F codes

Marek Michalik *

Abstract

The notion of an F code is introduced as a generalization of the notion of an L code. All interrelations between ordinary codes of bounded delay, L codes of bounded delay and F codes are established. Attention is also focused on unary morphisms. Many of them are F codes.

1 Introduction

Consider a nonerasing morphism $h:A^*\to A^*$, where A is a finite alphabet. We emphasise that all morphisms discussed in this paper are nonerasing, that is, $h(a) \neq 1$ (the empty word) for every $a \in A$. A morphism h is a code if h is injective. We will denote by C the class of all codes. A morphism h is an L code if the function \bar{h} given by

$$\bar{h}(a_1 a_2 ... a_n) = h(a_1) h^2(a_2) ... h^n(a_n)$$

 $(a_i \in A \text{ and } h^i(a_i) \text{ is the i-th iterate of the morphism } h)$ is injective. For a positive integer k and a word w, we denote by $\operatorname{pref}_k(w)$ the prefix (initial subword) of w of length k. If a word w is shorter then k, then $\operatorname{pref}_k(w) = w$. The first letter of the word w, we denote by $\operatorname{first}(w)$. A morphism h is of bounded delay k if, for all words u and w, the equation

$$\operatorname{pref}_k(h(u)) = \operatorname{pref}_k(h(w))$$

implies the equation first(u) = first(w). A morphism h is of bounded delay if it is of bounded delay k, for some k. A morphism h is of weakly bounded delay k if, for all words u and w, the equation

$$\operatorname{pref}_k(\bar{h}(u)) = \operatorname{pref}_k(\bar{h}(w))$$

implies the equation first(u) = first(w). If for all $i \geq 0$, the equation

$$\operatorname{pref}_k(h^i\bar{h}(u)) = \operatorname{pref}_k(h^i\bar{h}(w))$$

implies the equation first(u) = first(w), then h is of strongly bounded delay k. In general, h is of weakly or strongly bounded delay if it is so for some k. A morphism

^{*}Faculty of Applied Mathematics, University of Mining and Metallurgy, Al. Mickiwicza 30, 30-059 Cracow, Poland. e-mail: grmichal@kinga.cyf-kr.edu.pl

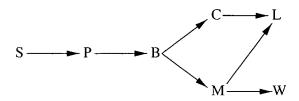
486 Marek Michalik

h is of medium bounded delay if, for some recursive function f and all $i \geq 0$, u and w, the equation

$$\operatorname{pref}_{f(i)}(h^{i}\bar{h}(u)) = \operatorname{pref}_{f(i)}(h^{i}\bar{h}(w))$$

implies the equation first(u) = first(w). Morphism h is a prefix code if for every different words u, w h(u) is not a prefix of h(w). We will denote by L, B, W, S, M, P the corresponding classes of the morphisms.

The next diagram due to [1] shows all inclusion between the classes introduced. The arrow stands for strict inclusion.



2 F codes

The function \hat{h}_f is injective.

From now on, f, g denote functions $\mathbb{N} \to \mathbb{N}$. We say that $f \prec g$ if there exists $n_0 \in \mathbb{N}$ such that f(n) = g(n) for $n < n_0$ and $f(n_0) < g(n_0)$.

We will use the symbol \hat{h}_f to denote function $\hat{h}_f: A^* \to A^*$ given by

$$\hat{h}_f(a_1 a_2 ... a_n) = h^{f(1)}(a_1) h^{f(2)}(a_2) ... h^{f(n)}(a_n)$$

 $(a_i \in A, h^{f(i)}(a_i))$ is the f(i)-th iterate of the morphism h) We call the morphism h an F code if there exists a minimal function $f: \mathbb{N} \to \mathbb{N}$ such that \hat{h}_f is injective. We will denote by F the class of all F codes. It is easy to see that every L code is an F code.

If function \bar{h} is injective then there exists a minimal function f such that $\hat{h}:=\hat{h}_f$ is injective. Thus we conclude that every L code is an F code. We show that $F-L\neq\emptyset$.

Lemma 2.1 Let $A = \{a_1, \ldots, a_n\}, h : A^* \to A^*, \min_k := \min\{||h^k(a_i)| - |h^k(a_j)||, |h^k(a_i)| : i \neq j; i, j \in \{1, \ldots, n\}\}, \max_k := \max\{|h^k(a_i)| : i \in \{1, \ldots, n\}\}.$ If for each $n \in N$ there exists k, such that $\min_k > n$ then we can define the function f as follows $f(1) = \min\{k : \min_k > 0\}, d_1 := \max_{f(1)}, \forall i \in N \ f(i+1) := \min\{k : \min_k > d_i\}, d_{i+1} := \max_{f(i+1)} + d_i$

Proof. It suffices to prove that different words have different length. The proof of this is by induction on word length. By the definition of f(1) we have $||\hat{h}_f(a_i)||$ –

$$\begin{split} |\hat{h}_f(a_j)|| &> 0 \text{ for all } a_i, a_j \in A, i \neq j. \text{ Let } w = a_1 \dots a_k, u = a_1' \dots a_k' a_{k+1}'. \text{ It is clear that } |\hat{h}_f(u)| &> |h^{f(k+1)}(a_{k+1}')| > d_k \geq |\hat{h}_f(w)|. \text{ The proof is completed by showing that for all } u, w \in A, |u| = |w| = k+1, \text{ it holds that } ||\hat{h}_f(u)| - |\hat{h}_f(w)|| > 0. \\ \text{Consider } w = a_1 \dots a_{k+1}, u = a_1' \dots a_{k+1}' \text{ and } a_{k+1} \neq a_{k+1}'. \text{ We see at once that } ||h^{f(k+1)}(a_{k+1})| - |h^{f(k+1)}(a_{k+1}')|| > d_k, |\hat{h}_f(a_1 \dots a_k)| \leq d_k, |\hat{h}_f(a_1' \dots a_k')| \leq d_k, \\ \text{thus } ||\hat{h}_f(a_1 \dots a_{k+1})| - |\hat{h}_f(a_1' \dots a_{k+1}')|| > 0 \text{ and finally } ||\hat{h}_f(u)| - |\hat{h}_f(w)|| > 0. \\ \end{split}$$

Lemma 2.2 Let $A = \{a_1, \ldots, a_n\}, h : A^* \to A^*,$ $\min_k := \min\{||h^k(a_i)| - |h^k(a_j)||, |h^k(a_i)| : i \neq j; i, j \in \{1, \ldots, n\}\}.$ If the sequence \min_k is not bounded then morphism h is an F code.

Proof. Let f be defined as in lemma 2.1. There exists a minimal function g such that \hat{h}_g is injective, thus $h \in F$.

Theorem 2.3 The class L is strictly included in the class F.

Proof. Every L code is an F code. Let $h:\{a,b\}^* \to \{a,b\}^*$ be given by $h(a)=a^2$, $h(b)=a^6$. Morphism h is not an L code $(\bar{h}(aa)=\bar{h}(b))$. We have $\min_k=2^k$, hence by lemma $2.2, h \in F$.

Remark 2.4 For the morphism $h: \{a, b\}^* \to \{a, b\}^*$ given by $h(a) = a^2$, $h(b) = a^6$ the function f(i) = 2i - 1 is a minimal function such that \hat{h}_f is injective.

Proof. To prove this, we observe that for every function $p(i) = n_i$ such that \hat{h}_p is an injective function we have $\forall i \neq j \ (n_i \neq n_j) \land (|n_i - n_j| \neq 1)$ (as a consequence of $h^n(ab) = h^n(ba)$ and $h^n(a)h^{n+1}(a) = h^n(b)$), hence p is minimal.

It is easy to check that if $h:A^*\to A^*$ is an F code then $h_{|A}:A\to A^*$ is injective. The reverse implication is not true. Let $A=\{a,b,c,d\}$ and h be given by h(a)=b,h(b)=a,h(c)=bd,h(d)=d. Function $h_{|A}$ is injective. For every $f:N\to N, \,\hat{h}_f(ad)=\hat{h}_f(c)$, hence $h\notin F$.

Similarly to L codes we have

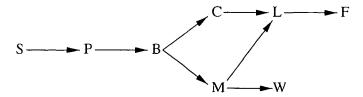
Remark 2.5 The composition of two F codes is not necessarily an F code.

Proof. Consider the morphisms g and h defined by $g(a) = ab, g(b) = ba, h(a) = a^2, h(b) = a$. Clearly g is a code and, hence, an F code. h is an L code. However, the composition $h \circ g \equiv a^3$ is not an F code.

Theorem 2.6 Classes F and W are incomparable.

Proof. It suffices to show that $W \not\subseteq F$. Consider a morphism h given by $h(a) = edb, h(b) = b^2, h(c) = deb, h(d) = a, h(e) = a^3$, then $h \in W$ (see [1]). For all $i \geq 2$, $h^i(a) = h^i(c)$ and h(ddd) = h(e), hence $h \notin F$. From this we conclude that W and F are incomparable.

Now we can redraw the diagram as follows:



If we restrict our considerations to the class of morphisms $h: \{a, b\}^* \to \{a, b\}^*$ we obtain

Theorem 2.7 B = C = M = W and

$$S \longrightarrow P \longrightarrow C \longrightarrow L \longrightarrow F$$

Proof. Let h(a) = ba, $h(b) = b^2$. $h \in P \setminus S$ (see [1]). Morphism h(a) = a, h(b) = ab is a code but not a prefix code. Morphism $h(a) = a^2$, h(b) = a is an element of L - C. From theorem 2.3 we obtain $F \setminus L \neq \emptyset$. To complete the proof it suffices to show that $C \subset B$ and $W \subset C$.

 $(C \subset B)$ Every prefix code is of bounded delay. Let h(a) = x, h(b) = xy, $x, y \in A^+, x \neq y$. Morphism h is of bounded delay k = 2|x| + |y|.

 $(W \subset C)$ Let $h \notin C$, then there exist $n, m \in \mathbb{N}$ such that $h(a) = x^m$, $h(b) = x^n$ thus $h \notin W$.

3 F codes and the unary morphism

Theorem 3.1 Let $A = \{a_1, \ldots, a_n\}, a \in A, h : A^* \to \{a\}^*, \min_k := \min\{||h^k(a_i)| - |h^k(a_j)||, |h^k(a_i)| : i \neq j; i, j \in \{1, \ldots, n\}\}.$ The unary morphism h is an F code if and only if the sequence \min_k is not bounded.

Proof. If sequence \min_k is not bounded then from lemma $2.1 \ h \in F$. Consider $h \in F$. Suppose that there exists $M \in \mathbb{N}$ such that for all $k \in \mathbb{N}$ $\min_k \leq M$. The morphism h is a nonerasing morphism, thus for all $a_i \in A$ and $n \in \mathbb{N}$ we have $|h^n(a_i)| \leq |h^{n+1}(a_i)|$. If $\min_k \leq M$ then $\exists n_0 \in \mathbb{N} \forall t \geq n_0 \ \forall i \in \{1, \ldots, n\} \ |h^t(a_i)| = |h^{t+1}(a_i)|$. We have $a^p = h^t(a_i) = h^{t+1}(a_i) = h(h^t(a_i)) = h(a^p)$ for some $p \in \mathbb{N}$. This implies h(a) = a and finally $\hat{h}(a_i) = \hat{h}(a^{|\hat{h}(a_i)|})$ which contradicts $h \in F$. \square

Remark 3.2 The last theorem is not true for arbitrary morphism.

Proof. Let h(a) = a, h(b) = ab, h(c) = b. For every w, u_1 , u_2 , $u_3 \in \{a, b, c\}^*$, $\bar{h}(wbu_1) \neq \bar{h}(wcu_2)$, $\bar{h}(wbu_1) \neq \bar{h}(wau_3)$, $\bar{h}(wcu_2) \neq \bar{h}(wau_3)$. To show this we observe that $\forall u_3, v, w \in A^* \ \forall k \in \mathbb{N}$ pref_k $\{ah^{|w|+1}(\bar{h}(u_3))\} \notin \{a^{|w|+1}bv, a^{|w|}bv\}$. Thus h is an L code, but $\min_1 = 0$ and $\forall k > 1$ $\min_k = 1$.

F codes 489

Corollary 3.3 It is decidable whether the unary morphism is an F code.

The morphism h is an almost L code if and only if h is not an L code and $\exists t \in \mathbb{N} \ \forall w, u \in A^*, \mathrm{first}(w) \neq \mathrm{first}(u) \ (\bar{h}(w) = \bar{h}(u) \Rightarrow (|w| = t \lor |u| = t))$

Remark 3.4 $F \setminus \operatorname{almost} L \neq \emptyset$.

Proof. Let $h(a) = a^3$, $h(b) = a^6$, $h(c) = a^2$, then $h^n(a) = a^{3^n}$, $h^n(b) = a^{6 \cdot 3^{n-1}}$, $h^n(c) = a^{2 \cdot 3^{n-1}}$, $\min_n = 3^{n-1}$. From lemma 2.2 we obtain $h \in F$. For every $w \in A^*$ $\bar{h}(aaw) = \bar{h}(bcw)$, thus $h \notin \text{almost } L$.

Let U be the class of all unary morphisms $h:\{a,b\}\to\{a\}^*$ such that $h(a)=a^n$, $h(b)=a^r$, $n\neq r$, $n\geq 2$.

Theorem 3.5 $F \cap U = (L \cup \text{almost L}) \cap U$

Proof. It is clear that if n = r or n = 1 then h is neither an F code nor an almost L code. If $n \neq r$ and $n \geq 2$ then the sequence $\min_k = \min\{|n^k - r \cdot n^{k-1}|, n^k, r \cdot n^{k-1}\}$ is not bounded. This implies $h \in F$. Every unary morphism such that $h(a) = a^n$, $h(b) = a^r$, $n \neq r$, $n \geq 2$ is either an L code or an almost L code (see [3]).

References

- [1] H.A. Maurer, A. Salomaa, D. Wood, *Bounded delay L codes* (Theoretical Computer Science 84 (1991) 265-279)
- [2] J. Honkala and A. Salomaa, Characterization results about L codes (Informatique theorique et Applications vol. 26, $n^{\circ}3$, (1992) 287-301)
- [3] H.A. Maurer, A. Salomaa, D. Wood, *L codes and number systems* (Theoretical Computer Science 22 (1983) 331-346)

Received January, 1999