
Acta Cybernetica 14, (2000) 569-582.

Two remarks on variants of simple eco-grammar
systems*

Judit Csima t

Abstract
Two powerful variants of simple eco-grammax systems, namely extended

tabled simple eco-grammar systems (ETEG systems) and weak extended sim-
ple eco-grammar systems (wEEG systems) are studied. It is proved that both
modifications of the original definition result in universal power: all recur-
sively enumerable languages can be obtained both by ETEG and by wEEG
systems.

1 Introduction
Eco-grammar systems form a grammatical framework proposed in [2] for modelling
living systems consisting of several agents and a common environment. In the
original definition of an eco-grammar system, the environment is described by a
Lindenmayer system which determines its evolution; the agents are represented by
context-free grammars and by Lindenmayer systems : the Lindenmayer systems
determine their development, while the context-free grammars describe their ac-
tions. The interaction between the agents and the environment is ensured by the
computable functions ip and <f>, which allow the agents to adapt to the environment
both in their development and in their actions.

In the original model there are no terminal and nonterminal symbols. In [2]
it was shown that this model is very strong as far as the generative capacity is
concerned: all recursively enumerable languages can be obtained as languages of
extended eco-grammar systems (that is with systems with a distinguished terminal
alphabet) with a very simple choice of the functions ip and é.

Because of this result another, simpler variant of eco-grammar systems was
introduced in [2]: the simple eco-grammar system. In a simple eco-grammar system
the interaction between the environment and the agents is restricted and the agents
do not have an inner representation. Other variants like non-extended simple eco-
grammar systems in [3] and conditional tabled eco-grammar systems in [4], [5]
and [10] were introduced and studied.

•Research supported by the Hungarian Scientific Foundation " O T K A " Grant No. T029615
^Computer and Automation Research Institute, Hungarian Academy of Sciences, Kende u.

13-17, H - l l l l , Budapest, Hungary. E-mail: csima@cs.bme.hu

569

mailto:csima@cs.bme.hu

570 Judit Csirna

Besides these directions, the study of extended simple eco-grammar systems
continued in [6], where it was proved that the hierarchy according to the number of
the agents is a collapsing one and that the class of languages generated by extended
simple eco-grammar systems without A-rules is between the class of languages gen-
erated by extended 0L systems and the class of languages generated by matrix
grammars with appearance checking.' (For more information about these language
classes the reader is referred to [9] and [8].) The general case, where A-rules are
allowed in the system, remained open. In [1] it was shown that the hierarchy col-
lapses in the general case as well, even if we consider different derivation modes,
but the place of this collapsing language class remained unsolved.

In [11] simple eco-grammar systems with prescribed teams were examined. It
was proved there that extended tabled simple eco-grammar systems with teams of
agents with prescribed members and operating according to a weak rewriting steps
(that is the derivation is not blocked if some agents from a team cannot perform
any action) can generate all recursively enumerable languages. In this article we
present a stronger result: it is not necessary to use prescribed teams to reach the
power of Turing machines. Moreover, both extended tabled simple eco-grammar
systems (using the original derivation mode, not the weak one) and weak extended
simple eco-grammar systems (without tables) are enough to generate all recursively
enumerable languages. (We note that the definition of a weak derivation step we
use in this article is a slightly different one compared to [11], therefore only the
first result is stronger than the one in [11].)

More precisely, we consider two variants of extended simple eco-grammar sys-
tems for which the question of their generative power will be answered.

The first part of the article deals with extended tabled simple eco-grammar sys-
tems, where instead of one 0L system the environment can be represented by more
than one 0L system, called tables. Thus the environment can vary its behaviour
step by step. Allowing this possibility, all recursively enumerable languages can be
obtained even with one agent.

In the second part of the article we present weak extended simple eco-grammar
systems. In this case the definition of the derivation step is different from the
original definition of an extended simple eco-grammar system. In this modified
version the derivation is not blocked if some agents cannot perform any action on
the sentehtial form. We show that the generative power of Turing machines can be
reached also in this case.

2 Preliminaries

Here we present the notions and notations used in this article, for further informa-
tion the reader is referred to [9], [8] and [7].

The set of all non-empty words over a finite alphabet V is denoted by V+, the
empty word is denoted by A; V* = V+ U {A}. For a set V, we denote by card (V)
the cardinality of V. For a word x, we denote by |z| the length of x. If
is a word over an alphabet V, Xj 6 V for 1 < j < n, [x,i, k] denotes the word

Two remarks on variants of simple eco-grammar systems .571

[x\, i, fc] • • • [xn, i, k] for 1 < i, k.
By a context-free production or by a context-free rule (a CF rule, for short)

over an alphabet V we mean a production of the form of o—>u, where a £ V and
u £ V*. A CF rule is a A-rule (or a deletion rule) if u = A.

We also use the following notations: for a set of CF rules R, dom(R) denotes
the set of all letters appearing in the left-hand side of a rule in R. For a word x
over an alphabet V, alph(x) denotes the set of all letters appearing in x.

A 0L system is a triplet H = (V,P,LJ), where V is a finite alphabet, P is a
set of context-free rules over V, and U> £ V* is the axiom. Moreover, P has to
be complete, that is for each symbol a from V there must be at least one rule in
P with this letter in the left-hand side. 0L systems use parallel derivations: we
say that x directly derives y in a OL system H = (V,P,UJ), written as a ;=>#? / , if
x = X\X2 • • •xn, y = 2/12/2 • • •2/n> where X{ £ V, yi £ V*, and the rules £¿->2/1 are in
P for 1 < i < n.

A TOL system is a triplet H = (V,T,w), where V is a finite alphabet, T =
{ T i , . . . , J*,} is a set of tables over V, where each table Ti for 1 < i < k is a
complete set of CF rules over V, and w £ V* is the axiom. We say that x directly

TOL OL
derives y in a TOL system H = (V, T, lj), written as x y, if x ==>Hi y for some
i , 1 < i < with the OL system Hi — (V,Ti,ui).

An ETOL system is a quadruple H = (V,T, A, u), where H' = (V, T, w) is a TOL
system, and A C V is the terminal alphabet. In an ETOL system H — (V,T, A,u>)

ETOL TOL x directly derives y, written as x H 2/, if x V-
ETOL ETOL

The transitive and reflexive closure of =4- n is denoted by
The generated language of the ETOL system H (denoted by L(H)) is

ETOL
L(H) = { w £ A* \ oj=>*hW }.

That is, in an ETOL system only words over a distinguished subalphabet are in
the generated language. A language is said to be an ETOL language if there is an
ETOL system which generates it.

TOL and OL systems are special cases of ETOL systems: A = V stands in both
cases; moreover, in the case of OL systems T = {T i } also holds. Therefore the
above definition gives the generated language for these systems as well.

A random-context grammar is a quadruple G = (N, T, P, S) where N is the set
of nonterminals, T is the set of terminals, S is the axiom, and P is a finite set of
random-context rules, that is triplets of the form of (C—»a, Q, R), where C - > a is
a CF rule over NUT, where C £ N, and Q and R are subsets of N. For x, y £
(NUT)*, we write x=$y iff x = rriCo^, y = x\ax2 for some £1,0:2 £ (NUT)*,
(•C->a, Q, R) is a triplet in P, all symbols of Q appear and no symbol of R appears
in x\Cx2 (Q is called the permitting context, and R is called the forbidding context
of the rule C—ta. If Q and/or R are empty, no check is necessary.) This is a slightly
modified but equivalent version of the definition presented in [7].

If the forbidding context is empty for every rule, we speak about a random-
context grammar without appearance checking, otherwise the grammar is with
appearance checking. For the sake of brevity we will refer to a random-context

572 Judit Csirna

grammar with appearance checking and with A-rules as a random-context grammar.
The generated language of a random-context grammar consists of all the words

which can be generated in some steps from axiom S. The class of languages which
can be generated by random-context grammars is denoted by 7lC*c.

Now we present the definition of an extended simple eco-grammar system, as
introduced in [6].

Definition 2.1 An extended simple eco-grammar system is a construct
E = (VE, PE, RI , • • •, Rn, w, A), where

• VE is a finite, non-empty alphabet,

• PE is a complete set of CF rules over VE, i.e. for each letter of VE there
exists at least one rule in PE with this letter in the left-hand side,

• Ri is a non-empty set of CF rules over VE for 1 <i<n,

• W 6 VE*, o,nd

• A C VE.

In this construct VE is the alphabet and PE is the set of the evolution rules of
the environment. The ith agent is represented by Ri, 1 < i < n, its set of action
rules. The current state of the environment, which is also the state of the eco-
grammar system, is the current sentential form. String u> is the initial state. A is
the terminal alphabet and shortly we will see that only words over A are in the
generated language of E.

The system changes its state by a simultaneous action of the agents and by a
parallel rewriting according to Pe-
Definition 2.2 Consider an extended simple eco-grammar system
E = (VE, PE, RI > • • •, Rn, w, A). We say that x directly derives y in E (with x £
VE+ and y € VE*, written as x y), if

• x = X1Z1X2Z2 • • • xnZnxn+i, with Zi £ Ve, Xj € Ve*, 1 < i < n, and
l < j < n + l ,

• y = yiwiy2w2 • ••ynwnyn+1, with y i, Wj G VE*, 1 < i < n, and 1 < j < n+ 1,

• there exists a permutation of the agents, namely Rjy, Rj2,..., Rjn, such that
Zi~>Wi 6 Rj¡, for 1 < i < n, and

j J

• Xi x— A or Xi =>E Hi, for 1 <i<n, where E = (VE,PE,U) is the 0L system
of the environment.

We denote the transitive and reflexive closure of by = > E .
The generated language consists of the words over A which can be obtained in
some derivation steps starting from the axiom.
Definition 2.3 Consider an extended simple eco-grammar system
S = (VE , PE , RI, • • •, RN, W, A). The generated language of E is the following:

L{ E) = { » £ A*| w ^ u } .

Two remarks on variants of simple eco-grammar systems .573

3 Extended tabled simple eco-grammar systems
In this section a modified version of an extended simple eco-grammar system, called
an extended tabled simple eco-grammar system, is investigated. In such a system
the environment can be represented by more than one 0L system. We show that
this device is as powerful as Turing machines.

Definition 3.1 An extended tabled simple eco-grammar system (an ETEG system,
for short) is a construct Y, = (Ve,Te,Ri,. .. ,Rn,oj, A), where

• (VB, TE, A,U>) is an ETOL system, and

• Ri is a non-empty set of CF rules over VE for 1 < i < n.

Here VE, Ri, W and A have the same meaning as in Definition 2.1, namely they are
the alphabet of the system, the production sets representing the agents, the axiom,
and the terminal alphabet. TE is the set of tables of the environment.

In an extended tabled eco-grammar system the environment can choose a 0L
system in each derivation step to perform a parallel rewriting.

Definition 3.2 Consider an extended tabled simple eco-grammar system
£ = (Ve,Te,Ri, • • • A). We say that x directly derives y in £ (with x G
VE+ and y G VB*, written as %y) if y for the extended simple eco-
grammar system £ j = (VE, TI,R\,..., RN,w, A) for some 1 < i < k.

We denote the transitive and reflexive closure of E by ^.

Definition 3.3 The generated language of an extended tabled simple eco-grammar
system £ = (VE,TE,R\, • • • ,RN,LJ, A) is the following:

L(£) = { T) £ A* IW'^E V}.

The class of languages which can be generated by an ETEG system with n agents
is denoted by £(£T£G,\)-

Now we present an example to illustrate the power of ETEG systems.

Example 3.1 Let £ = (VE,TE, RI, w, A) be the following ETEG system:

• VE = {S,B,N,D,S',a,b},

• TE = {T1,T2,T3,T4}, where
Ti={ S-+D, N-+.N, a—>a, 6—>6, D-iD, S"—»S', B—>B },
T2 = { S^\,N->N,a-^a,b->b,D-*D,S'^D,B-*B },
T3 = { S^D,N^N,a^a,b^b,D-^D,S'^D,B^bB } ,
T4 = { S^D, N—>N, a—ta, fo—>6, D->D, S'^D, B->b },

• I?I = { S^aBNS, S'-»A } ,

• oj = SS', and

574 Judit Csirna

• A = { a,b }.

We show that the generated language of this system is
L(E) = { (abn)m | 1 < n < m } U {A}.

First we note the following: S can be deleted only by the environment and
S' can be deleted only by the agent. These two events must happen in the same
derivation step because of the following reasons. If the environment deletes S, that
is uses table T2, and the agent does not apply the rule S'—>A, then the environment
rewrites S' to D, which "blocks" the derivation since this D will never disappear
from the sentential form. If the agent deletes S' in a derivation step and the
environment does not'delete S, that is does not use table T2, it introduces symbol
D again.

We have seen that S and S' disappear from the sentential form in the same
derivation step. Before this step the agent has to use the rule S—>aBNS, or other-
wise the environment introduces a D\ the environment has to use the first table Ti,
or otherwise S' would be rewritten to D. Thus either the derivation is SS' t=£'X,
or the first few steps are SS*{aBN)mSS' i=^{aBN)m. After these steps
the only possibility for the agent to work is by using rule TV—>A. During these steps
the environment can use any of its tables, therefore it can introduce b letters before
all the B's or it can rewrite either all B's to B or all B's to b's. Because there
are only m symbols TV in the sentential form, the derivation lasts exactly m more
steps. Hence at the end of the derivation, when there are no more TV symbols left,
there are at least one but at most m symbols b after each a.

The above explication showes that all non-empty generated words are of the
form of (abn)m , 1 < n < m. It follows from the construction that all words of this
form as well as the empty word, A, are in the generated language, which is thus
indeed:

L(£) = { (abn)m | 1 < n < m } U {A}.

This example shows that even a very simple extended tabled simple eco-
grammar system with only one agent is able to produce a quite complicated lan-
guage, namely a language which is not an ETOL one (see [8]).

We show that the generative capacity of these systems reaches that of Turing
machines. This is a direct consequence of the following lemma.

Lemma 3.1 1ZC*C C C{£T£Q,oo)

Proof Let G = (N, T, S, P) be a random-context grammar. Without loss of gener-
ality, we can asssume that the rules in P have the form (C-»a , Q, R), with C 6 TV,
a £ (NUT)*, card(Q) < 1, and card(R) < 1 (see [7]). Moreover, we can assume
that there are no rules with Q = R, R = { C } or Q = {C}, because rules of the
first two types are not applicable and in the last case the rule is equivalent to the
rule (C^x,%,R).

We denote by r the number of rules in P and by V the set TV U T. The rules of
P are enumerated as pi = (C»—>Qt, Qi, Ri)- We will refer to the components of the
ith rule as Cj, on, Qi, and R^.

Two remarks on variants of simple eco-grammar systems .575

Now we will construct a simple extended tabled eco-grammar system
S = {VE,TE,RI,U, A) such that L (E) = L(G).

Let

• VB = VU {[X,i]\X eV,l<i<r}
u{[x',i}\x ev,i<i<r}
U { D , U, z, Z'}
u {[u,i] I 1 < i < r,Qi = 0}
U {[U'J] | 1 < i < r}U
U {[U,i] \ l<i<r,Qi / . 0 } ,

where D, U, Z £ V,

. •,TE = {T{ihT'{i),T"(i)\l<i<r}, where

T{i) = {X^[X,i]\X EV}
U {U-+{U,i} | Qt = 0}
U {U->[U,i] | Qi ± 0},
for 1 < i < r,

T'{i) = {[X, i]->{X', i]\X e V, { X } 5¿ R{)
L¡{[B¡i}-^D\{B}=Ri}
U {Z'^Z1}

for 1 < i < r,

T"(i).= {[x\i]^x \xev}
U {Z'->Z, Z'->A, [U't i]-*U, [U'i i]->A}
for 1 < i < r,

• i?i = {Z^Z'}
U {[£/, i]—»[[/ ' , ¿] | 1 < i < Í", Q¿ = 0 }

U {[A,i]^[A',i] | 1 <i<r,Qi = {A}}
U { [C " ¿ , í] - > a ¿ | 1 < i < r},

• oj = SUZ, and

• A = T.

Those symbols which are not mentioned above in the tables are rewritten into
D\ these rules make the tables complete.

We introduce different alphabets according to the rules of P in the following way.
These alphabets are multiplied versions of V: for the ith rule of P we have alphabets
{[X,i] j X e V} and {[X',i] \ X eV}. Moreover, we have some special additional

576 Judit Csirna

symbols in the ETEG system in order to coordinate the derivation. These are
{D,U,Z,Z'}U {[U',i] | 1 < i < r } U { [£ / , i] | 1 < i < r, Qi = 0} U {[0,i] | 1 < i <
r> Qi 0}- By D the derivation is "blocked" : if this symbol appears, the derivation
never results in a terminal word. Symbol U allows the agent to work when Qi = 0.

First we show how a derivation step of G can be simulated by S. During the
simulation the sentential form has the form wUZ, where the word w corresponds to
the sentential form of G, while U and Z coordinate the simulation. Let us suppose
that in a derivation step with sentential form x rule (Cj-^Qj, Qi,Ri) is used. The
simulation in the ETEG system is as follows.

In the first step the environment applies table T^ to rewrite xU into [x,i\\U, i]
or into [x,i][U,i\ depending on whether or not Qi = 0; the agent rewrites Z into
Z'. This is the only role of Z: it allows the agent to work during the first step of
the simulation.

In the second step the agent applies the rule [t/, z]-»[t/ ' ,z] if Qi = 0 or applies
the rule [A,i\-*[A' if Qi = { A } . The environment rewrites the remaining letters
by using table T ' ^ y

In the third simulation step the agent applies its rule corresponding to the rule
of G, namely rule [C'i, i]->ai, while the environment rewrites the remaining letters
by using table T"During this last step, the environment can delete the special
symbols Z' and [{/ ' , ¿], thus allowing the possibility of finishing the derivation if the
sentential form would be a terminal .word.

Now we have showed that we can simulate the derivation steps of the random-
context grammar. It follows from the construction of the simulating ETEG system
that the behaviour described above is the only one which can result in a terminal
word. The only possibility to start a derivation from a word over V U {U, Z} is
to use one of the tables T(») and the rule Z-+Z' of the agent. If the sentential
form contains some forbidding letters from Ri, the environment blocks the deriva-
tion in the next step by introducing a D; if the permitting symbol referring to the
non-empty set Qi does not appear in the sentential form, the derivation is blocked
because the agent cannot work. (It cannot use the other rule [U,i]—t[U',i], because
this symbol appears in the sentential form iff Qi = 0.) In the next step the agent
has to use the rule [C'i,i\—>oti and the environment has to use table T"(¿). These
three consecutive steps simulate the application of one of the rules of P . •

Using the fact that = RE and the fact that we can construct a Turing
machine simulating an extended tabled simple eco-grammar system, we obtain the
following theorem:

Theorem 3.1 C(£T£G, oo) = 7Z£

4 Weak extended simple eco-grammar systems
In this section another variant of extended simple eco-grammar systems is studied:
the weak extended simple eco-grammar system. This variant has the same çompo-

Two remarks on variants of simple eco-grammar systems .577

nents as the extended simple eco-grammar system but it works in a different way.
Informally speaking, in a weak system the derivation is not blocked if there are
some agents which cannot perform any action.

Compared to [11], the definition of a weak rewriting step is slightly different.
There, in a weak rewriting step, the derivation is blocked if no agent can work,
whereas here we allow this possibility.

Definition 4.1 A weak extended simple eco-grammar system (a wEEG system, for
short) is a construct £ = (VE, PE, R\, • • •, RN,U, A), where

• all the components are the same as in Definition 2.1.

In a weak extended simple eco-grammar system S = (VE, PE, RI , • • •, RN, w, A) x
directly derives y (with x £ VE+ and y £ VE*, written as xw=M-° sy) if

• x = x\Z\x-iZi • • • XkZkXk+i, with Zi £ VE, Xj £ VE* , 0 <k <n, I <i <k,
and 1 < j < k + 1,

• V = yiW\V2W2 • • -ykWkVk+i, with yuWj £ VE*, 0<k<n, l < i < k , and
l < j < k + l,

• there exists a permutation of some agents, namely Rj1, Rj2,..., Rjk, such that
Zi-^Wi £ Rji; for 1 < i < k,

• {dom(Rt) | 1 < t < n, t ^ ji, for 1 < i < k} FL alph(x\x2 • • • ZJFE+I) = 0, and

• Xi = A or XI=>EVI, for 1 < i < k + 1, where E — (VE,PE,W) IS the 0 L
system of the environment.

We denote by w =j> the transitive and reflexive closure of E .
That is, in a weak extended simple eco-grammar system we choose some agents

to perform a common action in the following way: the chosen agents can perform
an action together and there is no symbol among the remaining letters where any
of the other agents could act. The chosen agents perform their actions and the
remaining letters are rewritten by the environment. In the particular case when
there is only one agent in the system, this definition implies that the agent has
to work if it is able to but if no letter can be rewritten by the agent it is the
environment itself that continues the derivation.

Definition 4.2 For a weak extended simple eco-grammar system
E = (VE, PE, RI , • • •, Rn,<*>, A) the generated language is the following:

L(Z) = {v£A*\ujwm0xv}.

We denote by wEEG(n) the class of languages which can be generated by weak
extended simple eco-grammar systems with n agents.

In the following we show that wEEG systems can generate all recursively enumer-
able languages. The result is based on the following lemma.

578 Judit Csirna

L e m m a 4 . 1 7ZC*C C WEEG{ 1)

P r o o f For a random-context grammar G = (N, T, P, S) we will give a weak ex-
tended simple eco-grammar system £ = (V E , PB, RI,A,LJ) such that L(G) = £(£)•

First we present the definition of this system £ and explain its functioning.
Similar to Lemma 3.1, the notation V stands for N UT, r denotes the number of
rules in P, the rules in P are enumerated aSPI = (CI—QI, RI), we assume there
are no rules with Q = R, Q = { C } or R = {C}, and we refer to the components of
the ith rule as CI, CTI, QI, and RI.

Let

. VB = V U {[X,i,j] | X G V, 1 < » < r, 1 < j < 5}
U {[Z,i,j],[Z,i,k] | 1 < i < r , l < j < 5,1 < k < 4}
U {[Ci,i,k} | 1 < i < r , l < k < 4}
U{[U,i,j]\l<i<r,Qi = <b,l<j <2}

U{[£>, i, 3] | 1 < i < r } where U,D, Z g V,

. PE = {[X,i- l , 5] -> [X , i , l] I 2 < » < r,X G VU{Z}}

U {[X,i,l]^[X,i,2] | 1 <i<r,X G V U{Z,Z}}
U {[Ci,i,l)^[Ci,i,2] | 1 <i < r }
U {[17, x, *, 2] | 1 < * < r, Qi = 0>

U {[X, i, 2}^[X, i, 3] | 1 < i < r, X G V U {Z, Z}}
U {[Ci,i,2]-+[Ci,i,3] | 1 <i <r}
U {[U,i,2]->D | 1 <i <r,Qi = 0 }

U {[X,i ,3]->[X,2,4] | 1 < i < r,X G V U {Z,Z}}
U{[Ci,i,3]^[Ci,i,4]ll<i<r}
U {[D,i,3]->D | 1 < i < rj

U { [X, i ,4] ->[X, i ,5] | 1 < i < r,X G VU{Z}}
U {[Z,i,4]-*[Z,i,5] | 1 < i < r]
U{[Ci,iA]^[Ci,i,5]\l<i<r}

U { [* , » , 5]->X | 1 < * < r,X G VU {Z}}
U | X G V U {£>}},

• Rx = {[Z,i- 1,5]->[Z, t.'l] | 2 < i < r}
U{[Z,r,5)->[Z,l,l]}
U {[Ci, i - 1 , 5 M C i , i , 1] | 2 < i < r, Qi + 0}
U ^ C i . r . S H t C i . l . l J I Q i # 0 }
U { [C< ,* - l,5Mdi,i,l][U,i, 1] | 2 < i < r,Qi = 0}
U {[Ci, r, 5]->[Ci, 1, l][i/, 1,1] | Qx = 0>

\j'{[Z,i,l]->[Z,i,2] | 1 < i < r}

Two remarks on variants of simple eco-grammar systems .579

U {[B, i, 1]->D | 1 < i < r, {B} = Ri ± 0}

U {[A,i, 2]-»[A, i, 3}[D, i, 3] | 1 < i < r, {A} = Q, / 0}
U {[£/, i, 2]->[D, i,3}\l<i<r,Qi = d)}
U {[Z,i,2]^[Z,i,3] | 1 < i < r}

U {[Ci,i,2,]-^D | 1 < i < r,}

U {{Cj,i,4]-+[oLi,i,5\ | 1 < i < r,cti ± A}
U {[Ci, i, 4]—>A | 1 < i < r, cti = A}

U {[Z,i, 5]->A | 1 < i < r},

• A = T, and

. u) = [5, r, h][Z, r, 5].

The main point of the simulation is that we simulate the application of the rules in
their order from 1 to r, each time either simulating the rule or skipping the rule.
After having simulated or skipped the rth rule we continue with the first one.
We do the simulation of a rule by introducing five different alphabets for each rule
of G: for the ith rule we introduce the alphabets [V,i,j] for 1 < j < 5. We start the
simulation or the skipping of the ith rule with a word over the alphabet [V,i — 1,5],
then during the simulation we go through the alphabets [V,i,j] for 1 < j < 4, and
finish with a word over the alphabet [V, i, 5]. Consequently we can finish the whole
derivation or we can continue with the next the rule.

There are more additional alphabets for coordinating the simulation: the letters
[Z,i,j] and [Z,i,k] for 1 < i < r, 1 < j < 5, and 1 < k < 4 make it possible to
skip the ith rule of G; the symbols [Ci, i,j] let the agent simulate the ith rule of G\
the symbols [U,i,j] are introduced only if Qi = 0 and make it possible to deal with
this case; the symbols [Z),i,3] ensure that the derivation is blocked if the agent
simulates the ith rule of G while the non-empty permitting condition is missing.

In the following, we first show how the application of a rule of G can be simulated
and we also show how the application can be skipped. Then we show why the
construction of the above wEEG system guarantees that only those derivations
that follow a derivation of the random-context grammar G result in a terminal
word.

Let us suppose that we want to simulate the application of the first rule of G:
(Ci—>ai, Qi, R\) (the case of the other rules is similar) and let us first suppose
that Qi 0. Before the simulation the sentential form in E is over {[W, r, 5] | W €

In the first step the agent "decides" whether the current rule (in this case the
first rule of G) will be simulated or will be skipped. Let us suppose that the rule is
to be simulated. In this case the agent uses the rule [C\, r,'5]—>[Ci, 1,1]. The other
letters are rewritten by the environment, using the rules {[if , r, 5] — 1 , 1] | X 6
VU{Z}}.

580 Judit Csirna

In the next step the agent checks whether or not the forbidding context is present
in the sentential form. This is done in the following way: the agent introduces a D
if [£ ,1,1] is present (where { B } = Rx), while otherwise the agent does not work
because [Z, 1,1] is not present in the sentential form. The environment increases
the second index of the symbols from 1 to 2 in this step.

In the third step the agent uses its rule [A, 1,2]->[A, 1,3][£>, 1,3] for { A } = Qi;
the environment increases the second indices from 2 to 3 in the other symbols.

In the fourth step the agent deletes [£>, 1,3] while the environment increases the
second indices from 3 to 4. In the fifth and final step the agent applies the rule
[Ci, 1,4]—>[c*i, 1,5] or the rule [Ci, 1,4]—>A, which correspond to the first rule of
G; the environment increases the second indices. Therefore we obtain a word over
{[w,i,5]| W e v u { z } } .

If Q1 = 0, that is when the permitting condition is empty, the simulation
is different. While the environment does the same as in the previous case,
the agent applies different rules. The rule the agent uses in the first step is
[Gi,r, 5]->[Gi, 1,1][f7,1,1] and thus [U, 1,1] is introduced. In the third step this
symbol is used to introduce [£>,1,3] and from that point the simulation continues
in the same way as described above, that is when Qi / 0.

Now we show how we can do the skipping of the first rule (the case of the other
rules is the same). Let us suppose again that we have a word over the alphabet
{[W,r,5] | W EVU{Z}}.

The environment works in the same way as it did in the previous case, the only
difference is in the behaviour of the agent. In the first step the agent chooses the
rule [Z, r, 5]->[Z, 1,1], in the next step the rule [Z, 1, l]-ï[Z, 1,2], and in the third
step the rule [Z,l,2]->[Z,l,3]. In the fourth and the fifth step the agent no longer
has any rule to apply, hence it does not perform any action. By the end of these
five steps we have the same word as we had before, apart from the first indices in
the symbols: we have the same word over the alphabet {[W, 1,5] | W € V U {Z}}.

At this point the simulation or the skipping of the second rule can start and
can be carried out in the previous manner. We can continue this process until the
last rule, the rth one, when we can restart the whole procedure with the first rule
again.

In order to finish the derivation, after having finished the simulation of a rule
of G the agent chooses the rule of the form of [Z,i, 5]—>A while the environment
rewrites the remaining letters according to its rules [X,i, 5]—>X.

Thus we have seen that L(G) Ç £(£).
In the following we show that the eco-grammar system must follow one of the

sequences of steps presented above, or otherwise the derivation would never termi-
nate.

In the first step, when the sentential form is over [W,i — 1,5], thé agent can
work because either the left-hand side of the current rule of G is present (and thus
the agent can rewrite [Ci, i — 1,5]) or the symbol [Z, ¿—1,5] can be rewritten. (At
the end of the proof we explain why we can suppose that Z has not yet disappeared
from the sentential form.)

Two remarks on variants of simple eco-grammar systems .581

Therefore, in this first step the agent marks a place where it can perform the
application of the current rule or it can mark Z. If it marks a place for the current
rule in the next steps it must check the appearance of the forbidding and the
permitting context. The derivation can result in a word not containing letters D
only if the check is successful. This is done in the following way: the derivation is
blocked by the rule [B,i, 1]—>D if the forbidding context is present, or by the rule
[Ci,i, 3] — i f the non-empty permitting condition is missing. In the last step the
agent must apply the rule corresponding to the rule of G.

Thus, we have seen that if the agent decides to mark a place for applying the
current rule, then he must check whether or not the rule is applicable, and he must
simulate it during the five steps. If the agent chooses the. other possibility and
marks Z, then in the next two steps he must increase the second index of [Z,i, j]
from 1 to 2 and from 2 to 3. In the next two steps the agent cannot work. Hence
if the agent chooses to mark [Z, i, 5], then the work of the whole system follows the
strategy of skipping the current rule, or otherwise the derivation would be blocked.

As far as the end of the derivation is concerned, the environment has to apply
the rules of the form [X,i, 5]—>X for all the letters in the same derivation step, or
otherwise the derivation is blocked in the next step. It can happen that the agent
deletes Z before the end of the derivation but this fact does not allow any new
word to be generated, so we can safely assume that the deletion of Z happens in
the same derivation step as the rewritings [X, i,5]-^X.

We have seen the other direction of the inclusion, L(E) C L(G), which com-
pletes the proof of the lemma. •

Because = RE and because weak extended simple eco-grammar systems
can be simulated by Turing machines, we obtain the following theorem:

Theorem 4.1 oo) = US

5 Conclusions

In this article we presented two variants of extended simple eco-grammar systems.
In both cases we have found that the modifications lead to systems withlarge gen-
erative power: all recursively enumerable languages can be obtained in these ways
with only one agent.
The question of the generative power of the original model, the extended simple
eco-grammar system, remains open.

Acknowledgement
The author expresses her thanks to two anonymous referees who suggested a series
of improvements of the article.

582 Judit Csirna

References
[1] J. Csima. On extended simple eco-grammar systems. Acta Cybernetica,

13(4):359-373, 1998.

[2] E. Csuhaj-Varju, J. Kelemen, A. Kelemenova, and Gh. Paun. Eco-Grammar
Systems: A Grammatical Framework for Studying Lifelike Interactions. Arti-
ficial Life, 3:1-28, 1997.

[3] E. Csuhaj-Varju and A. Kelemenova. Team Behaviour in Eco-Grammar Sys-
tems. Theoretical Computer Science, (209):213-224, 1998.

[4] E. Csuhaj-Varju, Gh. Paun, and A. Salomaa. Conditional Tabled Eco-
Grammar Systems. In Gh. Paun, editor, Artificial Life: grammatical models,
pages 227-239. Black Sea Univ. Press, Bucharest, 1995.

[5] E. Csuhaj-Varju, Gh. Paun, and A. Salomaa. Conditional Tabled Eco-
Grammar Systems versus (E)TOL Systems. Journal of Universal Computer
Science, 5(l):252-268, 1995.

[6] J. Dassow and V. Mihalache. Eco-Grammar Systems, Matrix Grammars and
EOL Systems. In Gh. Paun, editor, Artificial Life: grammatical models, pages
210-226. Black Sea Univ. Press, Bucharest, 1995.

[7] J. Dassow and Gh. Paun. Regulated Rewriting in Formal Language Theory.
Springer-Verlag, 1989.

[8] Grzegorz Rozenberg and Arto Salomaa. The Mathematical Theory of L-
systems. Academic Press, 1980.

[9] A. Salomaa. Formal languages. Academic Press, 1973.

[10] P. Sosik. Eco-Grammar Systems, Decidability and the Tiling Problem. In
A. Kelemenova, editor, Proceedings of the MF.CS'98 Satellite Workshop on
Grammar Systems, pages 195-213. Silesian University, Opava, 1998.

[11] M. H. ter Beek. Simple Eco-Grammar Systems with Prescribed Teams. In Gh.
Paun and A. Salomaa, editors, Grammatical Models of Multi-Agent Systems,
pages 113-135. Gordon and Breach Science Publishers, 1999.

Received December, 1999

