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Acts Over Completely 0-Simple Semigroups. 

Avdeyev A. Yu. * Kozhukhov I. B. * 

The aim of this work is to describe, in the set-theoretical and group-theoretical 
terms, all the acts (automata) over completely 0-simple semigroups and also over 
completely simple and zero semigroups. As the consequence of this results we 
obtain a description of all the acts over rectangular groups, rectangular bands, 
right (or left) groups, and right (or left) zero semigroups. Moreover, we find all the 
subacts of some mentioned acts. Our results generalize the results of [3]. Theorem 
1, Proposition 2 and Corollaries 9, 10, 11 of this work were published in [1]. We 
give them for the sake of completeness. Theorem 4 was announced by the second 
author in [7], Corollary 6 - by both authors in [2]. 

Recall that a right act (or right operand, or S-set) over a semigroup 5 is a set 
X with a mapping X x S -4 X (the image of (x,s) we denote xs) such that the 
axiom (xs)t = x(st) is held (for x £ X, s,t £ S) [6]. This notation coincides, in 
fact, with the notation "Moore's automaton" V = (A,Q,S) where A is th'e input 
alphabet, Q is the set of the states, and S is the transition function [8]. For the act 
X, we may assume that Q = X, A is the set of generators of S, and S(x,s) — xs. 
The S-set X is called unitary if S has a unity and x • 1 = x for all x £ X. 

If the semigroup S has a simple structure, all the S-acts can.be described. For 
example, an act X over the cyclic semigroup S = (a) is an unar ( X , / ) [9], i.e.,,the 
set X with the mapping / : X -> X\ we have x • a1 = fl(x). Esik and Imreh [5] 
described the subdirectly irreducible commutative automata. Babcsanyi-and Nagy 
[3] obtained a description of the automata X over a right group S in case when the 
following conditions are satisfied: 

XS = X, • (1) 

Mx,y £ X\/s,t £ S (xs = xt => ys = yt). (2) 

The condition (2) is called "state-independence". In this work we describe the right 
group acts (automata) in general case, i.e., without assuming (1), (2). 

The notations and definitions of semigroup theory can be found in [4]. A coniT 
pletely 0-simple semigroup is signed by M°(G,I,A,P), completely simple semi-
group - by M(G,I,A,P). Here G is a group, I and A are sets, P = ||pa»|| is a 
sandwich-matrix (i £ I, A £ A, p\i £ G U {0} or p\i £ G resp.). The non-zero 
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elements of M°(G, I, A, P) have a form (g)i\ (where g € G, i g I, A e A) and their 
multiplication is defined by the rule 

(n\ , (h\ - / if pxj ± 0, 
(9hx o if pXj= 0. 

Let A be a set and 6 an equivalence on A. Then A/Q is the set of 0-classes and 
a9 is the class of the element a 6 A. An equivalence 6 and a subset B C A are 
called compatible if \aQ fl B\ = 1 for every a. e A; in this case, the set B is called 
a transversal of 0. Let <p : A -» A be a mapping. The kernel ker<p and the image 
im<£ are defined as usual: 

ker<p= {(a,b)\<p(a) = <p(b)}, 

im(p — {(¿>(a)|a € A}. 

If (p2 = ip, ker(p and im</5 are compatible, the opposite is false. If A is a right act 
over a semigroup S and s € S, kers and ims are the kernel and the image of the 
mapping a M- as. 

The element 2 of an 5-act X is called a zero if zs = z for all s £ S- Of course, 
an act X may have no zero. If the act X has an unique zero, we denote it by 0. 
Let (Xa) be a family of the S-acts Xa. Then (J Xa is the coproduct (or disjoint 

a 
union) of the acts Xa. 

Let G be a group and H be a subgroup of G, not necessarily normal. Denote 
by G/H the set of the classes Hg where g € G. The set G/H is an unitary right 
G-act with respect to the action * where Hg * g' — Hgg'. Every unitary right act 
over the group G is obviously a disjoint union of orbits xG of the elements of X. 
It can be easily verified that every orbit is isomorphic (as a right G-act) to an act 
of form G/H for some subgroup H of G. Thus, we have the obvious assertion: 

Lemma 1. If G is a group andX is an unitary right G-act, thenX = [J(G/Ha) 
a 

where (Ha) is a family of subgroups ofG. 

Recall some definitions of the semigroup theory. 

Zero semigroup is a semigroup S with 0 such that ab = 0 for all a,b E S. 
Left zero semigroup (L) is a semigroup satisfying the identity xy = x. 
Right zero semigroup (R) is a semigroup with identity xy = y. 
Rectangular band (L xR) is a semigroup determined by the identities x2 = x, 

xyz = xz. It is known [4] that the rectangular band is isomorphic to a direct 
product of the left zero semigroup and the right zero one. Moreover, the rectangular 
band is isomorphic to the Rees matrix semigroup M{{e},I,A,P) where p\i = e 
for all A 6 A, i 6 I. 

Left group (L x G) is a direct product of a group and a left zero semigroup. 
Right group (it x G) is a direct product of a group and a right zero semigroup. 



Acts Over Completely O-Sirnple Semigroups 525 

We shall describe all the acts over zero semigroups. Let A be a set which is 
a disjoint union of some subsets Aa, i.e., A = U{Aa\a £ T} , Ba (cc 6 T) is some 
subset of Aa, and ba (a 6 T) is some element of Ba. Further, let S be a non-empty 
set and let ips, s £ S, be a family of mappings ips : A —» A such that tps(Aa) C Ba 

and ips(Ba) = {&„} for all a £ T. Moreover, assume that there exists an element 
9 £ S such that <pg(Aa) = { b a } for all a £ I\ If we put st = 9 for all s,t £ S, then 
S turns a zero semigroup (with zero 9). Define the action of the semigroup S on 
the set A as follows: as = <ps(a) (a £ A, s £ S). 

Theorem 2. The set A is a right act over the zero semigroup S. Conversely, 
every right act over a zero semigroup can be obtained by this way. 

Proof. At the first we check that A is a right S-act. Indeed, let a € A and s,t 6 
S. Then a £ Aa for some a £ T. We have (as)t = (pt((ps(a)) € iflt(Ba) = i.e., 
(as)t — ba. Moreover, a(st) — a9 = tpg(a) = ba. Thus, (as)t = a(st). 

Conversely, let A be an arbitrary right act over the zero semigroup S and 9 is 
the zero of S. Introduce the equivalence a on 5 putting curb <=> a,6 = b9. The equiv-
alence determines the partition A = U{Aa\a 6 T}. Check that Aas C Aa for all 
a € T, s € 5. Indeed, let a £ Aa, s 6 S. As (as)9 = a(s9) = a9, then (as, a) £ a. 
Therefore, as £ Aa. Thus, A a s C Aa. Put Ba = AaS for any a £ T. If a, b £ Aa 

and (a,b) £ a, we have a9 = b9, therefore \Aa9\ = 1, and hence Aa9 = {ba} for 
some ba. Define, for any s £ S, the mapping ips : A —> A putting <ps(a) — as for 
a £ A. Then (ps(Aa) C Ba and ips(Ba) = The theorem is proved. 

The following proposition gives a description of all subacts of the act over a zero 
semigroup. The statements can be easily checked, and the proofs are omitted. 

Proposition 3. Let A = U{AQ|a £ T} be a right act over the zero semigroup 
S, and Ba = AaS for a £ T, and {6a} = BaS. If A CT is a non-empty subset and 
A's C As (for S £ A) such that A'ss C A's for all s £ S, then the act G A } 
is a subact of A. Conversely, every subact of A can be obtained by this way. 

Now we shall consider the case of the completely 0-simple semigroup 
S =M°(G,I,A,P). We may assume without loss of generality that 1 £ I n A 
and pii = e where e is the unity of the group G. The following.theorem describes 
all the acts over such semigroups. We require here that 0 • s = x • 0 = 0 for all s £ S, 
x £ X where X is a right S-act, and 0 denotes the zero of S and the zero of X. 
The assumption of the existence of zero does not restrict the generality because of 
the fact that every act can be complemented by zero. 

Theorem 4. Let S = M°(G,I,A,P) be a completely simple semigroup and X 
be a set with some element 0 (it is called conditionally as zero). Further, let (Ha) 
be a family of subgroups of the group G,Q — |_\(G/Ha) is the coproduct of the right 

a 
G-acts, and Q° = Q U 0. Finally, let us suppose that, for i £ I and X £ A, the 
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mappings K,\ : Q° —,• X and TT{ : X —> Q° are defined such that 

k a ( 0 ) = 0 ; 7Ti(0) = 0; (3) 

Ki(K\(<j)) = q * P\i for all q E Q°. (4) 

Put, for x £ X and s = (g)ix E S, 

x • s = x • (g)i\ = kx(iTi(x) * g) and x • 0 = 0. (5) 

Then X is a right S-act with zero. Conversely, every right act with zero over a 
completely 0-simple semigroup can be obtained by this way. 

Proof. At the first, we shall check that the set X satisfying the written condi-
tions is really a right 5-act. Clearly, it is sufficient to prove that 

(x • (g)ix) • (h)jfi = x • ((g)i\ • (h)jtl). (6) 

We have 
(a • (9)ix) • (h)j„ = Kx(*i(x) * g) • (h)jfl = 

K»(nj(KX(Tri(x) *g)) *h) = n^iix) *g*pXj * h) = 

f 0, if pxj — 0, 
1 (gp\jh)ip if Pxj i o. 

This implies (6). 
Now, let X be a right 5-act with zero. Put Y = X • ( e )n . Define an action of 

the group G on the set Y as follows: y * g = y • (g)u for y 6 Y, g E G. Because 
of condition p u = e we have (y * g) * h = (y • (g)u) • (h)u = y • ((g)n • (h)n) = 
V • (gh) ii = y*gh. Moreover, y * e = (x • (e )n) • ( e ) n = x • (e )n = y. Therefore, 
Y is a unitary right G-act with zero. It follows from Lemma 1 that there exists a 
family of subgroups H& C G and an isomorphism 6 : Y Q° = |_\(G/Ha) |_J 0 of 

a 
right G-acts. 

Construct, for every A E A, the mapping KX : Q° X putting t\(x) = x • (e)iA 
and K,x(q) = fx(Q~l(q)) where x E X, q E Q°. Then construct, for i E I, the 
mapping 7Tj : X ->• Q° putting TTi(x) = 6(x • (e)ii) where x E X. If i E / , A E A, 
q E Q°, and pXi ^ 0, we obtain tt^kx(q)) = 0(KX(q) • (e)n) = O^O'^q)) • (e)n) = 
0(0~l(q)-(e) lA-(c)ii) = 6(e~l(q)-(pxi)u) = e(e~1(q)*Pxi) = 0(d-1(q*Pxi)) = q*Pxi-
If pxi = 0, we obtain tu (Kx (q ) ) = 0(9~1(q)-(e)ix-(e)il) = e(e~1(q) 0) = 0 = q*0 = 
q *pxi• Therefore, the equality (4) is satisfied in any case. 

Finally, we verify the equality (5). We have KX(TT,(X) *g) — k x ( 0 ( x - ( e ) n ) * g ) = 
*x(e((x-(e)a)*g)) = Kx(9(xie)aig)n)) = Kx(e(xig)n)) = Txtf-^e^ig)«))) = 
rx(x • (g)ii) = X • (g)N • (e)iA = x • (g)iX. The theorem is proved. 

Now we consider the case of the completely simple semigroup S = 
M(G,I,A,P). As before, we assume that 1 E I D A and pn = e where e is 
the unity of the group G. Moreover, as the matrix P has only non-zero elements, 
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then we may assume (without loss of generality) that some column and some row 
consists only of unities. Let p\i — pn — e for all i £ I, A £ A. The description of 
the acts over completely simple semigroup is given by the following theorem. 

Theorem 5. Let X be a set, S =M(G,I,A,P) be a completely simple semi-
group, (Ha) be a family of subgroups of G, and Q = \_j(G/Ha) be the coproduct of 

a 
G-acts. Suppose that, for every i £ I, an equivalence Oi on X is given, for every 
A £ A, a subset X\ C X is given, for i £ I, the mappings iti : X —• Q, kx : Q —X 
are given. Suppose that the following conditions hold (for i £ I, X £ A, x £ X, 
q e Q): 

keriTj = cTj, (7) 

imAcA = Xx, (8) 

\Xxnxoi\ = l, (.9) 

{TTiKx)(q) = q*p\i- (10) 

Put 
x • (g)i\ = K,x{iri(x) *g) (11) 

for x £ X, (g)ix £ S. Then X turns a right S-act. Conversely, every right act over 
the completely simple semigroup.S =M(G,I,A,P) can be obtained by this way. 

Proof. As is seen in the proof of THeorem 4, from the conditions (10) and (11), 
it can be shown that X is a right S-act. 

Now we assume that X is an arbitrary right S-act. Put e, = (e)n, e,A = 
(Pxi)iX for i £ I, X £ A. Clearly, ê  and e^ are idempotents. It is easy to check 
that eix&i = e i ; e^e^ = eiX, e u e t t = e u and eiXeiA. Put Xx = Xeix. Then 
Xx = Xeix = Xeixeix C Xeix = Xx- Then Xx = Xeix for any i. 

For every i £ I, we put ai = { (x ,y ) £ X x X\xei = yei\. Prove that 

Mx,y £ X VA e A (xei = yei <i4> xeiX = (12) 

Indeed, xBi — yCi implies X6i\ — xCiBi\ — yci&i\ and similarly xeix = yeix implies 
xei — V î- Therefore the (12) holds: 

We shall prove the property (9), i.e., every crj-class intersects with every Xx 
in one element (in other words, Xx is a set of representatives of <7̂ ). Let x £ X. 
Then from the above facts, we have that xeix £ Xx and (xeix)ei = xei, so that 
xeix £ Xx fl xei. Then Xx H xai ^ 0 (notice: if s2 = s and x £ Xs, then xs = x, 
since x = us = us2 = (us)s = xs). Let x,y £ Xx with (a:,y) £ <Ji. Then again 
from the above facts, we have X = xeix — y&ix = V- Thus Xx D xai = {xetx} for 
every x £ X. 

For i £ I and X £ A, let 7Tj and Kx be as in the proof of Theorem 4. Then 
we can similarly show that the conditions , (10) and (11) hold. This completes the 
proof. 
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Corollary 6. Let G be a group, X, L, Ft be sets, (Ha) be a family of subgroups 
of G, and Q = [J(G/Ha) be the coproduct of the right G-acts. Assume that the 

a 
following objects are given: 

the equivalences 01 on X for all I £ L, 
the subsets Xr C X for all r £ R, 
the mappings n[ : X —> Q, kt : Q X for all I £ L, r £ R 

such that the following conditions hold (for x £ X, I £ L, r £ R): 

ker7i"i = ai, im/tr = Xr, \Xr C\xoi\ = 1, iriKr = idg. 

Let S = L x G x R. Define the multiplication on S by the rule 

(l,g,r)-(l',g'y) = (l,gg'y) 

and the action of S on X by the rule 

X • (L,G,R) = KT(TTI{X) *G). 

Then S is a rectangular group and X is a right S-act. Conversely, every right act 
over a rectangular group can be obtained by this way. 

Corollary 7. Let G be a group, X and R be sets, (Ha) be a family of subgroups 
of G, and Q = [_l(G/Ha) be the coproduct of the right G-acts. Assume that the 

a 
following objects are given: 

the equivalence a on X, 
the subsets XT C X for all r £ R, 
the mappings 7r: X —> Q, nr : Q > X for all r £ R 

such that the following conditions hold (for x £ X, r £ R): 

kerir = (T, im/cr = Xr, |Xr fl X<J\ - 1, 7TKT = idQ. 

Let S = G x R. Define the multiplication on S by the rule 

(9,r)-(g',r') = (gg'y) 

and the action of S on X by the rule 

x • (g,r) = Kr(7r(x) *g). 

Then S is a right group and X is an S-act. Conversely, every right act over a right 
group can be obtained by this way. 

f)|j+ ^Remark. This corollary gives a description of all acts over the right groups, 
the "state-independence" and the condition (1) are not necessarily satisfied. Let 
us see what will be obtained in case when this conditions (1), (2) are fulfilled. 
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Let 5 = G x R and X be an S-act with the properties (1), (2). At first we 
notice that Xr is a unitary right G-act with respect to the operation a * g = a-(g,r) 
for a £ Xr, g £ G. Indeed, u * g = a • (g,r) = Kr(n(a) * g) £imKr = Xr, 
therefore XT * G C Xr. Further, a* e = Kr(n(a) * e) = Kr(n(a)) = a. Finally, 
a* (gig2) =a-(g1g2,r) = a-((g1,r) • (g2,r)) = (a - (gur)) • (</2,J-) = (a*gi)*g2. 

Now we notice that XT = Q as the right G-acts. Indeed, as 7r/cr = idg, then nr 

is an injection. It implies that Kt is a bijection from Q onto im/ir = Xr. Moreover, 
Kr(q) *g = Kr(q) • (9,r) = Kr(w(/ir(q)) * g) — KT(q*g). Thus, Kr is an isomorphism 
of Xr and Q. 

The condition (1) implies that X — U{Xr|r £ R}. Check that Xr are dis-
joint. Let Xr n Xr' ^ 0, and a € XT n Xri. Then a = nr(q) = Kr>(q') for some 
q,q' £ Q. As 7r(a) = -KKT(q) = q and similarly n(a) = q', then q = q'. Further, 
a • (e, r) = Kr(77(a) *e) = Krir(a) = KT(q) = a and similarly a • (e, r') = a. Because of 
the property (2) we have x-(e,r) = x-(e,r') for all 2; £ X, i.e., Kr(ir(x)) = Kr'(-n(x)). 
Since 7r is surjective, we have /cr = nr>, and hence Xr = Xri. Thus, X is a disjoint 
union of the pairwise isomorphic G-acts Xr. This is the main result of [3]. 

Corollary 8. Let G be a group, X and L be sets, (Ha) be a family of subgroups 
of G, and Q = \_\{GJHQ) be the coproduct of the right G-acts. Assume that the 

a 
following objects are given: 

the equivalences ai on X for all I £ L, 
the subset Y C X, 
the mappings TX\ : X —> Q, K : Q -» X for all I £ L, 

such that the following conditions hold (for x £ X, I £ L): 

ker7Tj = AI, i m / i = Y, ¡ y f l a ; a / | = l , TTIK = idQ. 

Let S — L x G. Define the multiplication on S by the rule 

{l,g)-(l',g') = (l,ggl) 
vis? 

and the action of S on X by the rule 

x • (l,g) = K(TTI(X) *g). 

Then S is a left group and X is a right S-act. Conversely, every right act over a 
left group can be obtained by this way. 

Corollary 9 [1]. Let X,L,R be sets. Assume that the following objects are 
given: 

the equivalences ai on X for all I £ L, 
the subsets Xr C X for all r £ R. 
Also assume that the following conditions hold, for any r,r' £ R, 1,1' £ L, 

x € X: 

\Xr fl xvi\ = 1, (13) 

Va £ Xr Vbe XT< (a, b) £ (a, b) € <Jv . (14) 
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Define the multiplication on the set S = L x R by the rule 

(l,r)-(l',r') = (iy) 

and the action of S on X by the rule 

a • (l,r) = b where aoi fl Xr = {6}. 

Then S is a rectangular band and X is a right S-act. Conversely, every right act 
over a rectangular band can be obtained by this way. 

Proof. We give the proof another than the proof of [1]. Clearly, the formulated 
rule determines a rectangular band. We shall prove that X is a right S-act. Indeed, 
let a £ X, a-(l,r) = b, and b-(l',r') = c. Then aat DXr = {6} and barr\Xr> = { c } . 
We see that (6,c) 6 o^, therefore, because of the (14), (b,c) £ oi. As (a, 6) £ 07, 
then (a, c) e 07. Since c £ Xr>, a • (I, r'} = c. Thus, a • (( / ,r) • (V,r')) = a • ( l ,r ' ) = 
c = b-(l',r') = (a - (l,r)) • (l',r'). We see that X is a right S-act. 

Further, we need to prove that the sets Xr and the equivalences 07 of Corollary 
6 satisfy to (14). Indeed, let (a, 6) £ 07 where a £ Xr, b £ XT<. Then we have 
a = KT(q), b — Kr'(q') for some q,q' £ Q. As (a,6) £ 01, then ni(a) = 7r;(i>). 
We have -ni(a) = 7T/(/cr(g)) = q and similarly ^ - (a ) = q, 7r/(6) = tti>(b) = q'. As 
7T((a) = 7T;(6), then q = q'. It implies (a,b) £ Ov. 

We want to show that the Corollary 6 coincides with the Corollary 9 in case 
when G = {1} . Indeed, we may take Q = Xro where ro £ R is a fixed element and 
put tt[(x) = y when xoi fl Xro = {y}. Also we put Kr(q) = x when qai fl Xr = { x } 
(the correctness, i.e., independence on I follows from (13) and (14): as q £ Xro, then 
(q,x ) £ at <=> (q,x ) 6 01 qov fl XT = {x} ) . It remains to show that 7T(/cr = idQ. 
Let q £ Q, Kr(q) = x, and 7r I(X) = q'. Then qoi fl Xr = {a;} and XAI fl Xr = {g ' } . 
We have (q',x) £ oi. It follows that q,q' £ Xro C\xoi. The condition (13) implies 
q = q'-

Corollary 10. LetX and S be sets, a be an equivalence on X, and (Xs), s £ S 
be a family of subsets of the set X such that |XS fl aa\ = 1 for all s £ S, a £ X. 
Define the multiplication on the set S by the rule st = t for all s,t £ S, and define 
the action of S on X by the rule 

as = Xsr\aa = {b}. 

Then S is a right zero semigroup, and X is a right S-act. Conversely, every right 
act over a right zero semigroup can be obtained by this way. 

Corollary 11. Let X and S be sets, Y be a non-empty subset of X, and (as), 
s £ S be a family of the equivalences on X such that |Y fl aas\ — 1 for all s £ S, 
a £ X. Define the multiplication on the set S by the rule st = s for all s,t £ S, 
and define the action of S on X by the rule 

as = b r\aas = {6}. 
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Then S is a left zero semigroup, and X is a right S-act. Conversely, every right 
act over a right zero semigroup can be obtained by this way. 

The authors are thankful to the referees for their valuable suggestions. 
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