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F codes

Marek Michalik *

Abstract
The notion of an F code is introduced as a generalization of the notion
of an L code. All interrelations between ordinary codes of bounded delay, L
codes of bounded delay and F codes are established. Attention is also focused
on unary morphisms. Many of them are F codes.

1 Introduction

Consider a nonerasing morphism h : A* — A*, where A is a finite alphabet.
We emphasise that all morphisms discussed in this paper are nonerasing, that
is, h(a) # 1 (the empty word) for every a € A. A morphism h is a code if h is
injective. We will denote by C the class of all codes. A morphism A is an L code
if the function k given by

h(ayaz...an) = h{a1)h*(as)...h" (an)

(a; € A and h*(a;) is the i-th iterate of the morphism h) is injective. For a positive
integer k and a word w, we denote by pref, (w) the prefix (initial subword) of w of
length k. If a word w is shorter then k, then pref,(w) = w. The first letter of the
word w, we denote by first(w). A morphism h is of bounded delay k if, for all words
u© and w, the equation

prefy, (h(u)) = prefy (h(w))

implies the equation first(u) = first(w). A morphism h is of bounded delay if it is
of bounded delay k, for some k. A morphism h is of weakly bounded delay k if, for
all words u and w, the equation

prefy (h(u)) = pref; (h(w))
implies the equation first(u) = first(w). If for all ¢ > 0, the equation
prefy (W'h(u)) = pret, (hh(w))

implies the equation first(u) = first{w), then h is of strongly bounded delay k. In
general, h is of weakly or strongly bounded delay if it is so for some k. A morphism
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h is of medium bounded delay if, for some recursive function f and all 2 > 0, © and
w, the equation

pref; ;) (hih(u)) = pref;; (hih(w))

implies the equation first(u) = first(w). Morphism h is a prefix code if for every dif-
ferent words u, w h(u) is not a prefix of h(w). We will denote by L, B, W, S, M, P
the correspondmg classes of the morphisms.

The next diagram due to [1] shows all inclusion between the classes introduced.
The arrow stands for strict inclusion.

C——»1L
S—»—P———»—B< /
M——»W

2 F codes

From now on, f, g denote functions N —+ N. We say that f < g if there exists
ng € N such that f(n) = g(n) for n < ng and f(ne) < g(no)-
We will use the symbol h; to denote function hy : A* — A* given by

hg(airas...an) = hf(l)(m)hf(g)(az)mhf(n)(an)

(a; € A, hf 9 (a;) is the f(i)-th iterate of the morphism h) We call the morphism
h an F code if there exists a minimal function f: N — N such that ﬁf is injective.
We will denote by F the class of all F' codes. It is easy to see that every L code is
an F code.

If function A is injective then there exists a minimal function f such that s := hy
is injective. Thus we conclude that every L code is an F' code. We show that

F-L#0..

Lemma 2.1 Let A = {a1,...,an},h: A* = A%,

ming := min{{|h*(a;)| — |R*(a;)|], |R*(a:)| 1 ¢ # j54,5 € {1,...,n}},

maxy := max{|h¥(a;)] :i € {1,...,n}}.

If for eachn € N there exists k, such that ming > n then we can define the function
f as follows

f(1) = min{k : ming > 0}, d; := maxy(y),

Vi €N f(i+1):=min{k : ming > d;}, diy1:= maxy41) +d;

The function h 5 is injective.

Proof. It suffices to prove that different words have different length. The proof of
this is by induction on word length. By the definition of f(1) we have ||hs(a;)| —
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lhs(a;)|] > O for all aj,a; € A,i # j. Let w = ay...a5,u = ay...apap, . It is
clear that |hs(u)| > [RGB+ (ah | > di > |hs(w)]. The proof is completed by
showing that for all u,w € A, ju| = |w| = k+1, it holds that ||Af(u)| — |hs(w)|| > 0.
Consider w = ay ...ag41,u = @] ...ap,, and a1 # ap,,. We see at once that
RSB+ (agq1)] = BRI EHD (g I > dishg(ar - ap)] < dis|hy(al - a)] < di,
thus ||s(ar ... ak1)] = |hs(a) ... @l )|l > 0 and finally |{hy ()| — |hs(w)]] > 0.
O

Lemma 2.2 Let A = {a1,...,an},h: A* = A%,
ming = min{|[h*(a5)| — [ (ay)Il, IR (a)] 24 # 16,5 € {1,...,m}).
If the sequence miny, is not bounded then morphism h is an F code.

Proof. Let f be defined as in lemma 2.1. There exists a minimal function g such
that hy is injective, thus h € F. d

Theorem 2.3 The class L is strictly included in the class F.

Proof. Every L code is an F code. Let h:{a, b}* = {a, b}* be given by h(a) = a?,
h(b) = ab. Morphism h is not an L code (k(aa) = h(b)). We have min; = 2¥, hence
by lemma 2.2, h € F. |

Remark 2.4 For the morphism h:{a, b}* — {a, b}* given by h(a) = a2, h(b) = a®
the function f(i) = 2i — 1 is a minimal function such that hy is injective.

Proof. To prove this, we observe that for every function p(i) = n; such that pr is
an injective function we have Vi # j (n; # n;) A (|n; — n;] # 1) ( as a consequence
of A(ab) = h™(ba) and h™(a)h™*!(a) = h™(b)), hence p is minimal. O

It is easy to check that if h : A* — A" is an F code then hj4 : A — A is
injective. The reverse implication is not true. Let A = {a,b,¢,d} and h be given
by h(a) = b, h(b) = a,h(c) = bd,h(d) = d. Function h|4 is injective. For every
f:N o N, ilf(ad) = iLf(C), hence h ¢ F.

Similarly to L codes we have

Remark 2.5 The composition of two F codes is not necessarily an F' code.

Proof. Consider the morphisms g and h defined by g(e) = ab, g(b) = ba,h(a) =
a?, h(b) = a. Clearly g is a code and, hence, an F code. h is an L code. However,
the composition h o g = a® is not an F code. O

Theorem 2.6 Classes F and W are incomparable.

Proof. 1t suffices to show that W ¢ F. Consider a morphism A given by h(a) =
edb, h{b) = b% h(c) = deb,h(d) = a,h(e) = o>, then h € W (see [1]). For all
i > 2, h¥(a) = h(c) and h(ddd) = h(e), hence h ¢ F. From this we conclude that
W and F are incomparable. [



488 Marek Michalik

Now we can redraw the diagram as follows:

C—»1L—»F

S———»P——»—B< /
M—W

If we restrict our considerations to the class of morphisms h : {a, b}* — {a, b}~
we obtain

Theorem 2.7 B=C =M =W and

S—»P—» C—»].—»F

Proof. Let h(a) = ba, h(b) = b%. h € P\ S (see [1]). Morphism h(a) = a, h(b) = ab
is a code but not a prefix code. Morphism h(a) = a?, h(b) = a is an element of
L — C. From theorem 2.3 we obtain F'\ L # §. To complete the proof it suffices to
show that C C Band W C C.

(C C B) Every prefix code is of bounded delay. Let h(a) = z, h(b) = zy, z,y €
A%,z #y. Morphism h is of bounded delay k& = 2|z| + |y|.

(W C C) Let h ¢ C, then there exist n,m € N such that h(a) = z™, h(b) = z
thus h ¢ W. O

3 F codes and the unary morphism

Theorem 3.1 Let A = {a1,...,a,}, a € A, h: A* - {a}*,
ming = min{||h¥ (a;)] — |h*(a;)|l, |h (a:)| 11 # 54,5 € {1,...,n}}.
The unary morphism h is an F' code if and only if the sequence miny is not bounded.

Proof. If sequence miny, is not bounded then from lemma 2.1 h € F.

Consider h € F. Suppose that there exists M € N such that for all k € N min; < M.
The morphism h is a nonerasing morphism, thus for all a; € A and n € N we have
|h™(a;)| < |h"*(a;)| If ming < M then 3ng € NVt > noVi € {1,...,n} |ht(a;)]| =
[htt1(a;)]. We have a® = hi(a;) = ht*l(a;) = h(h'(a;)) = h(aP) for some p € N.
This implies h(a) = a and finally A(a;) = h(al™@)1) which contradicts h € F. O

Remark 3.2 The last theorem is not true for arbitrary morphism.

Proof. Let h(a) = a, h(b) = ab, h(c) = b. For every w, u1, uq, uz € {a, b, c}*
hMwbuy ) # h(weuy), h(wbu)) # h(waus), h(weus) # h(waus). To show this we
observe that Vus,v,w € A*Vk € N

pref, {ah!1+1(h(u3))} € {a*1bv, a/“lbv}. Thus his an L code, but min; = 0 and
Yk >1 ming =1. O
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Corollary 3.3 It is decidable whether the unary morphism is an F code.

The morphism h is an almost L code if and only if 4 is not an L code and
3t € NVw,u € A*, first(w) # first(u) (A(w) = h(u) = (jw| =t V |u| = t))

Remark 3.4 F \ almost L # 0.
Proof. Let h(a) = a3, h(b) = af, h(c) = a2, then h"(a) = a®", R?(b) = 3",

h*(c) = a2'_3"-1, min,, = 3"~!. From lemma 2.2 we obtain h € F. For every w € A*
h{aaw) = h{bcw), thus h ¢ almostL . O

Let U be the class of all unary morphisms h : {a b} — {a}* such that h(a) = a™,
hb)y =a", n#r,n>2.

Theorem 3.5 FNU = (LUalmostL)NU

Proof. It is clear that if n = 7 or n = 1 then h is neither an F' code nor an almost L
code. If n # r and n > 2 then the sequence miny = min{|n* —r-n*=1|, nk r.nk-1}
is not bounded. This implies h € F. Every unary morphism such that h(a) = o™,
h(b) =a", n #r,n > 2 is either an L code or an almost L code (see [3]). O
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