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Equivalence of Mealy and Moore Automata,

Istvan Babcsanyi *

_ Abstract .

It is proved here that every Mealy automaton is a homomorphic image of
a Moore automaton, and among these Moore automata (up to isomorphism)
there exists a unique one which is a homomorphic image of the others. A
unique simple Moore automaton M is constructed (up to isomorphism) in
the set MO(A) of all Moore automata equivalent to a Mealy automaton A
such that M is a homomorphic image of every Moore automaton belonging
to MO(A). By the help of this construction, it can be decided in steps | X|*
that automaton mappings inducing by states of a k-uniform finite Mealy
[Moore] automaton are equal or not. The structures of simple k-uniform
Mealy [Moore| automata are described by the results of [1]. It gives a pos-
sibility for us to get the k-uniform Mealy [Moore] automata from the simple
k-uniform Mealy [Moore] automata. Based on these results, we give a con-
struction for finite Mealy [Moore] automata.

1 Preliminaries

Let X be a nonempty set. A Mealy automaton (over X) is a system A =
(A4, X,Y,4,)) consisting of a (nonempty) state set A, the input set X, a (non-
empty) output set Y, a transition function § : A x X — A and a surjective output
function A: A x X = Y. :

A Moore automaton (over X) is a system A = (A, X,Y,4, ) consisting of a
(nonempty) state set A, the input set X, a (nonempty) output set ¥, a transition
function § : A x X — A and a surjective sign function p: A =5 Y.

If A, X and Y are finite, the Mealy [Moore] automaton A is called finite.

For arbitrary Moore automaton A° = (A4,X,Y,8,u), the system Ay =
(A, X,Y,4,) with A = ud is a Mealy automaton over X. The Mealy automa-
ton Ay is called the Mealy automaton associated with the Moore automaton A.
It is said that A is the output function of the Moore automaton A. The Mealy
automaton A = (4, X,Y, 6, \) fulfils the Moore criterion if ’

é(ar,z1) =6(ag,z2) = Aa1,z1) = A(az2,22)

for every a1,a2 € A and z3,z2 € X. If p: A = Y is a surjective mapping
such that A = pué, the Moore automaton A, = (A4,X,Y,4, ) is called a Moore
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automaton associated with the Mealy automaton A. Furthermore, we say that p is
a sign function of the Mealy automnaton A. We note that the output function A is
determined by restriction of u to the subset 6(A, X) = {6(a,z);a € A,z € X} of A.
Thus, the restrictions of all sign functions of the Mealy automaton A to §(A4, X)
are equal. The Mealy automaton A = (4,X,Y,6, ) is called real if there exist
ai,as € A and z,,z2 € X such that

8(ay, 1) = 6{az,z2) and A(a1,z1) # Maz, z2).

Let Z* and Z+ denote the free monoid and the free semigroup over a nonempty
set Z, respectively. If A = (4,X,Y,6,)) is a Mealy automaton, the functions ¢
and X can be extended to A x X™* in the usual forms as follows:

5(ae) =a, 6(a,pz) = 8(a, p)d(ap, z),

Ma,e) =e, Ma,pz) = Ma,p)X(ap, z),

where a € A, p € X, ap denotes the last letter of §(a, p) and e denotes - the empty
word. ([5], [2] If A =(A,X,Y,4, 1) is a Moore automaton, the extension of § is
similar to the case when A is a Mealy automaton. The extension of u to A% is
given by

p(a1a2...a;) = w(a)u(as) .. plax) (a1, a2, as € A).

It means that if A = ud, then

AMa,p) = p(8(a,p)),

foralla € A, p€ X*. But Ma,e) = e and p(d(a,e)) = p(a) for all a € A.

The Mealy [Moore] automaton A' = (4', X,Y",§', N'[n']) is a subautomaton of
the Mealy [Moore] automaton A if A’ C 4, Y’ C Y, § and X [p] are restrictions
of § and A [y] to A" x X [A'].

Let A; = (A, X, Y, 6, \[w]) (=1 ,2) be arbitrary Mealy [Moore] automata
over X. We say that a mapping ¢ : A; — As is a homomorphism of A; into A, if

¢(01(a,2)) = ba2(p(a),2),  Mi(e,2) = ha(p(a),2) [wi(a) = pa(w(a))]

forall a € A and z € X. It is easy to see that

Ai(a, p) = Aa((a), p)

for all p € X*. The mapping ¢ : 41 — A, is called a homomorphism of a Moore
automaton A; into a Mealy automaton A, if ¢ is a homomorphism of (A,), into
A,. We note that every homomorphic image of a real Mealy automata is real, too.

Every state a € A of a Mealy automaton A induces a mapping o, : X* = Y*
given by aq(p) = A(e,p) (p € X*). The mapping a : X* = Y™ is called automaton
mapping if there exist a Mealy automaton A and a state a € A such that a = a,.
The mapping o : X* — Y* is an automaton mapping-if and only if it preserves the
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length of words and the map of every prefix of a word is a prefix of the image word.
The Mealy automata A and B are called equivalent if {aq;a € A} = {ay;b € B}.
The Mealy automaton A and the Moore automaton B are " equivalent if A and
B, are equivalent. Slmllarly, the Moore automata A and B are equwalent if A A
and B, are equivalent.

An equivalence relation p of state set A of a Mealy [Moore] automaton A is
called a congruence on A if

Aa,0) € p= (8(a,),6(b,2)) € p,  Ma,z) = Ab,z) [u(a) = pu(b)] -

for all a,b € Aand z € X. The p-class of A containing the state a is denoted by
pla]. The greatest congruence on A is the relation pp [ ] defined by

(@b € palral €= Aap)=Abp) [u(6(a,p) = u(d6,p))

for all p € X*. Denoting the identity relation on the state set A by ¢4, we say that
A is simple if pp =14 [mp = 4], that is, A and A/pp [A/7 a)| are isomorphic.

Since every homomorphic image of a Mealy automaton A is equivalent to A ([5],
[7]), therefore we can give the automaton mappings with simple Mealy automata.
The Mealy automata A and B are equivalent if and only if A /p A and B/pp are
isomorphic ([5]). Thus, simple Mealy automata are equivalent if and only if they
are isomorphic. For every Mealy automaton A, there exists a Moore automaton B
such that A and B are equivalent ([4], [5], [6]). From this it follows that we can
give the automaton mappings by simple Moore automata. S

2 Moore automata equlvalent to a Mealy
automaton

For a Mealy automaton A = (A4,X,Y,4, ) over X, let us denote by Ay = (4 x
Y, X,Y, 6y, py) the Moore automaton over X for which

éy ((a,y),z) = (5(a,x)‘, Ma,z)) and py(a,y) = y (a€AyeY,zeX).
If Ay = puydy, then
Ay ((a,9),2) = py (by ((2,9), 7)) = py (8(a, z), Ma, 7)) = Aa, z)
for every a E AyeY,ze X, anci hence, Ay is equivalent to A. a

Lemma 1 If the Mealy automaton A’ is a homomorphic [isomorphic] image of the
Mealy automaton A, then Ay is a homomorphic [isomorphic] image of Ay .

Proof. If ¢ is a homomorphism [isomorphism] of A onto A’, the mapping
P:AxY — A’ xY, such that

b(a,y) = (p(a)y) (€A, yev),
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is a homomorphism [isomorphism| of Ay onto A} .

Consider the subautomata M = (M, XY, 6y, uy ) of Ay where for every a €
A there exists y € Y such that (a,y) € M. Let M(A) be the set of all such
subautomata M. ’

Lemma 2 The Mealy automaton A is a homomorphic image of every automaton
Min M(A).

Proof. It is easy to see that the mapping v : M — A, defined by ¢(a,y) =
a (a € A), is a homomorphism of M} onto A.

Theorem 1 The Mealy automaton A, = (A1, X,Y,61, A1) is a homomorphic im-
age of a Moore automaton Ay = (A2, X,Y,da,us) if and only if there exists a
homomorphic image of Ay in M(A;). : :

Proof. First, we note that every automaton M € M (A,;) is a Moore automa-
ton. By Lemma 2, if there exists a homomorphic image of Ay in M(A;), then A;
is a homomorphic image of Ay.-

Conversely, assume that ¢ is a homomorphism of the Moore automaton A, onto
the Mealy automaton A;. It is evident that by the state set M = {{(p(b), u2(b)); b €
A2},
’ M=(M)XaY75;’$/"IY)EM(A1)'

We show that the mapping 9 : Ay = M, defined by
P(b) = (p(b), u2()) (b€ Ap),

is a homomorphism of A; onto M. It is obvious that the mappmg 1 is surjective.
For every b€ Ay and x € X

P(82(b, z)) = (p(d2(b, 7)), p2 (82(b, 7)) = (81 (1p(b), ), A2 (b, 7)) =

= (01((0), 2), A1 ((b), 7)) = 8y ((2(b), p2 (b)), ) = by (¥(b), 2),
p2(b) = py (9(b), n2(b)) = py (%(b)).

Therefore, 9 is a homomorphism.

Theorem 2 For every Mealy automaton A (up to isomorphism) there exists a
unique automaton M € M(A) which is a homomorphic image of any automaton
in M(A).

Proof. First, we give the automaton M. If A # §(A, X), let k be a mapping
of A\ 6(A, X) into Y. For all a € A, consider the sets Y, C Y such that

Ab,z)eY, < dbz)=a (be A zxeX).

We define the sets M, (a € A) as follows. If a € §(4,X), let M, = {(a,y).;vy €
Yo}, and if a ¢ 6(4,X), let M, = {(a,s(a))}. Let M = UseaM,. Then M =
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(M, X,Y,by,py) € M(A). Let M'(A) be the set of all such automata M. If
A =8(A,X), then [M'(A)| = 1. We show that if A # §(4,X), then all automata
in " M'(A) are isomorphic. Assume that x; (¢ = 1,2) are arbitrary mappings of
A\ (A, X) into Y and the automaton M; € M'(A ) is defined by the mapping ki
It can be easily verified that the mapping ¢ : My — My, defined by -

— (a‘a y) 1f Yy 76 K1 (a):
wla.y) = { (4, 52(a) if y = ka(a),

is an isomorphism of M; onto M. : . .

Now we show that for every B € M(A), there is an M € M'(A) such that-M
is a homomorphic image of B. We define the following partition of the state set
B: ’

Ba:{(a7y);(a,y)EB} (a"EA)‘

Take an automaton M € M'(A) such that M, C B, (a € A). By the definition of
M'( A), one can see that there exists such an automaton M. Let 9 be an arbitrary
mapping of B onto M for which

{(b);b€ By} =M, and Vbe M, :¢(b) =
It is clear that ¢ is a homomorphism of B onto M.

Lemma 3 ([7]) Let A be a Mealy automaton and M E(A) be the set of all Mealy
automata equivalent to A. Then (up to 1somorphlsm) there exists a unique simple

Mealy automaton in M E(A) which is a homomorphic image of every automaton
in ME(A).

We have a similar statement for Moore automata which are equivalent to a
Mealy automaton.

Theorem 3 Let A be a Mealy automaton and MO(A) be the set of all Mooré
automata which are equivalent to A. Then (up to isomorphism) there exists a’
unique simple Moore automaton in MO(A) which is a homomorphic image of each
automaton in MO(A).

Proof. Let Ay denote a simple Mealy automaton in M E(A) which is homo-
morphic image of any automaton in M E(A). By Lemma 3, such an automaton
exists. Moreover, by Theorem 2, (up to isomorphism) there is a unique Moore au-'
tomaton My € M (Ap) which is homomorphic image of any automaton in M (Ap).
Using the last fact, it can be seen that My is a simple Moore automaton.

Now, let B be an arbitrary Moore automaton equivalent to A. We prove that
My is a homomorphic image of B. Since B is equivalent A, By, € M E(A), and
hence, Ag is a homomorphic image of B. This implies, by Theorem 1, that there
is an M € M(Ayp) such that M is a homomorphic image of B, and therefore, My
is a homomorphic image of B as well.
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3 Uniform automata

Let A = (4, X,Y, 6, \[1]) be a Mealy [Moore] automaton over X. Denote by |p| the
length of the word p € X*. Let X* = {pe X*;|p| = k} and X (k) = {p € X*;|p| <
k}. For every nonnegative integer k, we define the equivalence relation n; on A as
follows:

(@b)em <<= Aa,p)=A0bp) [u(é(a,p) = n(6(,p))]

for all p € X(k). We note that if A is a Mealy automaton, the relation 7o is the
universal relation on A and 7 is the output-equivalence of A ([2]). If A is a Moore
automaton, 7 is the sign-equivalence of A ([3]). :

Lemma 4 If a and b are arbitrary states of a Mealy [Moore] a.utomaton A =
(A, X,Y,0,A[]), then

@hem < MNap) =Abp) [u(a) = ud), Aap) = Ab,p)
for all p € X*.

Proof. If (a,b) € 7, the statement follows from the definition of 7.

Conversely, assume that if A is a Mealy automaton, A(a,p) = A(b,p), and if A
is a Moore automaton, then u(a) = u(b), A(a,p) = A(b,p) holds for every p € X*.
Take arbitrary words q,7 € X* such that |g| < k and |r| = k — |g|. Then

Ma, 9)Mag, ) = Aa,qr) = A(b, qr) = A(b, ) A(bg, 7).
Thus, /\(a q) = A(b, q), which implies our statement.

The Mealy [Moore] automaton A is called k- uniform if g, = pp[ra]. The
k-uniform Mealy [Moore| automata are (k + 1)-uniform. Every subautomaton of a
k-uniform Mealy [Moore] automaton is k-uniform, too. An arbitrary homomorphic
image of a Mealy [Moore] automaton is k-uniform if and only if it is k-uniform. The
Mealy [Moore] automaton is said to be uniforin if there exists a positive integer k
such that it is k-uniform. Every finite Mealy [Moore] automaton is k-uniform for
some positive integer k. Let o, and a; be automaton mappings induced by states
a and b of a k-uniform finite Mealy [Moore] automaton A = (A, X,Y,6, A[y]),
respectively. If a,(p) = as(p) for every p € X*, then o, = ap. Thus, it can be
decided in |X|* steps whether two automaton mappings of this kind are equal or
not.

Theorem 4 If the Moore automaton A = (A, X,Y, 6, ) is k-uniform, the Mealy
automaton Ay is (k+1)-uniform.

Proof. We note that Ay is (k+1)-uniform if and only if p5 = (kt1, Where
(a,b) € k41 (a,b € A) if and only if A(a,p)) = A(b,p)) for all p€ X(k+1).
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Let the Moore automaton A = (A4, X,Y,§, u) be k-uniform, that is, ny =74 .
Assume that (a,b) € (g41. Then,

w(é(a,z)) = Aa,z) = Ab, ) = u(é(b,z)),

ﬂ(é(é(aﬂ .’E), Q))'z A(6((1'> (I)), q) = ’\(6(17) Z), Q) = P’(é(é(b:z)a Q))

for every z € X, qge X~ Thus, vby Lemma 4, (5(a,z),6(b, z)) € ﬁk = mp- This
yields that

A(3(a,2),7) = u(6(6(a, ), 7)) = p(d((b,2),7)) = Mo(, x) r)

for all » € X*. Therefore, (6(a,z),8(b,z)) € it1, that is, (k41 1S @ congruence on
A,. Thus, (41 = pA From this we get that A is (k+1) uniform. :

Theorem 5 The Mealy [Moore] automaton A = (4 X,Y,s, /\[,u.]) is k umform if
and only ¢f Mk = Nk41.

Proof. Assume that the Mealy [Moore| automaton A is k-uniform, that.is,
Nk = pA - Since Ney1 € M and N ome = pA [T Al therefore g = miy.

Conversely, assume that 7, = 7g+1- If A is a Mealy automaton, 7y is the
universal relation on A. If np = 71, the relation n; is a congruence on A. It yields
that mo = m = pp. Furthermore let us assume that A is a Mealy automaton
‘and 1 < k. Let (a,b) € mi. Since np = 17L+1, then (a,b) € niy1. By Lemma 4,
Ma, zp) = A(b,zp) for every z € X and p € X*. From this it follows that *~ =

A(é(a,2),p) = A(3(b,2), p)-
Moreover, if A ‘is a Moore automaton,
u(6(a,2)) = Ma,z) = A(b,z) = u(b(b, %)),

that is, (6(a,z),d(b, z)) € 1. This results in that 7 is a congruence.on A, and so
nx = pplma) Hence, A is k—uniform.

Lemma 5 If a and b are arbitrary states of a Mealy [Moore] automaton: A
(A, X,Y,6,A[n]), then

(a,b) €1 <= (a,b) €nx and (6(a,z),0(b,z)) € ng, forall ze€X.

Proof. Assume that (a,b) € 741 Since mgr1 C 7k, then (a,b) € nk By
Lemma 4, A(a, zp) = A(b,zp) for every z € X and p € X*. But

A, z)A(6(a, z),p) = Ma, zp) = A(b,zp) = A(b, 2)A(4(b, z), ),

and so
AMé(a,z),p) = A(8(b, z), p)-
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Moreover, if A is a Moore automaton,

w(é(a,z)) = Ma,z) = A(b,z) = u(é(b, z)).

By Lemma 4, this yields that (&(a, z),d(b, z)) € nx.

Conversely, assume that (a,b) € n and (8(a,z),d(b,z)) € n for every z € X.
If z € X and g € X*, then Aa,z) = A(b,z) and A(d(a,z),q) = A(6(b,z),q). From
this it follows that

Aa, zq) = Ma, )A(8(a, z)q) = b, z)A((b, z), q) = A(b, zq)-
Moreover, if A is a Moore automaton, p(a) = p(b). By Lemma 4, (a,b) € M1

Theorem 6 For every Mealy automaton A = (A, X,Y,6,)), Ay is k-uniform
[simple] if and only if A is k uniform [simple].

Proof. Ifa € A, y €Y and p € X, then py(6y((a,vy), p)) = Ma, p).
We note that Ay is k-uniform if = A = (i, where (; is an equwa.lence relation
on A x Y for which

((a,yl), (b1 y2)) € Ck = MY(JY((avyl)’p)) = .L‘Y(JY((b:y2)’p))

for all p € X (k).
Assume that the Mealy automaton A is k-uniform. Consider two arbitrary
elements (a,y;) and (b,y2) of A x Y with ((a,91), (b,¥2)) € {x. Then

y1 = py(a,y1) = py(b,y2) = y2,

Aa,p) = py (v ((a,11),p)) = py (6y ((b,2),p)) = A(b, p)

for all p € X*. By Lemma 4, this 1mphes (a,b) € ¢ = pp. By Theorem 5,
(a,b) € M1, that is,

py 0y ((a,41),p)) = Aa,p) = A(b,p) = py (6 ((b,y2),p))

for all p € X*+1 which results in (a,d) € (x41. Thus, {x = (k+1. By Theorem 5,
Ay is k-uniform.

Conversely, assume that Ay is k-uniform. Let (a,b) € n,. If y € Y, then
((a,9),(b,y)) € G =mp - By Theorem 5, ((a,y), (b,y) € Ct+1, and thus (a,bd) €
Mk+1- Therefore, nx = Ne+1, that is, A is k-uniform.

We can prove, in a similar way, that Ay is simple if and only if A is simple (see
Lemma 2 in [1]). V

By Theorem 6 and Lemma 2, every k-uniform Mealy automaton is equivalent to
a k-uniform Moore automaton. By Theorem 3, among these Moore automata (up
to isomorphism) there exists a unique simple k-uniform Moore auntomaton which is
a homomorphic image of these Moore automata, that is, the cardinality of its state
set, is the least among these Moore automata.
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4 Simple uniform automata

In this part of the paper, we describe the structure of the simple uniform Mealy
[Moore] automata using the results of paper [1].

Lemma 6 (Lemma 3 in [1]) Every subautomaton of a simple Mealy [Moore] au-
tomaton A over X is simple and the subautomata of A are isomorphic if and only
if they are equal.

Denote the set of mappings a® : X? - Y by A® for every integer i > 0.
Consider the set A = [, A®. Let

a=(® a® a® ) (@ e A,
ag:i)(zlyzZy- .-,xi) = a(i+1)($"m1,x2,..-,$i) (z)zl)-zZ,- o, T € X),
Oz = (a:(cl)aa(ﬁ)w~-,a‘,(zi),..‘).

Assume that a, = a and let ap; = (@), for every p € X* and z € X. Define the
Mealy automaton A = (A4, X,Y, 4§, \) with transition and output functions:

0o, T) = 0, Moy z) = oM (z) (ae A zeX).

Theorem 7 (Theorem 4 in [1]) The Mealy automaton A is simple. A" Mealy
automaton A = (A4, X,Y’,4,)\) over X is simple if and only if it is 1sornorph1c to a
subautomaton of A, where Y'CY.

Theorem 8 (Theorem 5 in [1]) The Moore automaton Ay is simple.and A is a
homomorpic image of Ay. A Moore automaton A = (4, X,Y",6,u) (Y' CY) over
X is simple if and only if it is isomorphic to a-subautomaton of Ay . .

Consider the set A = []*_, A® and a mapping g : Ay — AU+ Tet

Qp = (a(l),a(”’ L ,a(k)) (a(i) c A(l)),

Qkga = @, o, . o),

where a(**1) = g(ay). : :
We define the Mealy automaton A, ; = (A, X, Y, 6, A) with the following tran-
sition and output functions:

(k1) = kgar Mar,z) =V (z) (o € Ak, T € X).
Consider a nonempty set Hy C Ay. It is evident that
Hj ={okgoar € Hji-1,2 € X} C A (=1,2,...).

If HY) = HUH, U ... U H; for every nonnegative integer j, then HY is a
subautomaton of Ay , if and only if HU+) C HU).-We note that if X and ¥ are
finite sets, then there exists a nonnegative integer j such that HU+YD ¢ H0),
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Theorem 9 A Mealy automaton A over X is simple k-uniform if and only if there
ezists a mapping g : Ay — A¥TY) such that A is isomorphic to some subautomaton
Of Ak g

Proof. As in the proof of Theorem 7, we can show that the Mealy automaton
A g 18 simple. By Lemma’6, every subautomaton of A,c is simple. On the other
hand, it is easy to verify that the subautomata of A, , are k-uniform.

Therefore, by Theorem 7, it is sufficient to show that every k-uniform subau-
tomaton of A is isomorphic to an automaton HY), Let A = (A, X,V 84, 24)
be a k-uniform subautomaton of A. Let

o = (e, ... o)

for every a = (aW,a®,...,a®), ..} € A'. Define a mapping g : A; — AK+D
such that g(ag) = a¥+1) for every a € A'. Let Hy = {ay; € A'}. Since A’ is a
subautomaton of A, then H; C Hy. Thus, H© is a subautomaton of _Ak’g. The
mapping ¢ : A' — Hy, for which p(a) = ar (a € A'), is an isomorphism of A’ onto
HO. '

Every finite Mealy [Moore] automaton is k-uniform for some nonnegative integer
k. Thus, we get easily the following theorem from Theorem 9.

Theorem 10 A finite Mealy automaton A over X is simple if and only if there
ezist a nonnegative integer k and a mapping g : A — A®YY for which A is
isomorphic to some subautomaton of Ay ,. ’

By Theorems 6, 9 and 10, the following two theorems are true.

Theorem 11 A Moore automaton A over X is simple k-uniform if and only if it
is isomorphic to some subautomaton of (Arg)y

Theorem 12 A finite Moore automaton A over X is simple if and only if there
ezists a nonnegative integer k for which it is isomorphic to some subautomaton of

(Ak,g)y

Let ¢ = (C,X,Y’, 8¢, Ac) be a subautomaton of the automaton A. Consider
a family of nonempty sets U, (a € C) such that U, NUg = @ if @ # B. Let
Uc = UaecUys. For all z € X and a € C, let o, be a mapping of U, into
U,,. Define the functions dy, (a,z) = @az(a) and Ay,(a,z) = oV (z) for all
a €Uy, a € Cand z € X. It can be easily verified that Ug = (Uc, X, Y, du., Aug)
is a Mealy automaton ([2]).

Lemma 7 Every Mea.ly automaton A = (4, X,Y",8,)) (Y' C Y) equals an au-
tomaton Uc.



Equivaleh(:e of Mealy and Moore Automata .551

Proof. By Theorem 7, there exists an isomorphism ¢ of A/p ‘onto a sub-
automaton C of A. Assume that p(pp [a]) = aq, Ua, = ppld] (a € 4), @a, = =
d(a,z) and Uc = Useala, . Since

Me,2) = Aaspp (0 Ala]i2) = Acl0a,2) = 0 (2) = Au (a,2),
therefore A = Ug. . .
Theorem 13 The automaton Ug is k-uniform if and only if C is simple k-uniform.

Proof. It is evident that if the automaton Ug is k-uniform, then C is simple
k-uniform. S

Conversely, assume that the automaton C is simple k-uniform. Assume that
(a,d) € ny for some a € U, and b € Ug. Then, by Lemma 4, for every p € X*

)\C(a)p) = )‘UC (aap) = AUC (bap) = )‘C(:Bap)

But C is simple k-uniform, thus o = §, that is, a,b € U,. It means that ap,bp €
Us,. Then, for all z € X,

AU (a,pz) = AUc (a, p))‘Uc (ap, T) = Aue (ba p))‘Uc (bp,z) = AUg (b’ pz),
that is (a,b) € fg41. By Theorem 5, U is a k-uniform automaton.

By Theorems 6 and 13, we get the following theorem:

Theorem 14 The automaton (Ug)y is k-uniform if and only if Cy is simple k-
uniform.

By Theorems 10 and 12, we give a construction for finite simple Mealy and
Moore automata. Thus, by using Theorems 13 and 14, we can give all finite Mealy
and Moore automata.
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