Thesis. Clausthal Technical University, 1998.

[22] K. Rothermel, C. Mohan. ARIES/NT: A Recovery Method Based on Write-
Ahead Logging for Nested Transactions. In P. M. G. Apers, G. Wiederhold
(Eds.). Proc. 15th VLDB: 337-346, Amsterdam 1989.

[23] G. Weikum. Transaktionsverwaltung in Datenbanksystemen mit Schichtenar-
chitektur. Ph.D. Thesis. Darmstadt Technical University, 1986.

[24] G. Weikum. Principles and Realization Strategies of Multilevel Transaction
Management. ACM Transactions on Database Systems, 16(1):132—180, 1991.

Received February, 1999

