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Modular Reinforcement Learning: A Case Study in 
a Robot Domain 

Zsolt Kalmár * Csaba Szepesvári * András Lőrincz * 

Abstract 

T h e behaviour of reinforcement learning (RL) algorithms is best under-
stood in completely observable, finite state- and action-space, discrete-time 
controlled Markov-chains. Robot-learning domains, on the other hand, are 
inherently infinite both in time and space, and moreover they are only par-
tially observable. In this article we suggest a systematic design method whose 
motivation comes from the desire to transform the task-to-be-solved into a 
finite-state, discrete-time, "approximately" Markovian task, which is com-
pletely observable, too. The key idea is to break up the problem into subtasks 
and design controllers for each of the subtasks. Then operating conditions 
are attached to the controllers (together the controllers and their operating 
conditions which are called modules) and possible additional features are de-
signed to facilitate observability. A new discrete time-counter is introduced 
at the "module-level" that clicks only when a change in the value of one of 
the features is observed. The approach was tried out on a real-life robot. 
Several RL algorithms were compared and it was found that a model-based 
approach worked best. The learnt switching strategy performed equally well 
as a handcrafted version. Moreover, the learnt strategy seemed to exploit 
certain properties of the environment which could not have been seen in ad-
vance, which predicted the promising possibility that a learnt controller might 
overperform a handcrafted switching strategy in the future. 

1 Introduction 
Reinforcement learning (RL) is the process of learning the coordination of con-
current behaviours and their timing. A few years ago Markovian Decision Prob-
lems (MDPs) were proposed as the model for the analysis of RL [17] and since 
then a mathematically well-founded theory has been constructed for a large class 
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of RL algorithms. These algorithms are based on modifications of the two ba-
sic dynamic-programming algorithms used to solve MDPs. namely the value- and 
policy-iteration algorithms [25, 5, 10, 23, 18]. The RL algorithms learn via experi-
ence, gradually building an estimate of the optimal value-function, which is known 
to encompass all the knowledge needed to behave in an optimal way according to 
a fixed criterion, usually the expected total discounted-cost criterion. The basic 
limitations of all of the early theoretical results of these algorithms was that they 
assumed finite state- and action-spaces, and discrete-time models in which the state 
information too was assumed to be available for measurement. In a real-life prob-
lem however, the state- and action-spaces are infinite, usually non-discrete, time is 
continuous and the system's state is not measurable (i.e., with the latter property 
the process is only partially observable as opposed to being completely observable). 
Recognizing the serious drawbacks of the simple theoretical case, researchers have 
begun looking at the more interesting yet theoretically more difficult cases (see e.g. 
[11, 16]). To date, however, no complete and theoretically sound solution has been 
found to deal with such involved problems. In fact the above-mentioned learning 
problem is indeed, intractable owing to partial-observability. This result follows 
from a theorem of Littman [9]. 

In this paper an attempt is made to show that RL can be applied to learn real-life 
tasks when a priori knowledge is combined in some suitable way. The key to our 
proposed method lies in the use of high-level modules along with a specification 
of the operating conditions for the modules and other "features", to transform the 
task into a finite-state and action, completely-observable task. Of course, the de-
sign of the modules and features requires a fair amount of a priori knowledge, but 
this knowledge is usually readily available. In addition to this, there may be several 
possible ways of breaking up the task into smaller subtasks but it may be far from 
trivial to identify the best decomposition scheme. If all the possible decompositions 
are simultaneously available then RL can be used to find the best combination. Here 
we propose design principles and theoretical tools for the analysis of learning and 
demonstrate the success of this approach via real-life examples. A detailed com-
parison of several RL methods, such as Adaptive Dynamic Programming (ADP), 
Adaptive Real-Time Dynamic Programming (ARTDP) and Q-learning is provided, 
having been combined with different exploration strategies. 

The article is organized in the following way. In Section 2 we introduce our proposed 
method and discuss the motivations behind it. The notion of "approximately" sta-
tionary MDPs is also introduced as a useful tool for the analysis of "module-level" 
learning. Then, in Section 3 the outcome of certain experiments using a mobile 
robot are presented. The relationship of our work to that of others is contrasted in 
Section 4. Finally our conclusions and possible directions for further research are 
given in Section 5. Some details were left out from this article, but these can be 
found in [8]. 
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2 Module-based Reinforcement Learning 
First of all, we will briefly run through Markovian Decision Problems (MDPs), a 
value-function approximation-based RL algorithm to learn solutions for MDPs and 
their associated theory. Next, the concept of recursive-features and time discretiza-
tion based on these features are elaborated upon. This is then followed by a sensible 
definition and principles of module-design together with a brief explanation of why 
the modular approach can prove successful in practice. 

2.1 Markovian Decision Problems 
RL is the process by which an agent improves its behaviour from observing its own 
interactions with the environment. One particularly well-studied RL scenario is 
that of a single agent minimizing the expected-discounted total cost in a discrete-
time finite-state, finite-action environment, when the theory of MDPs can be used 
as the underlying mathematical model. A finite MDP is defined by the 4-tuple 
(S, A,p, c), where 5 is a finite set of states, A is a finite set of actions, p : S x 
A x S —> [0,1] is a transition probability function satisfying J2S 'esP(-s>a>s ') = ^ 
for all (s,o) £ S x A pairs and c : 5 x A —> is the so-called immediate cost-
function. The ultimate target of learning is to identify an optimal policy. A policy 
is some function that tells the agent which set of actions should be chosen under 
which circumstances. A policy n is optimal under the expected discounted total cost 
criterion if, with respect to the space of all possible policies, ir results in a minimum 
expected discounted total cost for all states. The optimal policy can be found by 
identifying the optimal value-function, defined recursively by 

for all states s £ S, where c (s ,a) is the immediate cost for taking action a from 
state s, 7 is the discount factor, and p(s,a,s') is the probability that state s' is 
reached from state s when action a is chosen. U (s) is the set of admissible actions 
in state s. The policy which for each state selects the action that minimizes the 
right-hand-side of the above fixed-point equation constitutes an optimal policy. 
This yields the result that to identify an optimal policy it is sufficient just to find 
the optimal value-function v*. The above simultaneous non-linear equations (non-
linear because of the presence of the minimization operator), also known as the 
Bellman equations [3], can be solved by various dynamic programming methods 
such as the value- or policy-iteration methods [15]. 

RL algorithms are generalizations of the DP methods to the case when the tran-
sition probabilities and immediate costs are unknown. The class of RL algorithms 
of interest here can be viewed as variants of the value-iteration method: these al-
gorithms gradually improve an estimate of the optimal value-function via learning 
from interactions with the environment. There are two possible ways to learn the 
optimal value-function. One is to estimate the model (i.e., the transition probabil-
ities and immediate costs) while the other is to estimate the optimal action-values 
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Initialization: Let t = 0, and initialize the utilized model (Mo) and the Q-function (Qo) 
Repeat Forever 
1. Observe the next state st+i and reinforcement signal ct . 
2. Incorporate the new experience ( s t , a t , s t + i , c t ) into the model and into the estimate 
of the optimal Q-function: (M t+i,Qt+i) = Ft(Mt,Qt,(st,at,st+i,ct)). 
3. Choose the next action to be executed based on (Mt+¡,Qt+¡): a í + i = 
St(Mt+i,Qt+i,st+i) and execute the selected action. 
4. t :=t + 1. 

Table 1: The structure of value-function-approximation based RL algo-
rithms. 

directly. The optimal action-value of an action a given a state s is defined as the 
total expected discounted cost of executing the action from the given state and 
proceeding in an optimal fashion afterwards: 

Q'(s, a) = c(s, a) + 7 £ p(s, a, s')v*(s'). (1) 
s' 

The general structure of value-function-approximation based RL algorithms is 
given in Table 1. 

In the RL algorithms various models are utilized along with an update rule Ft 

and action-selection rule St. 
In the case of the Adaptive Real-Time Dynamic Programming (ARTDP) algo-

rithm the model consists (M t ) of the estimates of the transition probabilities and 
costs, the update-rule Ft being implemented, e.g., as an averaging process. In-
stead of the optimal Q-function, the optimal value-function is estimated and stored 
to spare storage space, and the Q-values are then computed by replacing the true 
transition probabilities, costs and the optimal value-function in Equation 1 by their 
estimates. An update of the estimate for the optimal value-function is implemented 
by an asynchronous dynamic programming algorithm using an inner-loop in Step 
2 of the algorithm. 

Another popular RL algorithm is Q-learning, which does not employ a model 
but instead the Q-values are updated directly according to the iteration procedure 
[25] 

Qi+i(st, at) = (1 - at(st,at))Qt(st,at) + 

Oit(st, at){ct + 7 min Qt{st+i, a)), a 

where at(st,at) > 0, and satisfies the usual Robbins-Monro type of conditions. 
For example, one might set at(s,a) = n i(51a)+1 where nt{s,a) is the number of 
time the state-action pair (s,a) was visited before time t. But often in practice 
a.t(s,a) = const is employed which while yielding increased adaptivities no longer 
ensures convergence. 

Both algorithms mentioned previously are guaranteed to converge to the op-
timal value-/Q-function if each state-action pair is updated infinitely often. The 
action selection procedure St should be carefully chosen so that it fits the dynamics 
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of the controlled process in a way that the condition is met. For example, the 
execution of random actions meets this "sufficient-exploration" condition when the 
MDP is ergodic. However, if on-line performance is important then more sophis-
ticated exploration is needed which, in addition to ensuring sufficient exploratory 
behaviour, exploits accumulated knowledge. For more details the interested reader 
is referred to [8]. 

2.2 The modular architecture 

In case of a real-life robot-learning task the dynamics cannot be formulated exactly 
as a finite MDP, nor is the state information available for measurement. This 
latter restriction is modelled by Partially-Observable MDPs (POMDPs) where (in 
the simplest case) one extends an MDP with an observation function h which maps 
the set of states S into a set X, called the observation set (which is usually non-
countable, just like S). The defining assumption of a POMDP is that the full state s 
can be observed only through the observation function, i.e., only h(s) is available as 
input and this information alone is usually insufficient for efficient control since h is 
usually a non-injection (i.e., h may map different states to the same observations). 

The dynamics of the controlled system is defined by P{st+1 = s'|st = s,at = 
a) = p(s,a,s') and Xt = h(st). The first part of the controller is the feature ex-
traction part. The designer needs to design a feature space F together with a 
feature-extraction function R mapping X x A x Fk to F, where k is another de-
sign parameter. The feature extraction function R transforms observation-action 
pairs into features in a recursive way: the feature ft at time t is defined by 
ft = R(xt,at, /(_!,..., ft-k), t > 0, where ft-i, • • • ,ft-k are other design pa-
rameters. The rest of the system is composed of a finite number of controllers, 

where M « = : x F - » {0 ,1} x A x Z^. The 
ith controller stores an internal "state" z ^ which develops in time according to 

t ft) determines whether the ¿th controller is available 
for control in time step t: If ( z [ l \ f t ) = 1 then the controller is available, other-
wise it is not available. Each controller should be thought of as a "local" controller 
that is able to carry out a particular subtask of the whole problem. The control 
problem then is to design a switching strategy that switches between the appro-
priate modules (local controllers) such that the controlled system will eventually 
show a behavior consistent with the ultimate goal of control. This is formulated 
as follows: we further restrict the switching function to be a memoryless mapping 
S : F' x {0, l } n {1 ,2 , . . . , n } . Here F' is another design set that comes to-
gether with a mapping IR : F —> F'. IT maps computed features to "monitored" 
features. The purpose of IT is to bring in some more flexibility in the design pro-
cedure. The role of ir will be clear soon once the control equations are given. In 
order to arrive at the definition of control, let use first define the sequence to, T\ , . . . 
as follows. Let To = 0 and let t i , be defined by rs+i = min{ t > TS : 
5i\z[l\ft) ^ S[l) ft-.x) for some i or tt (/¿) ^ ^{ft-i) }• A switching function 
S : F' x {0,1}™ —>• (1,2,... ,n} is called admissible if from S(f, Ci,..., cn) = i it 
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follows that a = 1 (i.e. only controllers which are available for control are chosen by 
the switching function). Given an admissible switching function 5 the control works 
as follows: at any given time instant t there is only one module active. The index 
of this module is denoted by MT and satisfies m i + 1 = MT if t G {to, . . . , TS, ...}, oth-
erwise mt+1 = S(ix(ft), 1). it),... ,<5|n'(2fn\ ft)). The control is then given 
by at = (4m'\ft). 

Assume a goal oriented task, i.e. a POMDP where the success of a controller is 
measured in terms of if the system state can be driven to a particular set of goal 
states. Then the goal of the design procedure is to set up the modules and the 
additional features in such a way that there exists an admissible switching function 
S that for any given history results in a closed-loop behaviour which fulfills the 
"goal" of control. It can be extremely hard to prove even the existence of such a 
valid switching function. One approach is to use a so-called accessibility decision 
problem which is a discrete graph with its node set being F' x { 0 , 1 } " and the 
edges connect features which can be observed in succession. Then, standard DP 
techniques can be used to decide the existence of a proper switching function [8]. 

Of course, since the definitions of the modules and features depend on the de-
signer, it is reasonable to assume that by clever design a satisfactory decomposition 
and controllers could be found even if only qualitative properties of the controlled 
object were known. RL could then be used for two purposes: either to find the best 
switching function assuming that at least two proper switching functions exist, or 
to decide empirically whether a valid switching controller exists at all. The first 
kind of application of RL arises as result of the desire to guarantee the existence of 
a proper switching function through the introduction of more modules and features 
than is minimally needed. But then, good switching which exploits the capabilities 
of all the available modules could well become complicated to find manually. 

If the accessibility decision problem were extendible with transition-probabilities 
to turn it to an MDP 1 , then RL could be rightly applied to find the best switching 
function. For example, if one uses a fixed (maybe stochastic) stationary switching 
policy and provided that the system dynamics can be formulated as an MDP then 
there is a theoretically well-founded way of introducing transition-probabilities (see 
[16]). Unfortunately, the resulting probabilities may well depend on the switching 
policy which can prevent the convergence of the RL algorithms. However, the 
following "stability" theorem shows that the difference of the cost of optimal policies 
corresponding to different transition probabilities is proportional to the extent the 
transition probabilities differ, so we may expect that a slight change in the transition 
probabilities does not result in completely different optimal switching policies and 
hence, as will be explained shortly after the theorem, we may expect RL to work 
properly, after all. 

Theorem 2.1 Assume that two MDPs differ only in their transition-probability 
matrices, and let these two matrices be denoted by p\ and po. Let the corresponding 

1 Note that as the original control problem is deterministic it is not immediate when the in-
troduction of probabilities can be justified. One idea is to refer to the ergodicity of the control 
problem. 
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optimal cost-functions be vf and v2 • Then, 

nC\\pi -p2\\ 
K - 11 < 7" ( 1 - 7 ) 2 

where C = ||c|| is the maximum of the immediate costs, ||-|| denotes the supremum-
norm and n is the size of the state-space. 

Proof: Let Ti be the optimal-cost operator corresponding to the transition-
probability matrix pi, i.e., 

(:Tiv){s) = min c ( s , « ) + 7 V pi(s,a,s')v(s') , a e U { x ) V s^tx J 
v : S 5R, i = 1, 2. 

Proceeding with standard fixpoint and contraction arguments (see e.g. [19]) we 
get that — «III < - T1V2W + \\T\vl - T2v2\\ and since Ti is a contraction 
with index 7 , and the inequality ||Tii; — T2v|| < 7||pi — p2\\ ^yeX |v(?/)| we obtain 
6 = |K < "fS + 7||pi — p2\\\X\C/— 7 ) , where |K*|| < C / ( l - 7 ) has been 
employed [15]. Rearranging the inequality in terms of 5 then yields Theorem 2.1. 
Q.E.D. 

Motivated by the previous theorem we define e-stationary MDPs as the quadru-
ple (S,A,p ,c ) , where S,A and c are as before but p, the transition probability 
matrix, may vary in time but with ||pt — p*|| < e holding for all t > 0. Our expec-
tations are that although the transitions cannot be modelled with a fixed transition 
probability matrix (i.e., stationary MDP), they can be modelled by an e-stationary 
one even if the switching functions are arbitrarily varied and we conjecture that RL 
methods would then result in oscillating estimates of the optimal value-function, but 
with the oscillation being asymptotically proportional to e. Note that e-stationarity 
was clearly observed in our experiments which we will describe now. 

3 Experiments 
The validity of the proposed method was checked with actual experiments carried 
out using a Khepera-robot. The robot, the experimental setup, general specifica-
tions of the modules and the results are all presented in this section. 

3.1 The Robot and its Environment 
The mobile robot employed in the experiments is shown in Figure 1. 

It is a Khepera2 robot equipped with eight IR-sensors, six in the front and 
two at the back, the IR-sensors measuring the proximity of objects in the range 

2The Khepera was designed and built at Laboratory of Microcomputing, Swiss Federal Institute 
of Technology, Lausanne, Switzerland. 
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Figure 1: The Khepera and the experimental environment. The task was 
to grasp a ball and hit the stick with it. 

0-5 cm. The robot has two wheels driven by two independent DC-motors and a 
gripper which has two degrees of freedom and is equipped with a resistivity sensor 
and an object-presence sensor. The vision turret is mounted on the top of the 
robot as shown. It is an image-sensor giving a linear-image of the horizontal view 
of the environment with a resolution of 64 pixels and 256 levels of grey. The 
horizontal viewing-angle is limited to about 36 degrees. This sensor is designed to 
detect objects in front of the robot situated at a distance spanning 5 to 50 cm. 
The image sensor has no tilt-angle, so the robot observes only those things whose 
height exceeds 5 cm. 

The learning task was defined as follows: find a ball in an arena, bring it to 
one of the corners marked by a stick and hit the stick with the ball. The robot's 
environment is shown in Figure 1. The size of the arena was 50 cm x 50 cm with a 
black coloured floor and white coloured walls. The stick was black and 7 cm long, 
while three white-coloured balls with diameter 3.5 cm were scattered about in the 
arena. The task can be argued to have been biologically inspired because it can be 
considered as the abstraction of certain foraging tasks or a "basketball game". The 
environment is highly chaotic because the balls move in an unpredictable manner 
and so the outcome of certain actions is not completely predictable, e.g., a grasped 
ball may easily slip out from the gripper. 

3.2 The Modules 

3.2.1 Subtask decomposition 

Firstly, the task was decomposed into subtasks. The following subtasks were natu-
rally: (T l ) to find a ball, (T2) grasp it, (T3) bring it to the stick, and (T4) hit the 
stick with the grasped ball. Subtask (T3) was further broken into two subtasks, 
that of (T3.1) 'safe wandering' and (T3.2) 'go to the stick', since the robot cannot 
see the stick from every position and direction. Similarly, because of the robot's 
limited sensing capabilities, subtask (Tl ) was replaced by safe-wandering and sub-
task (T2) was refined to 'when an object nearby is sensed examine it and grasp it 
if it is a ball'. Notice that subtask 'safe wandering' is used for two purposes (to 
find a ball or the stick). The operating conditions of the corresponding controllers 
arose naturally as (T2) - an object should be nearby, (T3.2) - the stick should 
be detected, (T4) - the stick should be in front of the robot, and (T1,T3.1) - no 
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condition. Since the behaviour of the robot must differ before and after locating 
a ball, an additional feature indicating when a ball was held was supplied. As the 
robot's gripper is equipped with an 'object-presence' sensor the 'the ball is held" 
feature was easy to implement. If there had not been such a sensor then this feature 
still could have been implemented as a switching-feature: the value of the feature 
would be ' on ' if the robot used the grasping behaviour, and hence not the hitting 
behaviour. An 'unstuck' subtask and corresponding controller were also included 
since the robot sometimes got stuck. Of course yet another feature is included for 
the detection of "goal-states". The corresponding feature indicates when the stick 
was hit by the ball. This feature's value is ' on ' iff the gripper is half-closed but 
the object presence sensor does not give a signal. Because of the implementation 
of the grasping module (the gripper was closed only after the grasping module was 
executed) this implementation of the "stick has been hit by the ball" feature was 
satisfactory for our purposes, although sometimes the ball slipped out from the 
gripper in which case the feature turned 'on' even though the robot did not actu-
ally reach the goal. Fortunately this situation did not happen too often and thus 
did not affect learning. 

The resulting list of modules and features is shown in Table 2. The controllers 
work as intended, some fine details are discussed here (for more complete description 
see [8]). For example, the observation process was switched off until the controller 
of Module 3 was working so as the complexity of the module-level decision problem 
is reduced. The dynamics of the controller associated with Module 1 were based 
on the maximization of a function which depended on the proximity of objects and 
the speed of both motors3. If there were no obstacles near the robot this module 
made the robot go forward. This controller could thus serve as one for exploring the 
environment. Module 2 was applicable only if the stick was in the viewing-angle of 
the robot, which could be detected in an unambiguous way because the only black 
thing that could get into the view of the robot was the stick. The range of allowed 
behaviour associated with this module was implemented as a proportional controller 
which drove the robot in such a way that the angle difference between the direction 
of motion and line of sight to the stick was reduced. The behaviour associated 
with Module 3 was applicable only if there was an object next to the robot, which 
was defined as a function of the immediate values of IR-sensors. The associated 
behaviour was the following: the robot turned to a direction which brought it to 
point directly at the object then the gripper was lowered. The "hit the stick" 
module (Module 4) lowers the gripper which under appropriate conditions result 
in that the ball jumps out of the gripper resulting in the goal state. Module 5 was 
created to handle stuck situations. This module lets the robot go backward and 
is applicable if the robot has not been able to move the wheels into the desired 
position for a while. This condition is a typical time-window based feature. 

Simple case-analysis shows that there is no switching controller that would 
reach the goal with complete certainty (in the worst-case, the robot could return 
accidentally to state "10000000" from any state when the goal feature was ' o f f ' ) , 

3Modules are numbered by the identification number of their features. 
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F N o W B e h a v i o u r 

1 a l w a y s e x p l o r e w h i l e 
a v o i d i n g o b s t a c l e s 

2 if t h e a t i c k is in 
the v i e w i n g a n g l e g o t o t h e s t i c k 

3 if an o b j e c t 
is n e a r 

e x a m i n e t h e o b j e c t 
g r a s p it if it is a b a l l 

4 if t h e s t i c k 
is near hit t h e s t i c k 

S if t h e r o b o t 
is s t u c k g o b a c k w a r d 

6 if t h e b a l l 
is g r a s p e d -

7 if t h e s t i c k is hit 
w i t h t h e ba l l -

Table 2: Description of the features and the modules. 'FNo.' means 'Feature 
No.', in the column labelled by 'on3 the conditions under which the respective 
feature's value is 'on 'are listed. 

so that an almost-sure switching strategy should always exist. On the other hand, 
it is clear that a switching strategy which eventually attains the target does exist. 

3.3 Details of learning 

A dense cost-structure was applied: the cost of using each behaviour was one except 
when the goal was reached, whose cost was set to zero. Costs were discounted at 
a rate of 7 = 0.99. Note that from time to time the robot by chance became stuck 
(the robot's 'stuck feature' was ' o n ' ) , and the robot tried to execute a module 
which could not change the value of the feature-vector. This meant that the robot 
did not have a second option to try another module since by definition the robot 
could only make decisions if the feature-representation changed. As a result the 
robot could sometimes get stuck in a "perpetual" or so-called "jammed" state. 
To prevent this happening we built in an additional rule which was to stop and 
reinitialize the robot when it got stuck and could not unjam itself after 50 sensory 
measurements. A cost equivalent to the cost of never reaching the goal, i.e., a cost 
of (= 100) was then communicated to the robot, which mimicked in effect that 
such actions virtually last forever. 

Experiments were fully automated and organized in trials. Each trial run lasted 
until the robot reached the goal or the number of decisions exceeded 150 (a number 
that was determined experimentally), or until the robot became jammed. The 
'stick was hit' event was registered by checking the state of the gripper (see also 
the description of Feature 7). 

During learning the Boltzmann-exploration strategy was employed where the 
temperature was reduced by T t + 1 = 0.999 Tt uniformly for all states [2]. During 
the experiments the cumulative number of successful trials were measured and 
compared to the total number of trials done so far, together with the average 
number of decisions made in a trial. 
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Figure 2: Learning curves. In the first graph the percentage of successful trials 
out of ten are shown as a function of the number of trials. In the second graph 
the number of decisions taken by the robot and averaged over ten trials are both 
shown, as well as a function of the number of learning trials. 

3.4 Results 

Two sets of experiments were conducted. The first set was performed to check the 
validity of the module based approach, while the second was carried out to compare 
different RL algorithms. In the first set the starting exploration parameter To was 
set to 100 and the experiment lasted for 100 trials. These values were chosen in 
such a way that the robot could learn a good switching policy, the results of these 
experiments being shown in Figure 2. 

One might conclude from the left subgraph which shows the percentage of task 
completions in different stages of learning that the robot could solve the task af-
ter 50 trials fairly well. Late fluctuations were attributable to unsuccessful ball 
searches: as the robot could not see the balls if they were far from it, the robot 
had to explore to find one and the exploration sometimes took more than 150 de-
cisions, yielding trials which were categorized as being failures. The evaluation of 
behaviour-coordination is also observed in the second subgraph, which shows the 
number of decisions per trial as a function of time. The reason for later fluctuations 
is again due to a ticklish ball search. The performance of a handcrafted switching 
policy is shown on the graphs as well. As can be seen the differences between 
the respective performances of the handcrafted and learnt switching functions are 
eventually negligible. In order, to get a more precise evaluation of the differences 
the average number of steps to reach the goal were computed for both switchings 
over 300 trials, together with their standard deviations. The averages were 46.61 
and 48.37 for the learnt and the handcrafted switching functions, respectively, with 
nearly equal std-s of 34.78 and 34.82, respectively. 

Theoretically, the total number of states is 27 = 128, but as learning concen-
trates on feature-configurations that really occur this number transpires to be just 
25 here. It was observed that the learnt policy was always consistent with a set of 
handcrafted rules, but in certain cases the learnt rules are more refined than their 
handcrafted counterparts. For example, the robot learnt to exploit the fact that 
the arena was not completely level and as a result balls were biased towards the 
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M e t h o d T0 = 100 T 0 = 50 T 0 = 25 T 0 = 0 

A D P ( 6 1 ; 1 9 ; 6 ) ( 5 2 ; 2 0 ; 4 ) ( 4 5 ; 1 2 ; 5 ) (ii:lG:i) 

A R T D P 36 29 50 24 

R T Q L - 1 53 69 4 7 6 6 

R T Q L - 2 71 65 63 73 

R T Q L - 3 ( 8 3 ; 1 ;2 ) ( 7 9 : 2 6 : 3 ) ( 6 5 ; 2 4 ; 4 ) (ÍI.-M.-8) 

Table 3: Regret. The table shows the number of unsuccessful trials among the 
first 100 trials. The entries with three number in them show cases when more than 
one experiment was run. In those entries the first number shows the average of the 
number of unsuccessful trials, the second is the standard deviation while the third 
is the number of experiments run. 

stick and as a result if the robot did not hold a ball but could see the stick it moved 
towards the stick. 

In the rest of the experiments we compared two versions of ARTDP and three 
versions of real-time Q-learning (RTQL). The two variants of ARTDP which we call 
ADP, and "ARTDP", corresponding to the cases when in the inner loop of ARTDP 
the optimal value function associated with the actual estimated model (transition 
probabilities and immediate cost) is computed and when only the estimate of the 
value of the actual state is updated. Note that due to the small number of states 
and module-based time discretization even ADP could be run in real-time. But 
variants of RTQL differ in the choice of the learning-rate's time-dependence. RTQL-
1 refers to the choice of the so-called search-then-converge method, where (s, a) = 
ioo+n°(5 a)' n f c (s> being the number of times the event (s, a) = (s t ,a t ) happened 
before time k plus one (the parameters 50 and 100 were determined experimentally 
as being the best choices). In the other two cases (the corresponding algorithms 
were denoted by RTQL-2 and RTQL-3 respectively) constant learning rates (0.1 
and 0.25, respectively) were utilized. 

The online performances of the algorithms were measured as the cumulative 
number of unsuccessful trials, i.e., the regret. The regret Rt at time t is the differ-
ence between the performance of an optimal agent (robot) and that of the learning 
agent accumulated up to trial t, i.e., it is the price of learning up to time t. A 
comparison of the different algorithms with different exploration ratios is given in 
Table 3. All algorithms were examined with all the four different exploration pa-
rameters since the same exploration rate may well result in different regrets for 
different algorithms, as was also confirmed in the experiments. 

First note that in order to evaluate statistically the differences observed for dif-
ferent exploration strategies much more experiments would be needed but running 
these experiments would require an enormous amount of time (approximately 40 
days) and have not been performed yet. Thus we performed the following proce-
dure: Based on the first runs with every exploration-parameter and algorithm the 
algorithms that seemed to perform the best were selected (these were the ADP and 
the RTQL-3 algorithms) and some more experiments were carried out with these. 
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The results of these experiments (15 more for the ADP and 7 more for the RTQL-3) 
indicated that the difference between the performances of the RTQL-3 and ADP is 
significant at the level p = 0.05 (Student's t-test was applied for testing this). 

We have also tested another exploration strategy which Thrun found the best 
among several undirected methods4 [21]. These runs reinforced our previous find-
ings that estimating a model (i.e., running ADP or ARTDP instead of Q-learning) 
could reduce the regret rate by as much as 40%. 

4 Related Work 
There are two main research-tracks that influenced our work. The first was the 
introduction of features in RL. Learning while using features were studied by Tsit-
siklis and Van Roy to deal with large finite state spaces, and also to deal with 
infinite state spaces [22]. Issues of learning in partially observable environments 
have been discussed by Singh et al. [16]. 

The work of Connell and Mahadevan complements ours in that they set-up 
subtasks to be learned by RL and fixed the switching controller [13]. 

Asada et al. considered many aspects of mobile robot learning. They applied 
a vision-based state-estimation approach and defined "macro-actions" similar to 
our controllers [1]. In one of their papers they describe a goal-shooting problem 
in which a mobile robot shot a goal while avoiding another robot [24]. First the 
robot learned two behaviours separately: the "shot" and "avoid" behaviours. Then, 
the two behaviours were synthetised by a handcrafted rule and later this rule was 
refined via RL. The learnt action-values of the two behaviours were reused in the 
learning process while the combination of rules took place at the level of state 
variables. 

Mataric considered a multi-robot learning task where each robot had the same 
set of behaviours and features [14]. Just as in our case, her goal was to learn a 
good switching function by RL. She considered the case when each of the robots 
learned separately and the ultimate goal was that learning should lead to a good 
collective behaviour, i.e., she concentrated mainly on the more involved multi-agent 
perspective of learning. In contrast to her work, we followed a more engineer-like 
approach when we suggested designing the modules based on well-articulated and 
simple principles and contrary to her findings it was discovered that RL can indeed 
work well at the modular level. 

In the Al community there is an interesting approach to mobile robot control 
called Behaviour-Based Artificial Intelligence in which "competence" modules or 
behaviours have been proposed as the building blocks of "creatures" [12, 4]. The 
decision-making procedure is, on the other hand, usually quite different from ours. 

The technique proposed here was also motivated by our earlier experiences with 
a value-estimation based algorithm given in the form of "activation spreading" [20]. 
In this work activation spread out along the edges of a dynamically varying graph, 

4 An exploration strategy is called undirected when the exploration does not depend on the 
number of visits to the state-action pairs. 
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where the nodes represented state transitions called triplets. Later the algorithm 
was extended so that useful subgoals could be found by learning [6, 7]. In the 
future we plan to extend the present module-based learning system with this kind 
of generalization capability. Such an extension may in turn allow the learning of a 
hierarchical organization of modules. 

5 Summary and Conclusions 
In this article module-based reinforcement learning was proposed to solve the co-
ordination of multiple "behaviours" or controllers. The extended features served 
as the basis of time- and space discretization as well as the operating conditions 
of the modules. The construction principles of the modules were: decompose the 
problem into subtasks; for each subtask design controllers and the controllers' op-
erating conditions; check if the problem could be solved by the controllers under 
the operating and observability conditions, add additional features or modules if 
necessary, set-up the reinforcement function and learn a switching function from 
experience. 

The idea of our approach was that a partially observable decision problem could 
be usually transformed into a completely observable one if appropriate features 
(filters) and controllers were employed. Of course, some a priori knowledge of 
the task and robot is always required to find those features and controllers. It 
was argued that RL could work well even if the resulting problem was only an 
e-stationary Markovian. The design principles were applied to a real-life robot 
learning problem and several RL-algorithms were compared in practice. We found 
that estimating the model and solving the optimality equation at each step (which 
could be done owing to the economic, feature-based tinre-discretization) yielded the 
best results. The robot learned the task after 700 decisions, which usually took less 
than 15 minutes in real-time. We conjecture that using a rough initial model good 
initial solutions could be computed off-line which could further decrease the time 
required to learn the optimal solution for the task. 

The main difference between earlier works and our approach here is that we have 
established principles for the design modules and found that our subsequent design 
and simple RL worked spendidly. Plans for future research include extending the 
method via module learning and also the theoretical investigation of e-stationary 
Markovian decision problems using the techniques developed in [10]. 
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