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Equivalence of Mealy and Moore Automata 

István Babcsányi * 

Abstract 
It is proved here that every Mealy automaton is a liomomorphic image of 

a Moore automaton, and among these Moore automata (up to isomorphism) 
there exists a unique one which is a homomorphic image of the others. A 
unique simple Moore automaton M is constructed (up to isomorphism) in 
the set MO(A) of all Moore automata equivalent to a Mealy automaton A 
such that M is a homomorphic image of every Moore automaton belonging 
to MO{A). By the help of this construction, it can be decided in steps |X|fc 

that automaton mappings inducing by states of a k-uniform finite Mealy 
[Moore] automaton are equal or not. The structures of simple k-uniform 
Mealy [Moore] automata are described by the results of [1]. It gives a pos-
sibility for us to get the k-uniform Mealy [Moore] automata from the simple 
k-uniform Mealy [Moore] automata. Based on these results, we give a con-
struction for finite Mealy [Moore] automata. 

1 Preliminaries 
Let X be a nonempty set. A Mealy automaton (over X) is a system A = 
(A, X, Y, S, A) consisting of a (nonempty) state set A, the input set X, a (non-
empty) output set Y, a transition function <5 : A x X —• A and a surjective output 
function A : A x X -» Y. 

A Moore automaton (over X) is a system A = (A,X,Y,S,fi) consisting of a 
(nonempty) state set A, the input set X, a (nonempty) output set Y, a transition 
function 5 : A x X —» A and a surjective sign function ¡j,: A —»• Y. 

If A,X and Y are finite, the Mealy [Moore] automaton A is called finite. 
For arbitrary Moore automaton A' = (A,X,Y,S,fi), the system A* = 

(A,X,Y,S,X) with A = is a Mealy automaton over X. The Mealy automa-
ton Ax is called the Mealy automaton associated with the Moore automaton A. 
It is said that A is the output function of the Moore automaton A. The Mealy 
automaton A = (A, X, Y, S, A) fulfils the Moore criterion if 

<5(ai,xi) = S(a2,x2) => A(ai,a;i) = A(o2 , i2) 

for every ai,a2 € A and xi:x2 € X. If fi : A —> Y is a surjective mapping 
such that A = fiő, the Moore automaton AM = (A,X,Y,S,fi) is called a Moore 
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automaton associated with the Mealy automaton A. Furthermore, we say that f.i is 
a sign function of the Mealy automaton A. We note that the output function A is 
determined by restriction of n to the subset 5(A,X) = {<5(a,2:);a £ A, x £ X} of A. 
Thus, the restrictions of all sign functions of the Mealy automaton A to 5(A, X) 
are equal. The Mealy automaton A = (A, X, Y, S, A) is called real if there exist 
ai,a,2 € A and X\,X2 EX such that 

5(a i ,x i ) = 5(a,2,X2) and A(ai ,z i ) ^ A(a2,x2)-

Let Z* and Z+ denote the free monoid and the free semigroup over a nonempty 
set Z, respectively. If A = (A,X,Y,S, A) is a Mealy automaton, the functions S 
and A can be extended to Ax X* in the usual forms as follows: 

S(a,e)=a, S(a,px) = S(a,p)S(ap,x), 

A(a,e) = e, X(a,px) = X(a,p)X(ap, x), 

where a £ A, p £ X+, ap denotes the last letter of S(a,p) and e denotes the empty 
word. ([5], [2]). If A = ( A , X , Y , 5 , n ) is a Moore automaton, the extension of S is 
similar to the case when A is a Mealy automaton. The extension of ¡J, to A + is 
given by 

(j,(aia2 ... ak) = /x(ai)/x(a2).. . fi{ak) (ai, a2 , •. •, ak 6 A). 

It means that if A = fj.5, then 

A (a,p) = fj,(5(a,p)), 

for all a £ A, p £ X+. But A (a, e) = e and fJ,(5(a, e)) = fj.(a) for all a £ A. 
The Mealy [Moore] automaton A' = (A', X, Y', S', A'[/i']) is a subautomaton of 

the Mealy [Moore] automaton A if A' C A, Y' C Y, 5' and A' [¿i'] are restrictions 
of 6 and A [/ii] to A' x X [A']. 

Let A j = (Ai,X,Y,5i,\i[fii\) (i = 1,2) be arbitrary Mealy [Moore] automata 
over X• We say that a mapping : Ai —> A2 is a homomorphism of A i into A 2 if 

^ ( ^ ( a , ! ) ) = 62(tp(a),x), Xi(a,x) = X2(ip(a),x) [^i(o) = ¿/2(<p(a))] 

for all a £ A and x £ X. It is easy to see that 

Ai(a,p) = X2{f(a),p) 

for all p € X*. The mapping ip : Ai —> A2 is called a homomorphism of a Moore 
automaton Ai into a Mealy automaton A 2 if <p is a homomorphism of (Aj)^ into 
A2 . We note that every homomorphic image of a real Mealy automata is real, too. 

Every state a £ A of a Mealy automaton A induces a mapping aa : X* —> Y* 
given by aa{p) = X(a,p) (p £ X*). The mapping a : X* Y* is called automaton 
mapping if there exist a Mealy automaton A and a state a £ A such that a = aa. 
The mapping a : X* Y* is an automaton mapping if and only if it preserves the 
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length of words and the map of every prefix of a word is a prefix of the image word. 
The Mealy automata A and B are called equivalent if { a a ; a £ A) = {ay, b £ B). 
The Mealy automaton A and the Moore automaton B are equivalent if A and 
Ba are equivalent. Similarly, the Moore automata A and B are equivalent if Aa 

and Ba are equivalent. 
An equivalence relation p of state set A of a Mealy [Moore] automaton A is 

called a congruence on A if 

(a, b) £ p (6(a, x), 5(b, x)) £ p, X(a,x) = A(b, x) [p(a) = /z(b)] • 

for all a,b £ A and x £ X. The p-class of A containing the state a is denoted by 
p[a]. The greatest congruence on A is the relation [71-̂ J defined by 

(a,fo) e p A [ ? r A ] <=» X(a,p) = X(b,p) \jj,(6(a,p)) = p.{5(b,p))} 

for all p £ X*. Denoting the identity relation on the state set A by LA, we say that 
A is simple if = LA [^a = that ^ an<^ PA. [•^•/7rA'] a r e isomorphic. 

Since every homomorphic image of a Mealy automaton A is equivalent to A ([5], 
[7]), therefore we can give the automaton mappings with simple Mealy automata. 
The Mealy automata A and B are equivalent if and only if A/pj^ and B / p g are 
isomorphic ([5]). Thus, simple Mealy automata are equivalent if and only if they 
are isomorphic. For every Mealy automaton A, there exists a Moore automaton B 
such that A and B are equivalent ([4], [5], [6]). From this it follows that we can 
give the automaton mappings by simple Moore automata. 

2 Moore automata equivalent to a Mealy 
automaton 

For a Mealy automaton A = (A, X, Y, 5, A) over X, let us denote by A y = (A x 
Y,X,Y,5Y,HY) the Moore automaton over X for which 

6Y((a,y),x) = (S(a,x),X(a,x)) and py(a,y) = y {a £ A,y £Y,x € X). 

If Ay = /¿y<5y, then 

XY((a,y),x) = p.Y{SY((a,y),x)) = /j.Y(S(a,x),X(a,x)) = X(a,x) • 

for every a £ A,y £ Y,x £ X, and hence, A y is equivalent to A . 

Lemma 1 If the Mealy automaton A' is a homomorphic [isomorphic] image of the 
Mealy automaton A, then Ay is a homomorphic [isomorphic] image of Ay. 

Proof. If tp is a homomorphism [isomorphism] of A onto A ' , the mapping 
•ip : A x Y A! x Y, such that 

ip(a,y) = {<p(a),y) (a£A,y£Y), . ,• 
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is a homomorphism [isomorphism] of Ay onto A'Y. 

Consider the subautomata M = (M, X, Y, SY, fJ.'Y) of A y where for every a G 
A there exists y G Y such that (a,y) € M. Let M ( A ) be the set of all such 
subautomata M . 

Lemma 2 The Mealy automaton A is a homomorphic image of every automaton 
M in M(A). 

Proof. It is easy to see that the mapping tp : M —• A, defined by <p{a, y) = 
a (a G A), is a homomorphism of M^ onto A. 

Theorem 1 The Mealy automaton Ai = (A\, X, Y, Si, Ai) is a homomorphic im-
age of a Moore automaton A2 = (A2, X, Y, S2, H2) if o,nd only if there exists a 
homomorphic image of A2 in M(A\). 

Proof. First, we note that every automaton M € M(Ai ) is a Moore automa-
ton. By Lemma 2, if there exists a homomorphic image of A2 in M (Ai) , then Ai 
is a homomorphic image of A 2 . 

Conversely, assume that tp is a homomorphism of the Moore automaton A2 onto 
the Mealy automaton Ai - It is evident that by the state set M = {((p(b), 112(b))-, b € 

M = (M,X,Y,5'y,fj.'Y) G M ( A i ) . 

We show that the mapping ip : A2 —> M, defined by 

= (beA2), 

is a homomorphism of A 2 onto M . It is obvious that the mapping tp is surjective. 
For every b G A2 and x G X 

iP(52(b,x)) = (<p(82{b,x)),to(h{b,x))) = (S1(ip(b),x),X2(b,x)) = 

= (Si(<p(b),X),M(<p(b),x)) = 6'Y((<p(b),H2(b)),x) = 6'Y(m,x), 

to(b) = &{<p{b),= 

Therefore, ip is a homomorphism. 

Theorem 2 For every Mealy automaton A (up to isomorphism) there exists a 
unique automaton M G M(A) which is a homomorphic image of any automaton 
inM(A). . 

Proof. First, we give the automaton M. If A ^ 8(A,X), let k be a mapping 
of A \ S(A, X) into Y. For all a G A, consider the sets Ya C Y such that 

X(b, x) G Ya <5(6, x) = a (beA,x 6 X). 

We define the sets Ma (a G A) as follows. If a G ¿ ( A , X ) , let Ma — {(a,y)\y G 
Yo}, and if a $ 6(A,X), let Ma = {(a, « (a) ) } . Let M = Ua€>tMQ . Then M = 
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(M,X,Y,6Y,HY) € M(A). Let M ' ( A ) be the set of'all such automata M . If 
A = S(A, X), then |M'(A)| = 1. We show that if A ^ ¿(A, X), then all automata 
in i f ' ( A ) are isomorphic. Assume that K{ (i = 1,2) are arbitrary mappings of 
A \ <5(A, X) into Y and the automaton M ; G M' ( A) is defined by the mapping k̂ .-
It can be easily verified that the mapping ip : Mi —> M2 , defined by 

is an isomorphism of Mi onto M 2 . 
Now we show that for every B G M{A), there is an M G M ' ( A ) such that-M 

is a homomorphic image of B. We define the following partition of the state set 

Take an automaton M 6 M'(A) such that MQ C Ba (a £ A). By the definition of 
M'( A) , one can see that there exists such an automaton M . Let ip be an arbitrary 
mapping of B onto M for which 

It is clear that -0 is a homomorphism of B onto M. 

Lemma 3 ([7]) Let A be a Mealy automaton and ME(A) be the set of all Mealy 
automata equivalent to A . Then (up to isomorphism) there exists a unique simple 
Mealy automaton in M E ( A ) which is a homomorphic image of every automaton 
in M E { A ) . 

We have a similar statement for Moore automata which are equivalent to a 
Mealy automaton. 

Theorem 3 Let A be a Mealy automaton and MO(A) be the set of all Moore 
automata which are equivalent to A. Then (up to isomorphism) there exists a' 
unique simple Moore automaton in MO(A) which is a homomorphic image of each 
automaton in MO(A). 

Proof. Let A 0 denote a simple Mealy automaton in ME(A) which is homo-
morphic image of any automaton in M E ( A ) . By Lemma 3, such an automaton 
exists. Moreover, by Theorem 2, (up to isomorphism) there is a unique Moore au-
tomaton Mo 6 M ( A o ) which is homomorphic image of any automaton in M(Ao). 
Using the last fact, it can be seen that M 0 is a simple Moore automaton. 

Now, let B be an arbitrary Moore automaton equivalent to A. We prove that 
M 0 is a homomorphic image of B. Since B is equivalent A , Ba G M E ( A ) , and 
hence, Ao is a homomorphic image of B. This implies, by Theorem 1, that there 
is an M G M(AQ) such that M is a homomorphic image of B, and therefore, M 0 

is a homomorphic image of B as well. 

B: 
B a = {(o,i/); (a,y) G B} (a-G A). 

{V(&); b£Ba} = Ma and V£> G Ma : ^(b) = b. 
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3 Uniform automata 

Let A = (A, X, Y, S, A[p]) be a Mealy [Moore] automaton over X. Denote by |p| the 
length of the word p <E X*. Let Xh = {p € X*\|p| = k} and X(k) = {p € X* ; |p| < 
к}. For every nonnegative integer k, we define the equivalence relation т]к on A as 
follows: 

(a, b) e щ <=> A(a,p) = A(b,p) '[/a($(a,p)) = M<5(M)] 

for all p e X(k). We note that if A is a Mealy automaton, the relation щ is the 
universal relation on A and щ is the output-equivalence of A ([2]). If A is a Moore 
automaton, 770 is the sign-equivalence of A ([3]). 

Lemma 4 If a and b are arbitrary states of a Mealy [Moore] automaton A = 
(А,Х,У,(5,А[м]), then 

(a, b) € щ X(a,p) = X(b,p) [fi(a) = ц{Ь), X(a,p) = X(b,p)} 

for all p E Xk. 

Proof. If (a, b) e rjk, the statement follows from the definition of i]k. 
Conversely, assume that if A is a Mealy automaton, A(a,p) = A(b,p), and if A 

is a Moore automaton, then fj,(a) = ц(Ь), X(a,p) = A(b,p) holds for every p € Xk. 
Take arbitrary words q,r £ X* such that < к and |r| = к - Then 

X(a,q)X(aq,r) = X (a,qr) = X{b,qr) = X{b,q)X(bq,r). 

Thus, X(a,q) = A(b,q), which implies our statement. 

The Mealy [Moore] automaton A is called k-uniform if щ = PaJ^a]- The 
k-uniform Mealy [Moore] automata are (к + l)-uniform. Every subautomaton of a 
k-uniform Mealy [Moore] automaton is k-uniform, too. An arbitrary homomorphic 
image of a Mealy [Moore] automaton is k-uniform if and only if it is k-uniform. The 
Mealy [Moore] automaton is said to be uniform if there exists a positive integer к 
such that it is k-uniform. Every finite Mealy [Moore] automaton is k-uniform for 
some positive integer k. Let a a and аь be automaton mappings induced by states 
a and b of a k-uniform finite Mealy [Moore] automaton A = (A, X, Y, S, A[/x]), 
respectively. If aa(p) = аь(р) for every p € Xk, then aQ = а>ь- Thus, it can be 
decided in |X|fc steps whether two automaton mappings of this kind are equal or 
not. 

Theorem 4 If the Moore automaton A = (A, X, Y, S, p) is k-uniform, the Mealy 
automaton A\ is (k+1)-uniform. 

Proof. We note that A\ is (k+l)-uniform if and only if = (л+ъ where 
(a,b) € Cifc+i (a>b 6 A) if and only if A(a,p)) = X(b,p)) for all p £ X(k + 1). 
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Let the Moore automaton A = (A,X,Y,5,n) be k-uniform, that is, % = 
Assume that (a, b) G Cfc+i- Then, 

fi(S(a,x)) = A (a,x) = A (b,x) = fi(5(b,x)), 

H(6{5{a,x),q)) = X(S(a,x),q) = X(S(b, z), q) = fi(S(6(b,x),q)) 

for every x G X, q E Xk. Thus, by Lemma 4, (5(a,x),5{b,x)) G T]k .= 7rA. This 
yields that 

A(<5(a,z),r) = n(5(6(a,x),r)) = m(6(5(b,x),r)) = A(J(6,x),r) 

for all r G A ' + . Therefore, (S(a,x),S(b,x)) G Ca+i> that is, Q+i is a congruence on 
A\. Thus, C/t+i = Pax' From this we get that A\ is (k+l)-uniform. 

Theorem 5 The Mealy [Moore] automaton A = (A, X, Y, S, A[/j]) is k-uniform if 
and only if rjk = T]k+i • 

Proof. Assume that the Mealy [Moore] automaton A is k-uniform, that is, 
r)k = p A . Since T)k+i C r)k and n ^ ^ = P a K a J ' therefore rjk = Vk+i-

Conversely, assume that r]k = r)k+1- If A is a Mealy automaton, rj0 is the 
universal relation on A. If t]0 = rji, the relation rj\ is a congruence on A . It yields 
that 770 = 771 = p a - Furthermore let us assume that A is a Mealy "automaton 
and 1 < k. Let (a,b) G rjk. Since rjk = rjk+i, then (a,b) G Vk+i- By Lemma 4, 
A(a,xp) = X(bjxp) for every x G X and p G Xk. From this it follows that 

X(S(a, x),p) = X{5{b,x),p). 

Moreover, if A is a Moore automaton, 

n(5(a, x)) = A(a, a;) = X(b, x) = fJ.(5(b, x)), • 

that is, (6(a, x), S(b, x)) G rjk- This results in that rjk is a congruence on A , and so 
Vk = P a ^ a I - Hence, A is k-uniform. 

Lemma 5 If a and b are arbitrary states of a Mealy [Moore] automaton A = 
(A,X,Y,5,X[fi\), then 

(a,b)er]k+i (a,b) G rjk and (5(a,x),6(b,x)) G rjk, for all x G X. 

Proof. Assume that (a, b) G rjk+1. Since Tjk+i C rjk, then (a, b) G r]k. By 
Lemma 4, X(a,xp) = X(b,xp) for every x G X and p G Xk. But 

X(a,x)X(5(a,x),p) — X(a,xp) = X(b,xp) — X(b,x)X(S(b,x),p), 

and so 
X(S(a,x),p) = X(S(b,x),p). 
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Moreover, if A is a Moore automaton, 

fj,(5(a,x)) = X(a,x) = \(b,x) = n(S(b,x)). 

By Lemma 4, this yields that (5(a,x),5(b:x)) £ r)k. 
Conversely, assume that (a, b) £ t]k and ( 6 ( a , x ) , 6 ( b , x ) ) £ rjk for every x £ X. 

If x £ X and q £ Xk, then A(a,x) = X(b,x) and X(S(a,x),q) = X(S(b,x),q). From 
this it follows that 

A (a,xq) — X(a,x)X(S(a,x)q) = X(b,x)X(S(b,x),q) = X(b,xq). 

Moreover, if A is a Moore automaton, {¿(a) = n{b). By Lemma 4, (a,b) £ r)k+i-

Theorem 6 For every Mealy automaton A = (A,X,Y,S,X), Ay is k-uniform 
[simple] if and only if A is k-uniform [simple]. 

Proof. If a € A, y £ Y and p £ X+, then ^y{Sy((a,y),p)) = A(a,p). 
We note that A y is k-uniform if = (it, where is an equivalence relation 

on A x y for which 

((o,l/i).(&.S/2)) e Cfc ' HY(6y((a,yi),p)) = nY(6Y((b,y2),p)) 

for all p £ X (k) . 
Assume that the Mealy automaton A is k-uniform. Consider two arbitrary 

elements (a, 2/1) and (b,y2) of A x Y with ((0,2/1), (b,y2)) € 01- Then 

V\ = ny(a,yi) - VY{b,y2) = 3/2, 

A(a,p) = ixy(5y{{a,yi),p)) = fiY(SY{(b, y2),p)) = X(b,p) 

for all p € Xk. By Lemma 4, this implies (a, b) £ rjk = By Theorem 5, 
(a, 6) £ r?fc+i, that is, 

My(M(a>2/i)>P)) = Ha,P) = x(b,p) = VY(SY((b,y2),p)) 

for all p 6 which results in (a, b) £ Cfc+i- Thus, Ofe = Ofc+i- By Theorem 5, 
A y is k-uniform. 

Conversely, assume that A y is k-uniform. Let (a,b) 6 If y £ Y, then 
((a,y),(b,y)) £ Cfc = "'Ay' B y Theorem 5, ((a,y),(b,y) £ Cfc+i, and thus (a,6) e 
rjfc+i. Therefore, r/k = tyt+i, that is, A is k-uniform. 

We can prove, in a similar way, that A y is simple if and only if A is simple (see 
Lemma 2 in [1]). 

By Theorem 6 and Lemma 2, every k-uniform Mealy automaton is equivalent to 
a k-uniform Moore automaton. By Theorem 3, among these Moore automata (up 
to isomorphism) there exists a unique simple k-uniform Moore automaton which is 
a homomorphic image of these Moore automata, that is, the cardinality of its state 
set is the least among these Moore automata. 
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4 Simple uniform automata 
In this part of the paper, we describe the structure of the simple uniform Mealy 
[Moore] automata using the results of paper [1]. 

Lemma 6 (Lemma 3 in [1]) Every subautomaton of a simple Mealy [Moore] au-
tomaton A over X is simple and the subautomata of A are isomorphic if and only 
if they are equal. 

Denote the set of mappings a^ : X1 Y by A^ for every integer i > 0. 
Consider the set A = IlSi . Let 

o4l) (z i , X2, • • • ,Xi) = a^+1)(x}xi,x2, ...,Xi) (X,XI,X2, •. • ,Xi £ A'), 

a ^ f a « ^ , . . . , ^ , . . . ) . 

Assume that ae = a and let apx = (a p ) x for every p G X* and x £ X. Define the 
Mealy automaton A = (A, X, Y, 5, A) with transition and output functions: 

ô(a,x) = ax, X(a,x) = a^(x) (a £ A, x £ X). 

Theorem 7 (Theorem 4 in [1]) The Mealy automaton A is simple. A Mealy 
automaton A = (A, X, Y', S, A) over X is simple if and only if it is isomorphic to a 
subautomaton of A, where Y'CY. 

Theorem 8 (Theorem 5 in [1]) The Moore automaton Ay is simple.and A is a 
homomorpic image of Ay. A Moore automaton A = (A, X, Y' ,S, /i) (Y' Ç Y) over 
X is simple if and only if it is isomorphic to a subautomaton of Ay. 

Consider the set Ak = ElLi ^ a n d a mapping g : Ak Let 

a4 l 9 l X = ( 4 1 ) > a W 1 . . . > a W ) 1 . . 

where = g(ak). 
We define the Mealy automaton Akg = (Ak,X, Y, 5, A) with the following tran-

sition and output functions: 

S(ak,x) = ak,g,x, \{ak,x) = a^ix) {ak e Ak, x G X). 

Consider a nonempty set Ho Ç Ak. It is evident that 

Hj = {<Xk,g,x\ak £ Hj-i,x £ X} Ç Ak ( j = 1 ,2 , . . . ) . 

If H ^ 
= Hq U H\ U . . . U Hj for every nonnegative integer j, then is a 

subautomaton of Akg if and only if C Hti) . We note that if X and Y are 
finite sets, then there exists a nonnegative integer j such that j j (J+ 1) Ç H^K 
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Theorem 9 A Mealy automaton A over X is simple k-uniform if and only if there 
exists a mapping g such that A is isomorphic to some subautomaton 

Proofs As in the proof of Theorem 7, we can show that the Mealy automaton 
Ak g is simple. By Lemma 6, every subautomaton of A k g is simple. On the other 
hand, it is easy to verify that the subautomata of Ak g are k-uniform. 

Therefore, by Theorem 7, it is sufficient to show that every k-uniform subau-
tomaton of A is isomorphic to an automaton H w . Let A' = {A1, X,Y', SA,, \A,) 
be a k-uniform subautomaton of A. Let 

for every a = ( a ^ ^ a ' 2 ' , . . . , a ^ , . . . ) £ A'. Define a mapping g : Ak _4(fc+1) 
such that g(ak) = a( f c + 1 ' for every a 6 A'. Let H0 = {a k \a £ .4 '} . Since A! is a 
subautomaton of A, then Hi C Ho- Thus, H ^ is a subautomaton of A k g . The 
mapping (p : A1 Ho, for which <p(a) = ak (a £ A'), is an isomorphism of X onto 
H<°>. 

Every finite Mealy [Moore] automaton is k-uniform for some nonnegative integer 
k. Thus, we get easily the following theorem from Theorem 9. 

Theorem 10 A finite Mealy automaton A over X is simple if and only if there 
exist a nonnegative integer k and a mapping g : Ak —» for which A is 
isomorphic to some subautomaton of Ak g. 

By Theorems 6, 9 and 10, the following two theorems are true. 

Theorem 11 A Moore automaton A over X is simple k-uniform if and only if it 
is isomorphic to some subautomaton of(Aki9)Y-

Theorem 12 A finite Moore automaton A over X is simple if and only if there 
exists a nonnegative integer k for which it is isomorphic to some subautomaton of 

Let C = (C,X,Y',5c, \c) be a subautomaton of the automaton A. Consider 
a family of nonempty sets Ua (a £ C) such that Ua fl Up = 0 if a ^ ft. Let 
Uc = Ua€cUa . For all x £ X and a £ C, let <pa<x be a mapping of Ua into 
Uai. Define the functions Suc(a,x) = ^pa,x(a) and \uc(a,x) = a^(x) for all 
a £ Ua, a £ C and x £ X. It can be easily verified that U c = (Uc, X, Y',5uc, \uc) 
is a Mealy automaton ([2]). 

Lemma 7 Every Mealy automaton A = (A, X,Y',6, A) ( V C F ) equals an au-
tomaton Uc-
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Proof. By Theorem 7, there exists an isomorphism tp of A/pj^ onto a sub-
automaton C of A. Assume that <p(pA[aD = aa> = P a H ( a ^ = 
S(a,x) and Uc = UaeAUaa. Since 

X(a,x) = Xa/pa(p a W - 1 ) = Ac(aa,x) = a^\x) = XUb(a,x), 

therefore A = U c . 

Theorem 13 The automaton Uc is k-uniform if and only ifC is simple k-uniform. 

Proof. It is evident that if the automaton U c is k-uniform, then C is simple 
k-uniform. 

Conversely, assume that the automaton C is simple k-uniform. Assume that 
(a, b) £ r]k for some a £ Ua and b £ Up. Then, by Lemma 4, for every p £ Xk 

>>c{a,p) = A uc(a,p) = XUc{b,p) = A c(P,p)-

But C is simple k-uniform, thus a = 0, that is, a,b £ Ua. It means that ap,bp £ 
Uap. Then, for all x £ X, 

XUc(a,px) = XUc(a,p)XUc(ap,x) = XUc(b,p)XUc(bp,x) = XUc(b,px), 

that is (a, b) £ r)k+\ • By Theorem 5, U is a k-uniform automaton. 

By Theorems 6 and 13, we get the following theorem: 

Theorem 14 The automaton ( UC)Y is k-uniform if and only if CY is simple k-
uniform. 

By Theorems 10 and 12, we give a construction for finite simple Mealy and 
Moore automata. Thus, by using Theorems 13 and 14, we can give all finite Mealy 
and Moore automata. 
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