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Note on the Cardinality of some Sets of Clones

’ Jovanka Pantovié * Dusgan Vojvodi¢

Abstract
All minimal clones containing a three-element grupoid have been deter-

mined in {3]. In this paper we solve the problem of the cardinality of the set
of clones which contain some of these clones.

1 Notation and Preliminaries

Denote by N the set {1,2,...} of positive integers and for k,n € N, set E, =
{0,1,...,k — 1}. We say that f is an i-th projection of arity n (1 < i < n) if
fe P,g") and f satisfies the identity f(z,...,z,) & ;.

For n,m > 1,f € P,gn) and g1,...,9n € P,Em), the superposition of f and
g1y .-+, 9n, denoted by f(g1,...,9s), is defined by f(g1,...,9:)(a1,...,am) =
flgi{ar,...yam), ..., gn(a1,...,an)) for all (a1,...,an) € Bf*. A set

A set C of operations on Ey, is called a clone if it contains all the projections
and is closed under superposition.

For an arbitrary set F' of operations on E}, there exists the least clone containing
F. This clone is called the clone generated by F, and will be denoted by (F)qL.
Instead of {{f})cL we will write simply (f)cL. For a clone C and n > 1 we denote
by C(™ the set of n-ary operations from C.

The clones on Ej form an algebraic lattice Lat(E;,) whose least element is the
clone of all projections and whose greatest element is the clone of all operations on
E). The atoms (dual atoms) of Lat(Ey) are called minimal (mazimal) clones.

A full description of all clones for k = 2 was given by Post, for k = 3 a complete
list of all maximal clones was found by Iablonskii and all minimal clones were
determined by Csdkény.

Let h be a positive integer. A subset p of E! (i.e. a set of h-tuples over Ej)
is an h-ary relation on Ey. An n-ary operation f on Ej preserves p if for every
h x n matrix X = [z;;] over E; whose columns are all h-tuples from p we have
(f(oos -+ Ton=1))> -+ +» F(Z(h=1)0s - - - s Z(h—1)(n—1))) € p. The set of all operations
on Ey, preserving a given relation p is denoted Polp.
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Let £ = 3 and let ¢ be a permutation of F5. To each n-ary function f we
assign f?, called conjugate of f, defined by f%(zo,...,Tn-1) = ¢(f(¢~ (z0),.-.,
¢ Y (zn-1)). The map f — f¢ carries each clone C onto the clone C?; in par-
ticular (f)‘éL = (f®)cL, and g € (f)cL implies g € (f%)cL. We can permute
the variables of f as well: for a permutation ¥ of E, put fy(zo,...,ZTn-1) =
f(Zy(0),- - -» Ty(n—1)))- Remark that always (f¢)¢ = (f¢)¢. Note also that (fy)cL =
(f)cL for any 9. The conjugations and permutations of variables generate @ per-
mutation group T}, of order 3n! on the set of all n-ary functions on Fj.

A binary idempotent function with Cayley table

o 1 2
0 0 5 N4
1 ng 1 N2
2 ny 7y 2

is denoted by b,,, where n = ng + 3n) + 3*ny + 3313 + 3%ng + 35ns.

It is proved in [3] that every minimal clone on F3 containing an essential binary
operation is a conjugate of exactly one of the following twelve clones: (b;)cr with
i € {0,8,10,11,16,17, 26, 33,35,68, 178, 624}. The following table shows the binary
functions on F3 which generate minimal clones.
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2 Results

Theorem 2.1 The cardinality of the set of clones on E5 containing a conjugate of
(bjdcL,j € {0,8,11,17,33,35} is continuum.

Proof. The proof is based on the operations of Janov-Muénik.

We shall define a countable set of operations F' and an operation g so that for
all fe F, f & (F\{f})VY{g})cL- This implies that for each G,H C F, from
G # H it follows (GU {g}cL # (H U {g})cL. In this way we get a set of distinct
clones of a continuum cardinality.
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For i = 1,...,m denote by e; the m-tuples (1,...,1,2,1,...,1) with 2, at the
i-th place. Let Ay, = {e1,...,en}.

For m > 2, consider the m-ary operation f,, (Janov-Muénik,[5]) which takes
the value 1 on A,, and 0 otherwise.

Modifying an idea which is attributed to Rényai in [1], we define the relations
pm C ET* on E3 for m > 2: py, = Ay U By, where By, = {(b1,...,bm)|b; = 0 for
some j,1 <j<n}.

In what follows we prove that for each 7 # m and j € {0,8,11,17,33,35}, f;
and b; preserve p,, while f,, does not.

Let X = [z;;] be the m x m matrix with 211 = ... Zmm = 2 and z;; = 1
otherwise.The i-th column of X is e; € p,,, (¢ = 1,...,m) while the values of f,, on
the rows of X form (f(e1),.-., fm(em))T = (1,...,1)7 & p. Hence, fm & Polpm.

Suppose to the contrary that f; doesn’t preserve p,, for some i # m. Then
there is an m x ¢ matrix X with all columns in p,;; and with rows ay,...,a,, such
that b := (fi(a1),..., fi(am))T & p. Since imf; = {0,1} and B,, C pm, clearly
b = (1,...,1)7. By the definition of f; there exist 1 < j1,...,jm < % such that
ay = e; forall k = 1,...,m. If j; = j; for some 1 < k <! < m then the
ji-th column of X contains at least two 2s and so does not belong to pm. As
i # m we can choose k € {1,...,i}\ {j1,.-.,Jm}. Clearly, the k-th column of X is
1., DT & pp. _

If b;,7 € {0,8,11,17, 33,35} does not preserve p then there exist a,b € p such
that (bj(a1,b1),. .., 05(am,bn)) € p,ie. (bj(ar,b1),...,b;(am,bm)) € {1,2}™\ Ap..
It follows that ((bj(a1,01),...,b;(am,bm)) = a since b;(a;, b)) = 1 implies a; = 1
and b;(a;, b)) = 2 implies a; = 2. So, we get a contradiction.

The set of clones of the form (GU {bg, bs, b11, b7, b33, bss})oL, G C {fa2, f3,- .-}
has a continuum cardinality. O

Theorem 2.2 The cardinality of the set of clones on E5 containing a conjugate of
(bj)cr, J € {10,16,26,68} is at least Ro.

Proof.

Let {0,1,2} = {p,¢q,7}, and for i = 1,...,m denote by e; the m-tuples
(py...,p,7,p,...,D) with r at the i-th place. Let A,, = {e1,...,en}.

For m > 2, consider the m-ary operation f,, (similar to the Janov-Muénik

operations :
_Jp ifze A,
fm(x) = { q otherwise

Define the following relations p, C EI* on E3 for m > 2 : p,, = EJ* \

{(p,...,p)}.

In what follows we prove that f; preserves p,, if and only if i > m.
Suppose to the contrary that f; doesn’t preserve p,, for some i > m. Then

there is an m X ¢ matrix X with all columns in p,, and with rows ay,...,a,, such
that b := (fi(a1),..., fi(am))T € p,ie. b = (p,...,p)T. By the definition of f;,
ay =ej,,1 <jp<¢,forallk=1,...,m. Since i >m, ¢ — m + 1 column has to be

equal (p,...,p), which gives a contradiction.
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Let i <m and X = [z;;] be the m x¢ matrix with z;; = pifl # j and z;; = r for
JEAL,...i-1}le{l,....mlhz=... =z i =pand Ty = ... = Ty =T
The values of f; on the rows of X form (p,...,p) & p.

We shall prove that byg and b;¢ preserve p,, with v = 1,p = 2 and ¢ = 0; by
preserves p,, with p =1,¢ =0, and r = 2; and bgg preserves p,, with p =0,q9 = 2,
and r = 1.

Suppose to the contrary that b;, j € {10, 16, 26, 68} does not preserve p,,. Then,
there is an m x 2 matrix with both columns in p,, such that (bj(zi,v1),...,
bj(Zm,ym)) = (p,...,p). Therefore by the definition of b; clearly z; = p,l €
{1,...,m} for each j € {10,16,26,68}. Thus, the first column of X is (p,...,p)7
¢ p, a contradiction.

So, we proved that for each j € {10,16,26,68}, the set {lJ,,-, fm} satisfies

(U {fm}u{bj}cL 2 (i>7g+l{fm} U{b;e D ( U {fm}u{b}cL .., proving

>m i>m+2
that there are at least N clones containing (bj)cr. a

It is still an open problem to determine a cardinality of the set of clones that
contain a clone generated by b;7g and bgay.
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