Note on the Cardinality of some Sets of Clones

Jovanka Pantović * Dušan Vojvodić [†]

Abstract

All minimal clones containing a three-element grupoid have been determined in [3]. In this paper we solve the problem of the cardinality of the set of clones which contain some of these clones.

1 Notation and Preliminaries

Denote by N the set $\{1, 2, ...\}$ of positive integers and for $k, n \in \mathbb{N}$, set $E_k = \{0, 1, ..., k-1\}$. We say that f is an *i*-th projection of arity $n \ (1 \le i \le n)$ if $f \in P_k^{(n)}$ and f satisfies the identity $f(x_1, ..., x_n) \approx x_i$.

For $n, m \geq 1, f \in P_k^{(n)}$ and $g_1, \ldots, g_n \in P_k^{(m)}$, the superposition of f and g_1, \ldots, g_n , denoted by $f(g_1, \ldots, g_n)$, is defined by $f(g_1, \ldots, g_n)(a_1, \ldots, a_m) = f(g_1(a_1, \ldots, a_m), \ldots, g_n(a_1, \ldots, a_m))$ for all $(a_1, \ldots, a_m) \in E_k^m$. A set

A set C of operations on E_k is called a *clone* if it contains all the projections and is closed under superposition.

For an arbitrary set F of operations on E_k there exists the least clone containing F. This clone is called the clone generated by F, and will be denoted by $\langle F \rangle_{\rm CL}$. Instead of $\langle \{f\} \rangle_{\rm CL}$ we will write simply $\langle f \rangle_{\rm CL}$. For a clone C and $n \geq 1$ we denote by $C^{(n)}$ the set of *n*-ary operations from C.

The clones on E_k form an algebraic lattice $Lat(E_k)$ whose least element is the clone of all projections and whose greatest element is the clone of all operations on E_k . The atoms (dual atoms) of $Lat(E_k)$ are called *minimal (maximal) clones*.

A full description of all clones for k = 2 was given by Post, for k = 3 a complete list of all maximal clones was found by Iablonskii and all minimal clones were determined by Csákány.

Let *h* be a positive integer. A subset ρ of E_k^h (i.e. a set of *h*-tuples over E_k) is an *h*-ary relation on E_k . An *n*-ary operation *f* on E_k preserves ρ if for every $h \times n$ matrix $X = [x_{ij}]$ over E_k whose columns are all *h*-tuples from ρ we have $(f(x_{00}, \ldots, x_{0(n-1)}), \ldots, f(x_{(h-1)0}, \ldots, x_{(h-1)(n-1)})) \in \rho$. The set of all operations on E_k preserving a given relation ρ is denoted Pol ρ .

^{*}Faculty of Engineering, University of Novi Sad, Trg Dositeja, Obradovića 3, 21000 Novi Sad, Yugoslavia, e-mail:pantovic@uns.ns.ac.yu

[†]Faculty of Science and Mathematics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia, e-mail:vojvod@eunet.yu

Let k = 3 and let ϕ be a permutation of E_3 . To each *n*-ary function f we assign f^{ϕ} , called *conjugate* of f, defined by $f^{\phi}(x_0, \ldots, x_{n-1}) = \phi(f(\phi^{-1}(x_0), \ldots, \phi^{-1}(x_{n-1})))$. The map $f \to f^{\phi}$ carries each clone C onto the clone C^{ϕ} ; in particular $\langle f \rangle_{\rm CL}^{\phi} = \langle f^{\phi} \rangle_{\rm CL}$, and $g \in \langle f \rangle_{\rm CL}$ implies $g^{\phi} \in \langle f^{\phi} \rangle_{\rm CL}$. We can permute the variables of f as well: for a permutation ψ of E_n put $f_{\psi}(x_0, \ldots, x_{n-1}) = f(x_{\psi(0)}, \ldots, x_{\psi(n-1)}))$. Remark that always $(f^{\phi})_{\psi} = (f_{\psi})^{\phi}$. Note also that $\langle f_{\psi} \rangle_{\rm CL} = \langle f \rangle_{\rm CL}$ for any ψ . The conjugations and permutations of variables generate a permutation group T_n of order 3n! on the set of all *n*-ary functions on E_3 .

A binary idempotent function with Cayley table

	0	1	2
0	0	n_5	$\overline{n_4}$
1	n_3	1	n_2
2	n_1	n_0	2

is denoted by b_n , where $n = n_0 + 3n_1 + 3^2n_2 + 3^3n_3 + 3^4n_4 + 3^5n_5$.

It is proved in [3] that every minimal clone on E_3 containing an essential binary operation is a conjugate of exactly one of the following twelve clones: $\langle b_i \rangle_{CL}$ with $i \in \{0, 8, 10, 11, 16, 17, 26, 33, 35, 68, 178, 624\}$. The following table shows the binary functions on E_3 which generate minimal clones.

$xy \rightarrow$	00	01	02	10	11	12	20	21	22
b_0	0	0	0	0	1	0	0	0	2
b_8	0	0	0	0	1	0	2	2	2
b ₁₀	0	0	0	. 0	1	1	0	1	2
b ₁₁	0	0	0	0	1	1	0	2	2
b ₁₆	0	0	0	0	1	1	2	1	2
b ₁₇	0	0	0	0	1	1	2	2	2
b ₂₆	0	0	0	0	1	2	2	2	2
b33	0	0	0	1	1	0	2	0	2
b ₃₅	0	0	0	1	1	0	2	2	2
b ₆₈	0	0	0	2	1	1	1	2	2
b ₁₇₈	0	0	2	0	1	1	2	1	2
b ₆₂₄	0	2	1	2	1	0	1	0	2

2 Results

Theorem 2.1 The cardinality of the set of clones on E_3 containing a conjugate of $\langle b_j \rangle_{CL}, j \in \{0, 8, 11, 17, 33, 35\}$ is continuum.

Proof. The proof is based on the operations of Janov-Mučnik.

We shall define a countable set of operations F and an operation g so that for all $f \in F$, $f \notin \langle (F \setminus \{f\}) \cup \{g\} \rangle_{CL}$. This implies that for each $G, H \subseteq F$, from $G \neq H$ it follows $\langle G \cup \{g\} \rangle_{CL} \neq \langle H \cup \{g\} \rangle_{CL}$. In this way we get a set of distinct clones of a continuum cardinality.

For i = 1, ..., m denote by e_i the *m*-tuples (1, ..., 1, 2, 1, ..., 1) with 2, at the *i*-th place. Let $A_m = \{e_1, ..., e_m\}$.

For m > 2, consider the *m*-ary operation f_m (Janov-Mučnik,[5]) which takes the value 1 on A_m and 0 otherwise.

Modifying an idea which is attributed to Rónyai in [1], we define the relations $\rho_m \subseteq E_3^m$ on E_3 for m > 2: $\rho_m = A_m \cup B_m$, where $B_m = \{(b_1, \ldots, b_m) | b_j = 0 \text{ for some } j, 1 \leq j \leq n\}$.

In what follows we prove that for each $i \neq m$ and $j \in \{0, 8, 11, 17, 33, 35\}, f_i$ and b_j preserve ρ_m while f_m does not.

Let $X = [x_{ij}]$ be the $m \times m$ matrix with $x_{11} = \ldots x_{mm} = 2$ and $x_{ij} = 1$ otherwise. The *i*-th column of X is $\mathbf{e}_i \in \rho_m (i = 1, \ldots, m)$ while the values of f_m on the rows of X form $(f_m(\mathbf{e}_1), \ldots, f_m(\mathbf{e}_m))^T = (1, \ldots, 1)^T \notin \rho$. Hence, $f_m \notin Pol\rho_m$.

Suppose to the contrary that f_i doesn't preserve ρ_m for some $i \neq m$. Then there is an $m \times i$ matrix X with all columns in ρ_m and with rows $\mathbf{a}_1, \ldots, \mathbf{a}_m$ such that $\mathbf{b} := (f_i(\mathbf{a}_1), \ldots, f_i(\mathbf{a}_m))^T \notin \rho$. Since $imf_i = \{0, 1\}$ and $B_m \subset \rho_m$ clearly $\mathbf{b} = (1, \ldots, 1)^T$. By the definition of f_i there exist $1 \leq j_1, \ldots, j_m \leq i$ such that $\mathbf{a}_k = \mathbf{e}_{j_k}$ for all $k = 1, \ldots, m$. If $j_k = j_l$ for some $1 \leq k < l \leq m$ then the j_k -th column of X contains at least two 2s and so does not belong to ρ_m . As $i \neq m$ we can choose $k \in \{1, \ldots, i\} \setminus \{j_1, \ldots, j_m\}$. Clearly, the k-th column of X is $(1, \ldots, 1)^T \notin \rho_m$.

If $b_j, j \in \{0, 8, 11, 17, 33, 35\}$ does not preserve ρ then there exist $\mathbf{a}, \mathbf{b} \in \rho$ such that $(b_j(a_1, b_1), \ldots, b_j(a_m, b_m)) \notin \rho$, i.e. $(b_j(a_1, b_1), \ldots, b_j(a_m, b_m)) \in \{1, 2\}^m \setminus A_m$. It follows that $((b_j(a_1, b_1), \ldots, b_j(a_m, b_m)) = \mathbf{a}$ since $b_j(a_l, b_l) = 1$ implies $a_l = 1$ and $b_j(a_l, b_l) = 2$ implies $a_l = 2$. So, we get a contradiction.

The set of clones of the form $(G \cup \{b_0, b_8, b_{11}, b_{17}, b_{33}, b_{35}\})_{CL}, G \subseteq \{f_2, f_3, \ldots\}$ has a continuum cardinality.

Theorem 2.2 The cardinality of the set of clones on E_3 containing a conjugate of $\langle b_j \rangle_{CL}, j \in \{10, 16, 26, 68\}$ is at least \aleph_0 .

Proof.

Let $\{0,1,2\} = \{p,q,r\}$, and for $i = 1, \ldots, m$ denote by \mathbf{e}_i the *m*-tuples $(p,\ldots,p,r,p,\ldots,p)$ with r at the *i*-th place. Let $A_m = \{\mathbf{e}_1,\ldots,\mathbf{e}_m\}$.

For m > 2, consider the *m*-ary operation f_m (similar to the Janov–Mučnik operations :

$$f_m(\mathbf{x}) = \begin{cases} p & if \ x \in A_m, \\ q & otherwise \end{cases}$$

Define the following relations $\rho_m \subseteq E_3^m$ on E_3 for m > 2: $\rho_m = E_3^m \setminus \{(p, \ldots, p)\}.$

In what follows we prove that f_i preserves ρ_m if and only if i > m.

Suppose to the contrary that f_i doesn't preserve ρ_m for some i > m. Then there is an $m \times i$ matrix X with all columns in ρ_m and with rows $\mathbf{a}_1, \ldots, \mathbf{a}_m$ such that $\mathbf{b} := (f_i(\mathbf{a}_1), \ldots, f_i(\mathbf{a}_m))^T \notin \rho$, i.e. $\mathbf{b} = (p, \ldots, p)^T$. By the definition of f_i , $\mathbf{a}_k = \mathbf{e}_{j_k}, 1 \leq j_k \leq i$, for all $k = 1, \ldots, m$. Since i > m, i - m + 1 column has to be equal (p, \ldots, p) , which gives a contradiction. Let $i \leq m$ and $X = [x_{ij}]$ be the $m \times i$ matrix with $x_{lj} = p$ if $l \neq j$ and $x_{jj} = r$ for $j \in \{1, \ldots, i-1\}, l \in \{1, \ldots, m\}, x_{1i} = \ldots = x_{(i-1)i} = p$ and $x_{ii} = \ldots = x_{mi} = r$. The values of f_i on the rows of X form $(p, \ldots, p) \notin \rho$.

We shall prove that b_{10} and b_{16} preserve ρ_m with r = 1, p = 2 and q = 0; b_{26} preserves ρ_m with p = 1, q = 0, and r = 2; and b_{68} preserves ρ_m with p = 0, q = 2, and r = 1.

Suppose to the contrary that $b_j, j \in \{10, 16, 26, 68\}$ does not preserve ρ_m . Then, there is an $m \times 2$ matrix with both columns in ρ_m such that $(b_j(x_1, y_1), \ldots, b_j(x_m, y_m)) = (p, \ldots, p)$. Therefore by the definition of b_j clearly $x_l = p, l \in \{1, \ldots, m\}$ for each $j \in \{10, 16, 26, 68\}$. Thus, the first column of X is $(p, \ldots, p)^T \notin \rho$, a contradiction.

So, we proved that for each $j \in \{10, 16, 26, 68\}$, the set $\{\bigcup_{m>2} f_m\}$ satisfies $(\bigcup_{i>m} \{f_m\} \cup \{b_j\})_{CL} \supset (\bigcup_{i>m+1} \{f_m\} \cup \{b_j\})_{CL} \supset (\bigcup_{i>m+2} \{f_m\} \cup \{b_j\})_{CL} \dots$, proving that there are at least \aleph_0 clones containing $\langle b_j \rangle_{CL}$.

It is still an open problem to determine a cardinality of the set of clones that contain a clone generated by b_{178} and b_{624} .

References

- Agoston I., Demetrovics J., Hannák L., The Number of Clones Containing all Constants (A Problem of R.McKenzie), Colloquia Mathematica Societatis Janos Bolyai, 43, Lectures in Universal Algebra, Szeged, Hungary, (1983), 21-25.
- [2] Burris S., Sankappanavar H.P., A Course in Universal Algebra(Hungarian), Akademiai Kiadó, Budapest, 1989. (Springer-Verlag,GTM78,1981.)
- [3] Csákány B., Three-element grupoids with minimal clones, Acta Sci. Math. (Szeged), v.45, 1983, pp. 111-117.
- [4] Demetrovics J., Hannák L., On the Number of Functionally Complete Algebras, Proc. of the 12th Int. Symp. on Multiple-Valued Logic, 1982, 329-330.
- [5] Iablonskii S.V., Introduction to Discrete Mathematics (Russian), Nauka, Moscow, 1979.
- [6] Janov Ju. I., Mucnik A. A., On the existence of k-valued closed classes that have no bases, (Russian), Dokl. Akad. Nasuk SSSR 127 (1959), 44-46.
- [7] Pantović J., Tošić R., Vojvodić G., The Cardinality of Functionally Complete Algebras on a Three Element Set, Algebra Univers. 38, 136-140.
- [8] Rosenberg I.G., Uber die funktionale Vollständigkeit in den mehrwertigen Logiken (Struktur der Funktionen von mehreren Veränderlichen auf endlichen Mengen), Rozpravy Československe Akad. Věd. Řada Mat. Přírod. Věd., V. 80, 1970, 3-93.

- [9] Szabo L., On Minimal and Maximal Clones, Acta Cybernetica 10(1992) No.4, 323-327.
- [10] Szendrei Á., Simple surjective algebras having no proper subalgebras, J. Austral. Math. Soc. Ser A, 48 (1990), 434-454.

Received April, 1998