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A Note on the Equivalence of the Set Covering and 
Process Network Synthesis Problems* 

B. Imreh1 J. Fülöpi F. Friedler^ 

Abstract 

In this paper, combining and completing some earlier results presented in 
this journal, it is proved that the Process Network Synthesis problem (PNS 
problem for short) is equivalent to the set covering problem. 
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1 Introduction 
The foundations of PNS and the background of the combinatorial model studied 
here can be found in [6], [8], and [9]. Since the present work is based on the results of 
the papers [3], [7] published in this journal, we recall here only the main definitions 
briefly. 

By structural model oi PNS we mean a triplet (P, R, O) where P, R, 0 are finite 
sets, 0 / P is the set of desired products, R is the set of raw materials, 0 ^ 0 
is the set of available operating units, furthermore O C p'(M) x p ' ( M ) where M 
is the set of materials involved in the investigation and p'(M) denotes the set of 
all nonempty subsets of M. It is assumed that P fl R = 0 and M fl O = 0. An 
operating unit, u = (a,/?) G O, can be interpreted such that a and /3 contain the 
input and output materials of u, respectively. Pair (M, O) determines a directed 
graph called process graph. The set of vertices of this graph is M U O, and the set 
of arcs is A = Ai.U A2 where Ax = {{X,Y) : Y = (a,(3) G O and X G a] and 
A2 = {(Y,X) : Y = (a,P) G O and X £ ¡3}. If there exist vertices XUX2, ...,Xn, 
such that (Xi,X2), (X2,X3),..., (Xn-i,Xn) are arcs of process graph (M, O), then 
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the path determined by these arcs is denoted by [Xi,A'„]. Obviously, for any-
suitable pair (m,o), one can consider the corresponding process graph. 

Let process graphs (m, o) and (M, O) be given, (m, o) is defined to be a subgraph 
of (M, О), if m Ç M and о С О. 

For structural model ( P , R , 0 ) , process graph ( M , 0 ) with M D U{aU|3 : 
(a,/?) £ О} presents the interconnections among the operating units of O. Fur-
thermore, every feasible process network, producing the given set P of products 
from the given set R of raw materials using operating units from 0, corresponds 
to a subgraph of (M,0). Therefore, examining the corresponding subgraphs of 
( M , 0 ) , we can determine the feasible process networks. If there is no further 
constraints such as material balance, then the subgraphs of (M, О) which can be 
assigned to the feasible process networks have the following common combinatorial 
properties (cf. [8]). 

Subgraph (m,o) of ( M , 0 ) is called a solution-structure of ( P , R , 0 ) if: 

(51) P Cm, 

(52) VX Е т , Х е й § 1 is a source in (m, o), 

(53) VY0 e o,3 path {Y0,Yn} with Yn £ P, 

(54) VX G m, 3(aJ) £ о such that X £a{J(3. 

Let S(P,R,0) denote the set of solution-structures of (P,R,0). It can be easily 
seen that any solution-structure (m,o) is uniquely determined by set o. By this 
observation, S(P, R, 0) can be considered as a family of subsets of 0. 

PNS problem with weigths 

Let a PNS problems be given. Let us suppose that its every operating unit has 
a positive weight. Then, the following optimization problem can be studied: 

We are to find, a feasible process network with the minimal weight where by 
weight of a process network we mean the sum of the weights of the operating units 
belonging to the process network under consideration. 

Each feasible process network in such a PNS problem is determined uniquely 
from the corresponding solution-structure and vice versa. Thus, the problem can 
be formalized as follows: 

Let a structural model of PNS problem (P, R, O) be given. Moreover, let w be 
a positive real-valued function defined on 0, the weight function. Then, the basic 
model is 

(1) m i n { ] T w(u) : (m, o) € S(P, R,0)}. 
ибо 

In what follows, the elements of S(P, R, 0) are called feasible solutions and by PNS 
problem we mean a PNS problem with weights. 
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2 Relationship between the PNS and the set cov-
ering problems 

We recall (cf. [3]) that any set covering problem can be transformed into an equiv-
alent PNS problem. On the other hand, it is proved in [7] that every cycle free 
PNS problem can be transformed into a suitable set covering problem. Now, using 
a similar argument as in [7], we extend this statement to an arbitrary PNS problem 
which results in the equivalence of the two problems considered. 

This extension is proved in more steps. 
First, let us observe that S(P, R, 0) is closed under the finite union. This results 

in the existence of a greatest feasible solution, U{(m, o) : (m,o) € S(P,R,0)}, 
which is called maximal structure of the problem provided that S(P, R, O) ^ 0. 
The existence of the maximal structure makes possible a reduction of PNS problem 
under consideration in the following way. Let a PNS problem be given by (P, R, O) 
and let us denote ( M , 0 ) the process graph belonging to it. Furthermore, let us 
suppose that S(P,R,0) ^ 0, and let denote ( M , 0 ) the corresponding maximal 
structure. Then, we can construct a new model given by (P, R fl M,0). Since 
( M , 0 ) contains every feasible solution from S{P,R,0), S(P,R,0) = S(P,RD 
M,0). This new model is called the reduced model of problem considered. By the 
basis of the common set of feasible solutions, we obtain that problem 

(2) m i n { ^ w ( u ) : (m, o) & S(P,RnM,0)}. 
uEo 

is equivalent to problem (1) provided that S(P,R,0) / 0. 
Now, if S(P,R,0) = 0, then the set covering problem consisting of set P and 

a nonempty proper subset of P with an arbitrary weight is equivalent to the PNS 
problem under consideration, since both problems have no feasible solution. On 
the other hand, S(P,R,0) = 0 can be decided in polynomial time by using the 
algorithm presented in [9] for generating the maximal structure of ( P , R , 0 ) . 

If S(P, R, O) ^ 0, then instead of (1) we can consider (2) where the process 
graph of the problem is its maximal structure ( M , 0 ) . In this case, a conjuctive 
normal form (CNF) exists for describing the feasible solutions. Description of the 
feasible solutions by (CNF) was originally initiated in [4] and this description is 
also used in [7]. Here, taking the maximal structure into account, a simplest and 
more precise description is given. The basis of this approach is the observation that 
a faesible solution is determined by o uniquely. This observation makes possible to 
the reformulation of properties (51) through (54). 

To do this, let O = { ( a i , / ? i ) , . . . , (a/,/?/)}, and J = { 1 , . . . ,1]. Then, for any 
subgraph (to, O) of (M, 0), an ¿-vector of logical values YI, i € J, can be associated 
with such that ŷ  is true if and only if ( ) £ o. It is easy to see that this 
is a one-to-one mapping between the subgraphs of ( M , 0 ) fulfilling (54) and the 
/-vectors of logical values. For logical /-vector y, subgraph (to ,o) associated with 
y is determined by to = UiGT(y) a i u & anc^ 0 = i £ ^(y)} where 
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T(y) = {i :i £ J & yi is true}. Obviously, for an arbitrary logical /-vector, y, the 
subgraph associated with y is not necessarily a feasible solution. Procedure below 
provides such a CNF, that a logical /-vector, y, satisfies $ if and only if the 
subgraph associated with y is a feasible solution. 

Algorithm for CNF Generation 

• Step 1. Set $ 0 = A V Vi-
X€P 'iJ •V60; 

• Step 2. Let ^ = A (~>Vi V V Vh)-

• Step 3. Set $ 2 = A ( - W V v Vh). 
i€J 

• Sfep Let $ = f 0 A $ i A $ 2 . 

Now, we show that an /-vector y of logical values satisfies $ if and only if process 
graph associated with y is a feasible solution. To do this, let (m,o) be an arbitrary 
feasible solution in ( M , 0 ) , and let us denote by y the /-vector of logical values 
associated with (m,o). Then, (Si ) implies $o(y) = t and (S2) implies $ i ( y ) = f . 
Regarding $ 2 , let i E J and P n ft = 0. Then, ->yi \J yh is a member of 

hej 

If yi =4-, then the considered disjunction is true. If y; = f , then Ui 6 o, but in this 
case, (53) implies that there is an operating unit Uh 6 o such that ft fl ah ^ 0. 
This yields that yh = t for some h 6 J, and thus, the considered member is also 
true. Idea presented above is valid for every member of $2j and hence, $2(y) =T-
Consequently, y satisfies 

Conversely, let us suppose that the logical vector y satisfies Let (m , o) denote 
the subgaph of ( M , O) associated with y. We prove that (m, o) is a feasible solution, 
i.e., properties (SI) through (S4) hold for (m,o). 

Property (S4) follows directly from the definition of (m, o). 
Since $o(y) = t , there exists an operating unit in o which produces X directly, 

for every X £ P. Consequently, (S i ) is valid as well. 
To prove (52), let X £ m and X £ R. Since o C O and there is no operating 

unit in O producing raw material, there is no (1', AT) arc in (m,o). Now, let us 
suppose that X £ m and there is no (Y, X) arc in (m,o) . Then, we show that 
X £ R. Contrary, let us assume that X $ R. Since X £ m, there exists an 
operating unit, Uj = (a i , f t ) £ o such that X £ ai which implies jj; = t - On the 
other hand, since ( M , 0 ) is a feasible solution, there are operation units Uh £ O 
such that X £ ft,, and therefore, contains a member of the form ->j/i \J yh-

hej -V6/3h 

Since $ i ( y ) = t , this member is also true on y, and hence, there is an ho such that 
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Uh0 G o and X 6 Ph0. This yields that there exists (Y, X) arc in (rh,o) which is a 
contradiction. Therefore, X G R, and thus, (52) is valid. 

For proving (53), let us suppose that Uj G o. If /3j CI P ^ 0, then we are ready, 
there is a path from u, into P. In the opposite case, using again that ( M , 0 ) 
is a feasible solution, there is a path from Ui into P in (M ,0), i.e., there is an 
operating unit Uh G O such that ftna/, ^ 0. Then, $2 contains a member of form 
^Vi V Vh, a n d in a similar way as above, we obtain that Uh G o for some h. 

he j 
Repeating this procedure, in a finite number of steps, we obtain a path from u» 
into P in (m,o), and therefore, (53) is valid. 

By the strong relationship between the PNS problem and the corresponding 
CNF given above, the following problem is equivalent to problem (2). 

(3) min{ w i ' - y f u l l f i l s 

jer( y) 
where Wj = w(uj), j = 1 , . . . ,1. 

For every i G J, introducing two 0-1 variables, zf and z~, such that zf = 1 
if and only if yi is true, and z~ = 1 — zf, problem (3) can be transcribed into 
an equivalent binary programming problem by introducing some appropriate new 
constraints. It is easy to see that this binary problem is a set covering/partitioning 
problem. On the other hand, using the well-known trick of converting set parti-
tioning constraints into set covering ones (c/. e.g. [10]), we obtain an equivalent 
set covering problem. The corresponding binary and set covering problems can be 
found in [7]. 

Summarizing, we obtained that the solution of a PNS problem can be traced 
back to the solution of a suitable set covering problem. Combining this statement 
by the observation that any set covering problem can be given as a special PNS 
problem, we obtain the following statement. 

Proposition 1. The PNS problem is equivalent to the set covering problem. 

Equivalence proved above enables the sophisticated techniques developed for 
solving set covering problems (see, e.g., [2, 5, 10] and the references therein) also 
to be applied for solving PNS problems. Regarding this solution technique, it is an 
open problem whether a more economical transformation of the PNS problem into 
a set covering problem exists. 

It is worth noting that Proposition 1, by the well-known fact that the set cov-
ering problem is NP-complete (see [1] and [11]), implies immediately the following 
observation. 

Corollary 1. The PNS problem is NP-complete. 
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