Unusual Algorithms for Lexicographical Enumeration*

Pál Dömösi ${ }^{\dagger}$

Abstract

Using well-known results, we consider algorithms for finding minimal words of given length n in regular and context-free languages. We also show algorithms enumerating the words of given length n of regular and contextfree languages in lexicographical order.

1 Introduction

E. Mäkinen [8] described algorithms to find the lexicographically minimal words for regular and context-free grammars. Using well-known recent results in $[1,2,3$, $6,7,9]$, we show similar algorithms. E. Mäkinen [8] presents also an algorithm to enumerate the words of a regular language in lexicographical order. We give another algorithm for lexicographical enumeration of regular languages. In addition, using an extension of the well-known CYK-algorithm, we show an algorithm to enumerate the words of length n of a context-free language in lexicographical order. Using the well-known Valiant algorithm, see [11,5], a little refinement of our solution is attainable.

2 Preliminaries

A word (over Σ) is a finite sequence of elements of some finite non-empty set Σ. We call the set Σ an alphabet, the elements of Σ letters. If u and v are words over an alphabet Σ, then their catenation $u v$ is also a word over Σ. Then we also say that u is a prefix of $u v$. In particular, for every word u over $\Sigma, u \lambda=\lambda u=u$, where λ denotes the empty word. Given a word u, we define $u^{0}=\lambda, u^{n}=u^{n-1} u, n>0$, $u^{*}=\left\{u^{n} \mid n \geq 0\right\}$ and $u^{+}=u^{*} \backslash\{\lambda\}$. In addition, we put $\Sigma^{n}=\{w \in \Sigma| | w \mid=n\}$.

The length $|w|$ of a word w is the number of letters in w, where each letter is counted as many times as it occurs. Thus $|\lambda|=0$. By the free monoid Σ^{*} generated

[^0]by Σ we mean the set of all words (including the empty word λ) having catenation as multiplication. We set $\Sigma^{+}=\Sigma^{*} \backslash\{\lambda\}$, where the subsemigroup Σ^{+}of Σ^{*} is said to be free semigroup generated by Σ. Subsets of Σ^{*} are referred to as languages over Σ. Given a set Σ, let $\operatorname{card}(\Sigma)$ denote the cardinality of Σ. A language $L \subseteq \Sigma^{*}$ is said to be k-slender if $\operatorname{card}\{w \in L||w|=n\} \leq k$, for every $n \geq 0$. A language is slender if it is k-slender for some positive integer k. A 1 -slender language is called thin language. A language L is said to be a union of single loops (or, in short, USL) if for some positive integer k and words $u_{i}, v_{i}, w_{i}, 1 \leq i \leq k$,
$$
\text { (*) } L=\bigcup_{i=1}^{k} u_{i} v_{i}^{*} w_{i}
$$
L is called a union of paired loops (or UPL, in short) if for some positive k and words $u_{i}, v_{i}, w_{i}, x_{i}, y_{i}, 1 \leq i \leq k$,
$$
\text { (**) } L=\bigcup_{i=1}^{k}\left\{u_{i} v_{i}^{n} w_{i} x_{i}^{n} y_{i} \mid n \geq 0\right\} .
$$

For a USL (or UPL) language L the smallest k such that $(*)$ (or (**)) holds is referred to as the USL-index (or UPL-index) of L. A USL language L is said to be a disjoint union of single loops (DUSL, in short) if the sets in the union (*) are pairwise disjoint. In this case the smallest k such that ($*$) holds and the k sets are pairwise disjoint is referred to as the DUSL-index of L. The notions of a disjoint union of paired loops (DUPL) and DUPL-index are defined analogously considering (**). We shall use the following well-known results.

Theorem 2.1 [9] The next conditions, (i)-(iii), are equivalent for a language L.
(i) L is regular and slender.
(ii) L is USL.
(iii) L is DUSL.

Theorem 2.2 [9] Every UPL language is DUPL, slender, linear and unambiguous.

Theorem 2.3 [6, 10] Every slender context-free language is UPL.

We will use the following extension of Theorem 2.3.
Theorem 2.4 [7] A given slender context-free language can be effectively written as a disjoint union of (finitely many) paired loops.

The next statement is a direct consequence of the constructive proof of Theorem 2.1 in [9].

Theorem 2.5 A given slender regular language can be effectively written as a disjoint union of (finite many) single loops.

3 Finding minimal words of given length and enumeration of regular languages

Given a total order \prec on Σ, a lexicographical order on Σ^{*} is defined as an extension of \prec to Σ^{*} such that for any pair $u, v \in \Sigma^{*}, u \prec v$ if and only if either $v=u u^{\prime}, u^{\prime} \in \Sigma^{+}$ or $u=w x u^{\prime}, v=w y v^{\prime}, x \prec y$ for some $w, u^{\prime}, v^{\prime} \in \Sigma^{*}$ and $x, y \in \Sigma$. We will denote by first (Σ) the first element of Σ under \prec. Moreover, for every $u \in \Sigma^{*}$ we put $\operatorname{next}(u)=\min \left\{v \mid v \in \Sigma^{*}, u \prec v\right\}$. In addition, we put $\operatorname{Pref}(L)=\{v \mid \exists u \in$ $\left.L, v^{\prime} \in \Sigma^{*}, u=v v^{\prime}\right\}$. Thus $\operatorname{Pref}(L)$ denotes the set of all prefixes of words in L.

Given a language L, the language $L_{\text {min }}$ is defined by taking from all words of L of the same length only the first one in lexicographic order. Of course, $L_{\min }$ is a thin language. We shall use the following results.

Theorem 3.1 [1, 4] For every regular language L, the language $L_{m i n}$ is regular, and a regular grammar for it can be effectively constructed.

Theorem 3.2 [2] For every context-free language L, the language $L_{\text {min }}$ is contextfree. Moreover, given a context-free grammar generating L, a context-free grammar for $L_{\text {min }}$ can be effectively constructed.

Using Theorem 3.1 and Theorem 3.2, together with Theorem 2.5 and Theorem 2.4, the following algorithms can be constructed.

Algorithm regmin
Input: A regular grammar $G=(V, \Sigma, P, S)$ and a total order \prec on Σ.
Output: A finite language $L_{G}=\left\{u_{1}, v_{1}, w_{1}, \ldots, u_{n(G)}, v_{n(G)}, w_{n(G)}\right\}$ having

$$
L_{\min }=\bigcup_{i=1}^{n(G)}\left\{u_{i} v_{i}^{n} w_{i} \mid n \geq 0\right\}
$$

End of algorithm regmin

Algorithm cfmin

Input: A context-free grammar $G=(V, \Sigma, P, S)$ and a total order \prec on Σ.

Output: A finite language $L_{G}=\left\{u_{1}, v_{1}, w_{1}, x_{1}, y_{1}, \ldots, u_{n(G)}, v_{n(G)}, w_{n(G)}, x_{n(G)}\right.$; $\left.y_{n(G)}\right\}$ having

$$
L_{\min }=\bigcup_{i=1}^{n(G)}\left\{u_{i} v_{i}^{n} w_{i} x_{i}^{n} y_{i} \mid n \geq 0\right\}
$$

End of algorithm cfmin

On the basis of the above observations, we now show how to construct the following algorithms.

Algorithm REGMIN
Input: A regular grammar $G=(V, \Sigma, P, S)$, a total order \prec on Σ and a positive integer n.
Output: A finite language $L_{G}=\left\{u_{1}, v_{1}, w_{1}, \ldots, u_{n(G)}, v_{n(G)}, w_{n(G)}\right\}$ (having $\left.L_{\text {min }}=\bigcup_{i=1}^{n(G)}\left\{u_{i} v_{i}^{n} w_{i} \mid n \geq 0\right\}\right)$ and

- a pair k, ℓ of positive integers such that $1 \leq k \leq n(G)$ if the word of length n of $L_{\min }$ exists and it has the form $u_{k} v_{k}^{\ell} w_{k}$;
- an error message if $L_{\min }$ has no word of length n.

Method: Apply the algorithm regmin; $k, \ell \leftarrow 0$;
for $i \leftarrow 1 \ldots n(G)$ do
if the equation $\left|u_{i} w_{i}\right|+\left|v_{i}\right| \alpha=n$ has a positive integer solution for α
then $k \leftarrow i ; \ell \leftarrow \alpha$;
od
Output:

- k, ℓ, if $k>0$;
- an error message if $k=0$;

End of algorithm REGMIN

Algorithm CFMIN

Input: A context-free grammar $G=(V, \Sigma, P, S)$, a total order \prec on Σ and a positive integer n.
Output: A finite language $L_{G}=\left\{u_{1}, v_{1}, w_{1}, x_{1}, y_{1}, \ldots, u_{n(G)}, v_{n(G)}, w_{n(G)}, x_{n(G)}\right.$, $\left.y_{n(G)}\right\}$ (having $L_{\text {min }}=\bigcup_{i=1}^{n(G)}\left\{u_{i} v_{i}^{n} w_{i} x_{i}^{n} y_{i} \mid n \geq 0\right\}$) and

- a pair k, ℓ of positive integers such that $1 \leq k \leq n(G)$ if the word of length n of $L_{\text {min }}$ exists and it has the form $u_{k} v_{k}^{\ell} w_{k} x_{k}^{\ell} y_{k}$;
- an error message if $L_{\min }$ has no word of length n.

Method:

Apply the algorithm cfmin; $k, \ell \leftarrow 0$;
for $i \leftarrow 1 \ldots n(G)$ do
if the equation $\left|u_{i} w_{i} y_{i}\right|+\left|v_{i} x_{i}\right| \alpha=n$ has a positive integer solution for α then $k \leftarrow i ; \ell \leftarrow \alpha$;
od
Output:

- k, ℓ, if $k>0$;
- an error message if $k=0$;

End of algorithm CFMIN

It is well-known that for every pair of regular grammars G_{1}, G_{2}, a regular grammar G having $L(G)=L\left(G_{1}\right) \backslash L\left(G_{2}\right)$ can be effectively constructed. Therefore, by Theorem 3.1 and Theorem 2.5, we can consider the following idea for enumerating the words of length n in $L(G)$ in lexicographical order having a regular grammar G. Assume that, using REGMIN, we just get either the word of length n of $(L(G))_{\min }$ or an error message that there exists no such a word in $(L(G))_{\min }$. Having the error message, we are ready. Otherwise, construct a regular grammar G^{\prime} with $L\left(G^{\prime}\right)=\left(L(G) \backslash(L(G))_{\min }\right.$, consider G^{\prime} instead of G and use the above procedure again.

In more details, we consider the following algorithm.

Algorithm reg-enumerate

Input: A regular grammar $G=(V, \Sigma, P, S)$, a total order \prec on Σ and a positive integer n.
Output:

- $L_{G_{j}}=\left\{u_{j, 1}, v_{j, 1}, w_{j, 1} \ldots, u_{j, n\left(G_{j}\right)}, v_{j, n\left(G_{j}\right)}, w_{j, n\left(G_{j}\right)}\right\}, k_{j}, \ell_{j}, j=1, \ldots, m$ (having $m=\operatorname{card}\{p \in L(G)| | p \mid=n\}, L_{j}=\bigcup_{i=1}^{n\left(G_{j}\right)} u_{j, i} v_{j, i}^{*} w_{j, i}, j=1, \ldots, m$ with $L_{0}=L(G), L_{1}=L_{m i n}, L_{k}=L_{k-2} \backslash L_{k-1}, k=2, \ldots, m$, such that

1
$n\left(G_{j}\right),\left|u_{j, k_{j}} v_{j, k_{j}}^{\ell_{j}} w_{j, k_{j}}\right|=n, j=1, \ldots, m, u_{1, k_{1}} v_{1, k_{1}}^{\ell_{1}} w_{1, k_{1}} \prec u_{2, k_{2}} v_{2, k_{2}}^{\ell_{2}} w_{2, k_{2}}$
$\left.\prec \ldots \prec u_{m, k_{m}} v_{m, k_{m}}^{\ell_{m}} w_{m, k_{m}}\right)$ if $L(G)$ has a word of length $n ;$

- an error message otherwise.

Method:

$P={ }^{\prime} n o^{\prime}$;
while REGMIN has no error message do
$P={ }^{\prime} y e s^{\prime}$;
Apply the algorithm REGMIN;
Construct a regular grammar G^{\prime} having $L\left(G^{\prime}\right)=\left(L(G) \backslash(L(G))_{\text {min }} ; G \leftarrow G^{\prime} ;\right.$ od
if $P={ }^{\prime} n o^{\prime}$ then Output: an error message;
End of algorithm reg-enumerate

4 Enumeration of context-free languages

In [8] it is conjectured that there exists no efficient enumeration algorithm for the lexicographic enumeration of context-free languages. We can provide an algorithm for enumeration of context-free languages, running in polynomial time and space. First we consider the following modified version of CYK algorithm to decide whether a word is a prefix of a word of given length of the language.

Algorithm MCYK

Input: A context-free grammar $G=(V, \Sigma, P, S)$ given in Chomsky normal form, a word $u=b_{1} \ldots b_{m} \in \Sigma^{+}\left(b_{1}, \ldots, b_{m} \in \Sigma\right)$, and a positive integer n.
Output: a variable P having the value

- $P=$ 'yes', if u is a prefix of an n-length word in $L(G)$;
- $P=$ ' $n o$ ', otherwise.

Method:

if $m>n$ then $P=$ 'no' else do
for $i \leftarrow 1 \ldots n$ do
if $i \leq m$
then $V_{i, 1} \leftarrow\left\{A \mid A \rightarrow b_{i}\right.$ is a production $\}$
else $V_{i, 1} \leftarrow\{A \mid \exists a \in \Sigma$ such that $A \rightarrow a$ is a production $\}$
od
for $j \leftarrow 2 \ldots n$ do
for $i \leftarrow 1 \ldots n-j+1$ do
$V_{i, j} \leftarrow \emptyset ;$
for $k \leftarrow 1 \ldots j-1$ do
$V_{i, j} \leftarrow V_{i, j} \cup\left\{A \mid A \rightarrow B C\right.$ is a production, B is in $V_{i, k}$ and C is in $\left.V_{i+k, j-k}\right\}$ od
od
od
if $S \in V_{1, n}$ then $P=$ 'yes'
else $P=$ 'no';
od
Output: P;
End of algorithm MCYK
Now we construct an algorithm to enumerate the words of length n in contextfree languages. We consider the following idea for such an algorithm. Assume we just output $u=a_{1} a_{2} \cdots a_{n}$ and are looking for the next word in lexicographical order of length n in $L(G)$. This word, when it exists, has the form

$$
v=a_{1} a_{2} \cdots a_{i} b_{i+1} b_{i+2} \cdots b_{n}
$$

for some $0 \leq i \leq n-1, a_{i+1} \prec b_{i+1}$. Clearly, when v exists, we have
$i=\max \left\{j \mid 0 \leq j \leq n-1, a_{1} a_{2} \cdots a_{j}\right.$ is the prefix of a word $w \in L(G)$ such that $|w|=n$ and the $(j+1) s t$ letter of w is bigger than $\left.a_{j+1}\right\}$,

$$
b_{i+1}=\min \left\{b \in \Sigma \mid a_{i+1} \prec b \text { and } a_{1} a_{2} \cdots a_{i} b \in \operatorname{Pref}\left(L(G) \cap \Sigma^{n}\right)\right\}
$$

and, for any $2 \leq j \leq n-i$,

$$
b_{i+j}=\min \left\{b \in \Sigma \mid a_{1} a_{2} \cdots a_{i} b_{i+1} b_{i+2} \cdots b_{i+j-1} b \in \operatorname{Pref}\left(L(G) \cap \Sigma^{n}\right)\right\}
$$

Now, the algorithm should be clear; find first i and b_{i+1} and then, in order, b_{i+2}, b_{i+3}, \ldots, b_{n}. Notice that v exists iff i exists and, when both do, we look for each b_{j} knowing that there must be one.

Algorithm cf-enumerate

Input: A context-free grammar $G=(V, \Sigma, P, S)$, a total order \prec on Σ and a positive integer n.

Output:

- The words of length n in $L(G)$ in lexicographical order if $L(G)$ has a word of length n;
- an error message otherwise.

Method:

Determine the minimal word $p_{\min (G, n)}$ of length n in $L(G)$, if such a word exists (apply either methods in [8] having $O\left(n^{2}\right)$ time complexity or the algorithm CFMIN);
if there exists no word of length n in $L(G)$ then $P=$ 'no';
Output: an error message;
else do $a_{1} \ldots a_{n} \leftarrow p_{\min (G, n)} ; P=$ 'yes' od
while $P=$ 'yes' do
Output: $a_{1} \ldots a_{n}$;
$P=$ 'no'; $m \leftarrow n+1$;
while $P=$ 'no' and $m>1$ do
$m \leftarrow m-1 ; b \leftarrow a_{m} ;$
while $P=$ 'no' and next $(b) \in \Sigma$ do
$b \leftarrow n \operatorname{ext}(b) ; b_{m} \leftarrow b ;$
if $m>1$ then apply MCYK for the inputs $a_{1} \ldots a_{m-1} b_{m}$ and n;
else apply MCYK for the inputs b_{1} and n;
od
od
if $P=$ 'yes' then do
if $m>1$ then $b_{1} \ldots b_{m-1} \leftarrow a_{1} \ldots a_{m-1}$;
while $m<n$ do
$m \leftarrow m+1$
$b \leftarrow \operatorname{first}(\Sigma) ; b_{m} \leftarrow b ;$
Apply MCYK for the inputs $b_{1} \ldots b_{m}$ and n;
while $P=$ 'no' and next $(b) \in \Sigma$ do
$b \leftarrow \operatorname{next}(b) ; b_{m} \leftarrow b$;
Apply MCYK for the inputs $b_{1} \ldots b_{m}$ and n;

```
            od
        od
    a,\ldots..an}\leftarrow\mp@subsup{a}{n}{}\leftarrow\mp@subsup{b}{1}{}\ldots\mp@subsup{b}{n}{}
    od
od
    End of algorithm cf-enumerate
```

Acknowledgement. The author expresses his gratitude to Professor Arto Salomaa for his kind invitation and hospitality.

The author thanks the anonymous referee for pointing out the errors in a preliminary version which have improved the clarity and the quality of the paper.

References

[1] M. Andraşiu, G. Păun, J. Dassow, A. Salomaa, Language-theoretic problems arising from Richelieu cryptosystems, Theoret. Comput. Sci., 116 (1993) 339-357.
[2] J. Berstel, L. Boasson, The set of minimal words of a context-free language is context-free, J. Comput. Syst. Sci., 55 (1997) 477-488.
[3] J. Dassow, G. Păun, A. Salomaa, On thinness and slenderness of L languages, Bull. EATCS 49 (1993), 152-158.
[4] S. Eilenberg, Automata, languages and machines, Vol A, Academic Press, New York, 1974.
[5] K. Hermann, G. Walter, A simple proof of Valiant's lemma, R.A.I.R.O. Inform. Theor. Appl. 20 (1986) 183-190.
[6] L. Ilie, On a conjecture about slender context-free languages, Theoret. Comput. Sci., 132 (1994) 427-434.
[7] L. Ilie, On lengths of words in context-free languages, Theoret. Comput. Sci., to appear.
[8] E. Mäkinen, On lexicographic enumeration of regular and context-free languages, Acta Cybernet., 13 (1997) 55-61.
[9] G. Păun, A. Salomaa, Thin and slender languages, Discrete Appl. Math. 61 (1995) 257-270.
[10] D. Raz, Length considerations in context-free languages, Theoret. Comput. Sci. 183 (1997) 21-32.
[11] L. Valiant, General context-free recognition in less than cubic time, J. Comput. Syst. Sci. 10 (1975) 308-315.

Received June, 1998

[^0]: *The research has been supported by the Academy of Finland grant 137358 and the Hungarian National Foundation for Scientific Research grants OTKA-T019392 and OTKA-T030140.
 ${ }^{\dagger}$ L. Kossuth University, Institute of Mathematics and Informatics, 4032 Debrecen, Egyetem tér 1, Hungary, domosi@math.klte.hu

