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Note on the Work Function Algorithm 

Béla Csaba *tt 

A b s t r a c t 

We prove that the work function algorithm is (n - l)-campetitive for the 
fc-snrver problem, where n is the number of points in the metric space. This 
gives improved upper bounds when k + 3 < n < 2k - 1; in particular, it shows 
that the work function algorithm is optimal for k = n — 1. Recently this result 
was proved independently by Koutsoupias in [K], 

1 Introduct ion 
We give a short introduction to the deterministic ¿-server problem ([ST], [MMS]). 
There is a metric space M with a distance function d(.,.) on it. Let us denote \M\ 
by 7i. There are k (1 < k < n) mobile servers initially residing on the pointset I , no 
two on the same point. Repeatedly requests are generated by an off-line adversary, 
and we have to satisfy them in an on-line fashion. Satisfying a request is putting 
a server on the requested point of the metric space. When moving a server, a cost 
occurs which is the distance of the previous and the present position of the server 
which is moved. While the adversary has the advantage that it satisfies the request 
sequence at the end thus it can satisfy them optimally paying the least, an on-line 
algorithm pays after every request. In competitivity analysis we compare the on-
line cost with the optimal (off-line) cost, we are looking for an algorithm with the 
best competitive ratio. In [MMS] it is proved that no on-line algorithm can have 
competitive ratio less than k. They also gave optimal on-line algorithm for two 
special cases: when k = 2 and when k = n — 1. They conjectured that in every case 
there is an optimal, k- competitive on-line algorithm. There are other cases with 
optimal on-line algorithms: when the metric space is tree-like ([CL]), when every 
distance is the same (paging problem, [ST]), or for the weighted cache problem 
([CKPV]). So far the best general on-line algorithm is given by Koutsoupias and 
Papadimitriou ([KP1]). They proved tha t the work function algorithm is (2k - 1)-
competitive. In another paper ([KP2]) they also showed that the work function 
algorithm is fc-competitive if k + 2 = n. In this paper we give a proof that their 

"Department of Computer Science; Rutgers, The State University of NJ; 110 Frelinghuysen 
Road; Piscataway, NJ 08854-8019 USA. Email: bcsaba@paul.rutgers.edu 

t Research partially supported by a DIMACS fellowship 
'•Research partially supported by OTKA T30074. 

503 

mailto:bcsaba@paul.rutgers.edu


504 Béla Csaba 

algorithm is (n — l)-competitive as well, hence for k + 3<n<2k— 1 this gives 
the best known upper bounds, and for k = n — 1 it proves that the work function 
algorithm is optimal. In [K] Koutsoupias proved this result by considering the 
so called weak adversaries for the k-server problem. Our paper gives a simple 
alternative proof. 

The outline of this note is as follows: in the next chapter we present a brief 
description of the work function algorithm, and state some relevant properties of 
it, without proofs. Then in the third chapter we prove our result. 

2 Work Function Algorithm 
Let M, I and the request sequence g is given. Then the work function wB maps 
configurations to nonnegative real numbers: we(X) is the optimal cost of servicing 
Q starting at I and ending at X. For a work function wg the resulting work function 
after the request r is wgr. The following proves to be very useful: 

Fact 2.1 For all X wer(X) > we(X). 

Let us now define the algorithm itself. 

Definition 2.2 (Work Function Algorithm) Let g be a request sequence and, A 
be the configuration of the servers after satisfying g. The work function algorithm 
services the new request at r by moving one of the servers to the configuration 
B = A — a + r (i.e.,the server moves from a to r), where wgr(B) + d(a,r) is 
minimal. 

The so called extended cost of a move, m a x x { « v ( X ) — ' n some way 
encapsulates the optimal and the on-line costs. 

Fact 2.3 If the sum of the extended costs is bounded above by c -f- 1 times the 
optimal cost plus a constant, then the work function algorithm is c-competitive. 

The notion of minimizer configurations is also an important one. 

Definition 2.4 A configuration A is called a minimizer with respect to the point 
a with respect to we if 

we(A) - ^ d(a,x) - min{ii)e ( X ) - £ d ( a , a ; ) } . (1) 
XEA ' z£X 

We finish decribing the relevant definitions and facts by the following lemma, 
the Duality Lemma. 

Lemma 2.5 (Duality Lemma) Let we be a work function, and let wgr be the 
resulting work function after request r. Then any minimizer A of r with respect to 
we is also a minimizer of r with respect to wgr, and the extended cost of servicing 
the request r is wgr(A) — we(A). 



Note on the Work Function Algorithm 505 

3 Proof of the (n — l)-competitivity 
Let g be the request sequence, and let the next request be r. Denote the min-
imizer configuration of a; with respect to u>e, and Bx the minimizer configuration 
of x with respect to weT. Let us define a potential-function Pe: 

Analoguosly, we can define Pgr. Denoting the empty request sequence by 0 one 
may observe, that Pq>, the initial potential function is a constant. In the sequel by 
opt(g) we will denote the optimal cost of satisfaction of the request sequence g. 

Lemma 3.1 (1) Per — Pe > extended cost of the move from g to gr and 
(2) Pe — n • opt(g) < constant. 

Proof. For proving (1) observe that Ar is a minimizer of r with respect to 
we and wer. Thus, wer(Ar) — Yla£Ard(r>a) is ais° a minimal expression, and 
wer(Ar) — we(Ar)= extended cost. Let now v be another point of M, then 
we(Av) ~ EaeA, a) ^ wq(bv) ~ d(v,b) < wer{Bv) - Y,beB„ d(v,b). 
This proves (1). For proving the second part of the statement, observe that Pe is 
the sum of optimal costs plus a constant. • 

Theorem 3.2 The work function algorithm is (n — 1)-competitive. 

Proof. Summing up the potential function values over all requests we can see from 
Lemma 3.1 that this sum is at least the sum of the extended costs plus a constant. 
By Fact 2.3 we can conclude the statement of the theorem. • 
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