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Elementary decomposition of soliton automata* 

Miklós Bartha 1 Miklós Krész * 

Abstract 

Soliton automata are the mathematical models of certain possible molec-
ular switching devices. In this paper we work out a decomposition of soliton 
automata through the structure of their underlying graphs. These results lead 
to the original aim, to give a characterization of soliton automata in general 
case. 

1 Introduction 

One of the most important goals of research in bioelectronics is to develop a molec-
ular computer (see e.g. [3]). The soliton automaton introduced in [4] is the mathe-
matical model of so-called "soliton valves" having the potential to serve as a molec-
ular switching device in such a computer architecture. 

The underlying object of a soliton automaton is a soliton graph, which is the 
topological model of a hydrocarbon molecule-chain in which the appropriate soliton 
waves travel along. Any soliton graph has a perfect internal matching, i.e. a 
matching that covers all the vertices with degree at least two. These vertices model 
the carbon atoms, whereas vertices with degree one (external vertices) represent an 
interface with the outside world. The states of the corresponding automaton - also 
called the states of the graph - are the perfect internal matchings of the underlying 
graph, while the transitions are realized by making soliton walks. Intuitively, a 
soliton walk is an alternating walk with respect to some state M of the graph G, 
which starts and ends at an external vertex. However, the status of each edge in the 
walk regarding its presence in M changes dynamically step by step while making 
the walk, so that by the time the walk is finished, a new state of G is reached. 

The analysis of soliton automata is a very complex task. So far only a few special 
cases have been described. In [4], [5] and [6], the transition monoids were deter-
mined for strongly deterministic soliton automata, deterministic soliton automata 
with a single external vertex or with one cycle. Following a different approach, in 
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[8], the computational power of strongly deterministic soliton automata have been 
investigated by automata products. However, the general case is still open. 

The main contribution of this paper is to reduce the general problem to a 
simpler one by working out a decomposition of soliton automata into elementary 
ones. For this goal we make use of the elementary structure of soliton graphs found 
in [2]. In Section 3 we describe the automata based on the internal parts of this 
decomposition, then characterize the relationship of component automata by aq-
products. In Section 4 the self-transitions - transitions from a state to itself -
induced by non-trivial walks are investigated. This problem will be analyzed also 
through the elementary decomposition. 

2 Basic concepts and preliminaries 

By a graph we mean, unless otherwise specified, a finite undirected graph in the 
most general sense, i.e. with multiple edges and loops allowed. For a graph G, V(G) 
and E(G) will denote the set of vertices and the set of edges of G, respectively. 
An edge e— (i>i,v2) G E(G) connects two vertices vi,v2 G V(G), which are called 
the endpoints of e, and e is said to be incident with v\ and v2. If = v2, then 
e is called a loop around v\. Two edges sharing at least one endpoint are said to 
be adjacent in G. A subgraph G' of G is a graph such that V(G' ) C V(G) and 
E(G') C E(G). If X C V(G) then G[X] denotes the subgraph of G induced by X , 
i.e. V(G[X]) = X and E(G[X]) consists of the edges of G having both endpoints in 
X. Moreover, we say that the set E C E(G) spans the subgraph G' if G' = G[X], 
where X is the set of vertices incident with some edge of E. 

If the vertex set of a graph G can be partitioned into two disjoint non-empty 
sets A and B such that all edges of G join a vertex in A to a vertex in B, we call 
G bipartite and refer to (A, B) as the bipartition of G. 

The degree of a vertex v in graph G is the number of occurences of v as an 
endpoint of some edge in E(G). According to this definition, every loop around v 
contributes two occurences to the count. The vertex v is called external if its degree 
d(v) is one, internal if d(v) > 1, and isolated otherwise. External edges are those 
that are incident with at least one external vertex, whereas an edge is internal, if 
it is not external. The sets of external and internal vertices of G will be denoted 
by Ext{G) and Int(G), respectively. 

A matching M of graph G is a subset of E(G) such that no vertex of G occurs 
more than once as an endpoint of some edge in M . Again, it is understood that 
loops are not allowed to participate in M. The endpoints of the edges contained 
in M are said to be covered by M . A perfect internal matching is one that covers 
all the internal vertices of G. An edge e G E(G) is allowed (mandatory) if e is 
contained in some (respectively, all) perfect internal matching(s) of G. Forbidden 
edges are those that are not allowed. We will also use the name constant edge as a 
common reference to forbidden and mandatory edges. A perfect internal matching 
in G will be also referred to as a. state of G, and the set of states of G is denoted 
by S(G). For a complete account on matching theory the reader is refered to [9]. 



Elementary decomposition of soli ton automata 633 

To follow the matching theoretic terminology, a soiiton graph G is defined as a 
graph having at least one external vertex and a perfect internal matching. (See [1]). 
A connected soiiton graph G is said to be essentially internal if either G consists 
of one edge or every external edge of G is forbidden. 

An elementary component C of soiiton graph G is a maximal connected subgraph 
of G spanned by allowed edges only. Then C is called external or internal depending 
on whether it contains an external vertex or not. An elementary component is said 
to be trivial, if it contains at most one edge. Elementary graphs are those which 
consist of one elementary component. Note that the decomposition into elementary 
components determines a partition on V(G). 

Now let G' be a subgraph of soiiton graph G. Then for any state M of G, 
by MG> we mean the restriction of M to G'. If, in addition, G' is also a soiiton 
graph with MG> E S(G'), and either Tnt(G') = V(G')C\Int(G) or G' is essentially 
internal, then G' will be called a soiiton subgraph with respect to M. 

In a graph G, a walk of length n is a sequence A ~ VQ, e\,... , en,vn, n > 0, of 
alternating vertices and edges. This sequence indicates the starting point VQ 6 V(G) 
of a and the vertex Vj, j 6 [n] = {1 , . . .n } , that a reached after traversing the j-th 
edge ej. The notation a[vi,vj] with 1 < i < j < n will be used for the subwalk 
of ol between Vi and Vj, i.e., a[vi,vj] — • • • ,ej,Vj. Furthermore a - 1 will 
represent the reverse of a. For every j g [n], na(j) will denote the number of 
occurences of the edge ej in the prefix vo, e\,... , ej. By a backtrack in a walk we 
mean the traversal of the same edge twice in a consecutive way. However, as the 
only exception, the traversal of a looping edge in the above way is not considered 
to be a backtrack. If all edges in a walk are distinct, the walk is called a trail, and 
if, in addition, the vertices are also distinct, the trail is a path. We define a cycle to 
be a path together with an edge joining the first and the last vertex. Note, that a 
looping edge is also a (trivial) cycle according to the above definition. An external 
trail (path) is a trail (path) having an external endpoint , while a path between two 
external vertices is said to be crossing. Internal trails (paths) are those that are 
not external. 

A trail a = wo,'ei, • • • , e n , v n , n > 0 is an alternating trail with respect to state 
M (or M-alternating trail, for short) if for every i 6 [n - 1], e, 6 M iff e»+i $ M. 
If vo,vn € Int(G), then a is called internal, otherwise a is external. Moreover, a 
is said to be positive (negative) if either a is internal with e\, en € M ( e\, en $ M, 
respectively) or it is external with vn € Int(G) such that en € M (en $ M, 
respectively). Observe that at most the endpoints of a can be traversed twice by an 
alternating trail a. Based on the above fact, any maximal external M-alternating 
trail a starting from vertex v, different from a crossing, can be decomposed in the 
form a = ah + ac, where Q^, the handle of a, is an external M-alternating path, 
whereas ac, the cycle of a, is an M-alternating cycle. With these parameters, a is 
called an alternating v-racket or an alternating v-loop depending on whether ac is 
even or odd. 

We say that an internal vertex w is accessible in state M from external vertex v 
(or simply w is M-accessible from v) if there exists a positive external M-alternating 
path with endpoints v and w. We will call an edge e viable from external vertex 
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v in state M if e is traversed by an external M-alternating trail starting from v. 
Impervious edges are those which are not viable in any state from any external 
vertex. Furthermore, a cycle is said to be M-accessible from external vertex v if 
some of its edges are viable from v in state M. 

For a state M of G, an M-alternating trail a is called complete if a is either a 
crossing or it is an even length cycle. An alternating network with respect to M (or 
M-alternating network, for short) is a set of nonempty, pairwise disjoint, complete 
M-alternating trails. Note that, although an M-alternating network V consists of 
nonempty trails only, the network T itself can be empty. 

Let M be a state of graph G and a be a complete M-alternating trail. By 
making a in state M we mean exchanging the status of the edges in a regarding 
their being present or not being present in M , thus creating a new state M'. The 
state M ' created in this way will be denoted by Sc{M,a) or simply S{M,a) if 
G is understood. Making an M-alternating network T in state M means making 
all the trails of T simultaneously in M . Since the trails of T do not intersect each 
other, the resulting state, denoted by SG{M,V), is well-defined. Finally, let G ' be 
a subraph of G and M € S(G). Then by an M&-alternating trail (network) we 
mean one that is entirely contained in graph G' . 

Now we quote two results from [1] related to alternating networks. 

Theorem 2.1 For any two states Mi, M2 of graph G, there exists a unique 
mediator alternating network T between Mi and M2, i.e. 5(j(Mi,r) = M2 and 
5 G ( M 2 , r ) = M 1 

Corollary 2.2 An edge e is non-constant iff it is traversed by a complete M-
alternating trail in each state M. 

In our decomposition results we will make use of the aQ-products of finite automata, 
therefore we now recall the necessary definitions from [7]. An alphabet is a finite, 
non-empty set. If X is an alphabet, then X* denotes the set of words over X, 
including the empty word e. A non-deterministic finite automaton is a triple A = 
(S, X, 5), where 5 is a non-empty finite set, the set of states, X is an alphabet, the 
input alphabet, and 5 : A x X -> 2A is the transition function. We can extend <5 in 
such a way that S(s, e) = s for all s E S. 
For i = 1,2, let Ai = (S i ,X i ,6 i ) be finite automata. An isomorphism between 
Ai and A2 is a pair ip = (tps^x) of bijective mappings ips '• Si S 2 and 
ipx '• Xi X2 which satisfies the equation 

WS(S') I S1 6 J i ( s , s ) } = ¿2W>s(s) ,<Mx)) , 

for every s G Si and every x E Xi. The existence of an isomorphism between Ai 
and A2 is denoted by A\ = A2. 

Definition 2.3 Let Ai = (Si,Xi, ¿¡) (i = 1 , . . . , fe; k > 0) be a system of automata. 
Their ctQ-product with respect to alphabet X and feedback function <fi — notation 
ni=1 Ai[X, 4>\ — is the automaton 

A={S,X,6), where 
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(a) S = Si x . . . x Sk 

(b) (j> = ((¡>i,... , (f>k) is a mapping, such that 
<j)i : S\ x . . . x Sk x X - » Xi U {e} , and fa is independent of its j t h component 
whenever i < j < k, (i = 1 , . . . , k) 

(c) ¿ ( (sx , . . . ,sk),x) = 
5i{si,4>i(si,... ,sk,x)) x . . . x 6k(sk,4>k(si,... ,sk,x)) 

for every x 6 X, Sj € Si (i = 1 , . . . , k) 

Moreover, if every <f>i (1 < i < k) depends only on the input signal, then we speak 
of the quasi-direct e-product of A\ ... Ak. 

The following definitions are the matching theoretic formalizations of soliton walk 
and soliton automata introduced in [4]. 
Definition 2.4 A partial soliton walk in graph G with respect to state M is a 
backtrack-free walk a = vq, e i , . . . ,en,vn subject to the following conditions: 

(a) vo is an external vertex 
(b) for every j 6 [n — 1], na(j) and na(j + 1 ) have the same parity iff Cj and e^+i 

are M-alternating, i.e., e;- € M iff eJ +i £ M. 
Furthermore if vn is also external then a is called total soliton walk, or simply 

soliton walk. 

Note that the case of n = 0 is also possible; then the soliton walk is called trivial. 
Making the walk a in state M means creating M' = S(M,a) by setting for 

every e € E(G) 
e € M' iff e £ M and e occurs an even number of times in a, or e £ M and e 

occurs an odd number of times in a. 
In the light of [4, Lemma 3.3] it should be clear that S(M, a) is indeed a state. 
In the rest of the paper we will use the following notation. If M is a state of 

graph G and V\,V2 € Ext(G), then 
SG(M,VI,V2) = {S(M,A) | a is a soliton walk with respect to M , which starts 

at vi and ends at v2} 

Definition 2.5 A soliton automaton with underlying graph G is a non-
deterministic finite automaton 

A(G) = {(S{G),(XxX)t6) 

subject to the following conditions: 
(a) G is a soliton graph 
(b) S(G), the set of states of -4(G), is the set of states of G 
(c) ( X x X ) is the input alphabet, where X — Ext(G) 
(d) 5 : S(G) x (X x X) -> 2s<g> is the transition function, such that 

S(M, [v1,v2))=SG{M,vuv2), iiSG{M,vuv2)^% 
5(M, (vi,v2)) = { M } , otherwise 

for any M 6 S(G) and vi,v2 € X. 
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A soliton automaton is said to be elementary if its underlying object is an 
elementary graph. 
Note that, without loss of generality, we can assume that all constant external edges 
of a soliton graph G are mandatory. Indeed, attaching an extra mandatory edge to 
each forbidden external edge of G results in a graph G* for which A(G) = A(G*). 
We shall use this assumption throughout the paper without any further reference. 

In [4] an edge is called impervious if it is not traversed by any partial soliton walk. 
The following proposition states that our definition of impervious edge is equivalent 
to this. 
Proposition 2.6 Let a = VQ, e\,... , en, v„ be a partial soliton walk with respect 
to state M with Vo ̂  vn. Then there exists an external M-alternating trail j3 from 
vo such that /3 terminates in en and E(fi) C E(a). Furthermore, if na(n) is odd, 
then the other endpoint of ¡3 is vn. 

Proof. First suppose that en $ M. Extend G by new external edges e = (vn-i,v) 
and e' = (v n ,v ' ) , such that v,v' £ V(G). Furthermore let e m denote the last 
edge of a for which em = en and na(m) is odd. Observe that a[wo,wm-i] + e 
or a[i>o,um_i] + e' is a total soliton walk in G + e + e' depending on whether 
vm-i = vn-i or vm-i = vn. Therefore, based on Theorem 2.1, there exists an 
M-alternating network T such that making T and making the appropriate part of 
the above walks results in the same state of G + e + e'. Clearly, T will contain an 
M-alternating crossing /3' between VQ and v (between v0 and v', respectively). Then 
replacing e (respectively, e') in /3' by en, we obtain the required M-alternating trail 
/3-

Now consider the case when en £ M. Then e n _ i $ M , thus we can construct 
the appropriate external alternating trail /3 described above, which terminates at 
e n _ i . If en £ E(/3), then we are ready. Otherwise ft + en will provide a suit-
able alternating path. Finally, based on the first part of the proof, observe that 
en ^ E(P), when na(n) = na(n — 1) is odd, which makes the proof complete. • 

It is clear that impervious edges have no effect on the operations of soliton au-
tomata. Thus, without loss of generality, we can restrict our investigation to soliton 
graphs without impervious edges. The above fact in more precise form is stated in 
[4, Proposition 4.5]. Therefore, throughout the paper, unless otherwise specified, 
G will denote a soliton graph without impervious edges. 

In the rest of this section we summerize some results from [2]. 
Definition 2.7 For any two internal vertices u,v £ V(G), u ~ v if u and v belong 
to the same elementary component of G and the edge e = (u, v) becomes forbidden 
in G + e. 

For an elementary component C of G, ~ c will denote ~ on C separately. Note 
that generally ~ c is not equal to the restriction of ~ to C. 
Theorem 2.8 The relation ~ is an equivalence on Int(G). 

The classes of the partition determined by ~ are called canonical classes. In par-
ticular a canonical class of elementary component C is a canonical class contained 
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in V(C). 

Proposition 2.9 Let u and v be arbitrary vertices of a non-trivial internal ele-
mentary component C of G. Then u /c v iff for any state M of G there exists a 
positive internal Mq-alternating path connecting u and v. 

In the following we shall use the phrase " external alternating path 7 enters elemen-
tary component C" in the strict sense, meaning that 7 enters C for the first time. 
Note that in this case 7 must be negative. 
Definition 2.10 An internal elementary component C is one-way if all external 
alternating paths enter C in the same canonical class of C. This unique class is 
called principal. Further to this, every external elementary component is a priori 
one-way by the present definition (with no principal canonical class). An elemen-
tary component is two-way if it is not one-way. 
Proposition 2.11 There exists no edge connecting two internal vertices contained 
in principal canonical classes. 

Let C be an elementary component of G, and consider a state M in G. An 
M-alternating C-loop (just C-loop if M is understood) is a negative internal M -
alternating path or odd M-alternating cycle in G having both endpoints, but no 
other vertices, in C. Note that the endpoints of a C-loop a must belong to the 
same canonical class which is called the domain of a. We say that a covers the 
elementary component D if some edge of D is traversed by a. 

Definition 2.12 Let M and C be a state and an external elementary component 
of G, respectively. A hidden edge of C is an edge e = («1,^2), not necessarily in 
E(G), for which vi,v2 are the endpoints of an M-alternating C-loop. 
An elementary graph C consisting of an external elementary component and its 
hidden edges will also be considered elementary component throughout the paper. 
In this case we will call C augmented external elementary component. In [2] it was 
proved that the augmentation of a soliton graph G by its hidden edges preserves the 
elementary structure of G with the same canonical partition for each elementary 
component. 

The hidden edges have important role in the external alternating paths, which 
is expressed below. 
Proposition 2.13 LetM be a state ofG, w 6 V(G) andv € Ext{G). Furthermore 
let a be a positive (negative) M-alternating trail between v and w such that E(a) 
contains hidden edges. Then there exists a positive (respectively, negative) M-
alternating trail between v and w which does not traverse any hidden edge. 

Elementary components are structured according to their accessibility by exter-
nal alternating paths. The rest of this section is an extract of some results obtained 
in [2] relating to this structure. 
Definition 2.14 Let C be an elementary component with a non-principal canoni-
cal class P. We say that the couple (C, P) are the parents of elementary component 
D if a C-loop with domain P covers D but there does not exist a C'-loop a for any 
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elementary component C" such that a covers both C and D. In that case C and 
P are called the father and the mother of D, respectively. 
Theorem 2.15 Each two-way elementary component has a unique father and a 
unique mother. One-way components have no parents. 

The following property of fathers will play important role in the paper. 
Proposition 2.16 Let (C,P) be the parents of elementary component D and let 
a be an alternating trail starting from external vertex v entering D at a vertex w. 
Then a[v, tu] will go through C such that the last common vertex of a[v, u>] and of 
C belongs to P. 

By Theorem 2.15, elementary components can be grouped into disjoint family trees 
according to the father-son relationship. Then a family T is defined as a block of 
elementary components belonging to the same family tree. The root, denoted by 
r(T), is the ultimate forefather of T. Then Theorem 2.15 implies the following 
result. 

Theorem 2.17 Every family contains a unique one-way elementary component, 
which is r(T). 

A family T is external if r(T) is such, otherwise it is internal. Moreover, for the 
family containing some elementary component C, the notation Tc will be used. 

Now we describe the relationship of families with the help of a binary relation. 
For this we need the following observation. 
Proposition 2.18 Let e be a forbidden edge of G connecting two different families 
T\ and J~2. Then exactly one endpoint of e belongs to the principal canonical class 
of the root of either T\ or T2 • 

Making use of the above claim, the binary relation is defined in the following 
way. 

Definition 2.19 For any two different families T\, T 2 , T 2 if there exists an 
edge e connecting T\ and T 2 such that the principal endpoint of e is in • In this 
case we say that e points to family T2 . 
Let A denote the reflexive and transitive closure of K>. 
Theorem 2.20 The relation A is a partial order on the collection of all families 
of G, by which the external families are maximal elements. 

Finally we give an important consequence of the above results, which will be used 
throughout the paper. 
Corollary 2.21 An edge e connecting two families is traversed by any external 
alternating trail a in G by reflecting the relation 1—that is, if a enters family T2 

from family T\, then e points to T2 • 

Proof. Suppose by way of contradiction that T 2 T\ holds in the situation 
described in the statement of the corollary for some M-alternating trail a starting 
from an external vertex u. In that case let (vj, v2) denote the edge traversed by the 
above way with vi being contained in the principal canonical class P\ of r(T\). Now 
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let extend G by edge / = (vi,v\). Then / will be clearly viable by a[u,t;i] + (i;i,iii), 
thus G + f has no impervious edges. Observe that Pi will be a canonical class in 
G + / , too. Indeed, if we assumed that an extra edge g connecting two vertices 
wi, w'i € Pi would be allowed in G + f + g, then it is easy to see, by making use of 
Corollary 2.2, that there would exist in G + f + g a complete M-alternating trail 
/3 containing both / and g. However, / is a loop, consequently the above situation 
is not possible. Therefore the elementary component r{T\) + / is also one-way in 
G + f with / being in its principal canonical class Pi; which is a contradiction in 
Proposition 2.11. • 

3 The decomposition of soliton automata 
It is a central question to establish the correspondence between alternating networks 
and soliton walks. The first result gives the characterization of this problem. 
Definition 3.1 Let u, w be external vertices and M be a state of G. An M -
transition network T from v to w is an M-alternating network with the following 
conditions: 

(a) If T = 0, then v = w. 
(b) All elements of T, except one crossing from v to w if v ^ w, are alternating 

cycles accessible from v in M. 
Let 7G(M, v, w) denote the set of M-transition networks from v to w in graph G. 

T h e o r e m 3.2 Let M be a state of G, v,w € Ext(G), and T be an M-alternating 
network. Then SG(M,T) £ SG(M,v,w) iffT £ TG(M,v,w). 

Proo f . The "only if ' part is straightforward from Theorem 2.1 and from Proposi-
tion 2.6. To prove the "i f ' part, let us construct for each cycle /3 of T an appropriate 
u-racket ¡3' with respect to M , such that the length of the handle of /?' is minimal. 
Let T' denote the set of the above u-rackets and , in the case of v w, of the 
crossing of r . 

We will show by an inductive argument on | T' | that there exists a soliton walk 
a for which E(a) C E{UT') and S(M,a) = S(M,T). The basis step with T being 
empty or a singleton is trivial. 

Now let | T' |> 1 and assume that the assertion holds for each soliton walk set 
T'l constructed in the described way from an appropriate alternating network I\ 
with | T'l |<| r ' |. Let 7 denote the v-racket with longest handle in T'. It is evident 
that 7C is disjoint from U ( r ' \ { 7 } ) . Now using the induction hypothesis consider a 
soliton walk a = v,ei,vi,... , v n _ i , e „ , w traversing T'\{7} by the required way. If 
7h ,= v, fi,wi,... , fm, wm, then let w, be the first vertex of 7h such that fk+1 / 
efc+i. Then it is easy to see that a[v, Vi] + 7/Jwj,wm] + 7 c + 1 [wm, Wi] + a[vi,w] 
will be a soliton walk with the required properties, which makes the proof complete. • 

Note that based on Theorem 3.2, the transitions of a soliton automaton can be 
effectively computed from its underlying soliton graph. Indeed, for any two states 
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Mi, the mediator alternating network between M1 and M2 is given by T = 
Mi © M2 , where © denotes the symmetric difference of M1 and M 2 , while the 
shortest handle for each alternating cycle in T can be found in a straightforward 
way. Moreover, the proof of Theorem 3.2 is constructive, it yields a soliton walk 
between two given states. The above facts are important from simulation point of 
view. 

We will work out products of automata based on elementary components, thus 
first we characterize the automata constructed from these components. 
Definition 3.3 For an elementary component C of graph G, the component au-
tomaton determined by C is the soliton automaton based on the graph C*, where 

C* = C, if C is external 
C* = C + (v, w), v £ C, w & V(G), if C is internal 

Definition 3.3 might give the impression that an internal component automaton de-
pends on the choice of vertex v. -However, Theorem 3.5 will show that all component 
automata determined by the same internal elementary component are isomorphic, 
thus A(C*) is unambiguous. 
Definition 3.4 An A = (S, X, 6) automaton is called full, if 

(i) X = { * } 

(ii) <5(s, x) = S, for each s £ S 

Theorem 3.5 Every internal component automaton is a full automaton. Con-
versely, for any full automaton there exists an isomorphic internal component au-
tomaton. 

Proof. We start with proving the first statement. To this end let C be an internal 
elementary component, v £ V(C) and (v,w) an extra external edge attached to C 
in order to form C*. As any state of C* has a transition to itself by a trivial soliton 
walk, we have to prove the "full-property" only for any two different states M\ ,M2 

of C. If T is the mediator alternating network between Mx and M2, then clearly 
T consits of Mi(M2)-alternating cycles. Any cycle /3 of T contains a vertex u for 
which u / c v, thus there exists an internal positive Mi(M2)-alternating path a 
between u and v in the graph C. Therefore /3 is accessible from w in Mi (M 2 ) by 
(w,v) + a. As v and /3 were arbitrary, we obtain the first claim with the help of 
Theorem 3.2. 

To prove the second statement, we only have to show that there exists an internal 
elementary component with n states for every n E N. The case n = 1 is satisfied 
by an elementary component consisting of one internal mandatory edge. If n > 2, 
then consider an even cycle /3, two adjacent vertices v,w 6 V(/3) and construct a 
graph G such that it has a representation in the form G = ¡3 + cti + ... + an-2, 
where 

(i) ai, i £ [n — 2] is an odd path with endpoints v and w 
(ii) V(ai)nV(p) = {v,w},ie[n-2) 
(ii) V(ai) n V(aj) = i,j £ [n - 2] 
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Observe that for any edge e being incident with v, there is a unique state M of G 
such that e 6 M . Thus, it is easy to see, that each edge of G is allowed and G has 
n states, as expected. • 

For the description of the product automaton we need the following concepts. 

Def in i t ion 3.6 Let P be a canonical class of some external component. Then the 
set pp is the smallest set of elementary components such that: 

(i) if C' is an internal elementary component and (v,w ) is an edge for which 
v <E P and w e V(C'), then C' 6 pP. 

(ii) if CUC2 are internal elementary components such that Jrc1 A Ci & pp 
and there is an edge between C\ and C2, then C2 £ pp-

Note that (ii) may also hold if C\ and C2 are in the same family, as A is reflexive. 
Moreover, based on the structure of the families it can be easily showed, that if 
C £ pp and Tc is internal, then C' £ pp for any elementary component C' of Tc-

For the main result of the section we introduce some technical notations and prove 
a lemma. For these we need the following simple observation. 

C la im 3.7 Let P be a canonical class of some elementary component C. An 
internal vertex of P is accessible from external vertex v in state M iff all vertices 
of P are M-accessible from v . 

P r o o f . Let us assume that a is a positive external M-alternating path from vtow 
and let u be an arbitrary vertex of P different from w. We claim that there exists an 
internal M-alternating path /3 between u and some vertex of a such that /? is positive 
on the end of vertex u. If C is external, then according to [2, Proposition 2.3] there 
exists a positive external Mc-alternating path 7 with endpoint u. Observe that 
E{a) n E{7) 0, because otherwise a' = a + (w, u) + 7 would form an alternating 
crossing indicating that u / «J by S(M,a'). Therefore an appropriate subpath 
of 7 is suitable for /3. Now assume that C is internal. Then let w' denote the 
vertex incident with vj by the edge covered by M . Clearly, u ^c w', thus, based 
on Proposition 2.9, there exists a positive internal Mc-alternating path between u 
and w', from which the existence of f3 is straightforward again. 

Now starting from u let ua denote the first vertex along /3 for which ua E V(a). 
ai = a[w,ua] + 0[ua,u] cannot form a positive internal alternating path, as it 
would contradict u ~ w. Therefore a[v,ua] + /3[ua,u] gives a positive external 
M-alternating path, as desired. • 

By Claim 3.7 it is justified to say that a canonical class is accessible from an ex-
ternal vertex in a given state. 
For any internal elementary component C' of graph G: 

1ZG(C') = { P | P is a canonical class of some external elementary 
component and C' £ pp} 

For any external vertex v of a (possibly augmented) external elementary component 
C and state M of C in graph G: 
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Vc{M,v) = {P | P is a canonical class of C, which is M-accessible from 
v in the graph C }. 

and 
CG(M,V) = {C' | C' is an internal elementary component such that 

HG(C')nVc{M, 
Note that if G is understood then the subscript G is omitted from the above nota-
tions. Furthermore, if C is an augmented external elementary component, then it 
is indicated with a superscript 'h! , i.e. using Ch(M,v). 

Lemma'3.8 Let P' be a non-principal canonical class of some internal elementary 
component C' and v be an external vertex of an elementary component C. Then an 
edge e incident with a vertex of P' is viable from v in state M iff C' £ Ch(Mc,v). 

Proo f . During the proof the notation Ch will be used for the augmented ex-
ternal elementary component constructed from C. Furthermore, for any external 
alternating trail a starting from C, wa will denote the last vertex of a for which 
wa £ V(C). 

'Only if' Let a be a positive external M-alternating trail starting from v and 
terminating at vertex w, where w is an endpoint of e. Moreover, let Pa denote 
the canonical class containing wa. Then substituting the C-loops for hidden edges 
in a, we obtain that Pa £ 7> cj .(Mc,v)- Now using Corollary 2.21, it is easy to 
see that Cs £ ppa for each internal elementary component Cs reached by a[wa,w\. 
Hence Pa £ 7Z(C') n P C h ( M c , v ) , which gives the result. 

'If' Suppose that C' £ pp for some canonical class P € Vch(Mc,v). Then 
based on the definition of pp there exist families T i , . . . , T m containing members 
of pp such that T\ = Tc, Fm = and for each 1 < s < m - 1 J s ^s+i with 
some edges connecting elements of pp fl Ts and pp fl Ts+i • Let a be an external 
M-alternating trail terminating at w, where w is an endpoint of e. Note that such 
an a exists, because [1, Corollary 3.3] states that an edge is impervious in one state 
iff it is impervious in all states. The proof will apply an induction on m. 

Basis step. Applying Theorem 2.15 iteratively, we obtain that each two-way 
elementary component C\ of T\ has a unique ultimate foremother - in notation 
m ( C i ) - as a class of C. Then, making use of Proposition 2.16, it is clear that for 
any external M-alternating trail /3 reaching Ci, wp is contained in m(Ci) . 

It is clear, by Proposition 2.18, that p' = pp f1 T\ can be built up iteratively 
according to Definition 3.6 (z) — (ii). We will show by a structural induction 
based on the building procedure of p', that for any elementary component C\ £ p\ 
m(Ci) = P holds. First suppose that C\ is added to p' in a step of type (i). 
As P £ PCh(Mc, v), we obtain with the help of Proposition 2.13, that in this case 
w7 G P holds, which implies m(Ci) = P by the previous paragraph. Continuing the 
procedure with (ii) such that edge e connects C\ with an elementary component 
C2 already in p', let us consider an external alternating trail 7 terminating at 
e. According to the hypothesis for C2, w7 must belong to P . Thus applying the 
observation of the previous paragraph again, we obtain that m(Ci) = P, as desired. 
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Summarizing the foregoings we conclude that-wa E P. Now choosing a positive 
Mc-alternating path ai between v and wa and applying Proposition 2.13 for ai + 
a[wa ,w] we obtain a suitable alternating trail. 

Induction step. Let u denote the first Vertex of a which is also in C m — 
Moreover, let u' denote a vertex of Cm which is connected by an edge to a vertex w' 
of some elementary component of Tm-\C\ 'pp. According to the induction hypothesis 
there exists an appropriate M-alternating trail /3 running from v and terminating at 
(u',w'). Based on Corollary 2.21 the following facts hold: the internal endpoint of 
P is u' such that ¡3 is a negative path, a[u, w) avoids T\,... , J-m-i and /3 — (w' ,u') 
does not "touch" fm. Now consider a positive internal Mc alternating path 7 , 
which starts from u' and terminates in some vertex iii of V(a) Pi V(Cm) such that 
u' 7¿c u\. By Corollary 2.21, u ~ u', therefore if u[ denotes the vertex where 7 
hits a first time, then we can conclude that /3 + 7[u',u'1] + a[«i,u;] provides the 
desired alternating trail. • 

T h e o r e m 3.9 Let C i , . . . , C ; be the augmented external elementary compo-
nents, Ci+i,... ,Ck be the internal elementary components of G, and A(C*) = 
( S ( C i ) , (Xi x D . J i ) {i = 1 , . . . ,k), with Xi = {xi}, if i > I. Then: 

A(G) = A*{G), where 

= \\ki=i A(C*)\Y, (j>) is an ae0-product such that 

(a) Y = (Ext(G) x Ext(G)) 
(b) <fr = (</>!,... , cfik) is defined in the following way: 

For eachl <i <k, M i S 5 ( C i ) , . . . ,MkE S(Ck) and (yuy2) EY 
(b/1) if 1 <i < I and ( 3 / 1 , ^ 2 ) E Xi x Xi, then 

4 > i ( M i , . . . ,Mk, ( 1 / 1 , 2 / 2 ) ) = ( 2 / 1 , 2 / 2 ) 

(b/2) if I + 1 < i < k, (2/1,2/2) E Xj x Xj for some 1 < j < I, 
Ci E Ch(Mj,yi), and either yi =y2, 

• • or 2/1 ^ 2/2 With 5j(Mj,(y1,y2)) ± {Mj}, .then 
« / » ¿ ( M i , . . . - , M k , ( 2 / 1 , 2 / 2 ) ) = { x i , X i ) 

(b/3) Otherwise: 
< / > i ( M i , . . . , M f c , ( 1 / 1 , 2 / 2 ) ) = £ • • 

Proo f . Let <5 and <5* denote the transition function of A{G) and that of A* (G), 
respectively. Moreover, let (2 /1*2/2) E Y and M E S(G) be arbitrary, such that 
2/i E V(Cr), 2/2 E V(CS) for some r,s < I. Since the mapping 

^ ( M ) = ( M C 1 , : . . , M C J ' (1) 

is clearly a bijection between S(G) and S(Ci) x . . . S(Ck), we only have to prove 
that 

{tp(M') | M ' E S(M, (2/1,2/2))} = 5*{i>{M),(yi,y2)) :.'.(2) 
For each 1 < i < k let Zi denote (/>i(Mc1,••• , Mc f c, (2/1,2/2))- Consider first.the 
right side of (2). Then based on (1) and Definition 2.3, we have 
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First we provide a characterization of non-trivial self-transitions by alternating 
trails. For this result we need the following definition. 
Definition 4.2 Let M be a state of G and v 6 Ext(G). An M- alternating double 
v-racket a is a pair of M-alternating v-rackets (a1, a2) with branching handles, 
i.e. with neither of aj1 and a2 being a prefix of the other. The maximal common 
external subpath - denoted by a/, - of a^ and of a\ is called the handle of a, 
whereas the last vertex of ah is referred to be as the branching vertex of a. 

Note that the handle of a double «-racket is a positive external alternating path. 
T h e o r e m 4.3 There exists a non-trivial self-transition of external vertex v with 
respect to state M of G, iff G contains either an M-alternating v-loop or an M-
alternating double v-racket. 

Proo f . During the proof if we refer to an alternating cycle a as a part of a 
decomposed form of a soliton walk /3, then we mean that a as a subwalk of /3 is 
traversed in an appropriate way. 

For an M-alternating u-loop a it is easy to check that a^ + ac + ac + a^1 is a 
non-trivial self-transition of v. Therefore, we can suppose for the rest of the proof 
that G does not contain an M-alternating v-loop . 

'Only if' Let a = v,ei,vi,... ,en,vn be a non-trivial self-transition of v with 
respeict to M , and let i be the smallest index for which there exists an index j > i 
such that vj = Vi, na(j) = 1 and each edge of a[v,vi] is traversed exactly once 
by a[v\vj\. In other words, Vi is the closest vertex to v where a returns to itself. 
Now, based on Proposition 2.6, there exists an M-alternating trail /3 such that /3 
terminates at ej and E(j3) C E(a[v,vj]). By assumption, /3 is an alternating v-
racket with /3/, = a[v, «¿]. Observe that a[u, Vj] + a[v, « ¿ j - 1 is a soliton walk from v 
to itself. Therefore, it is obvious that the edges traversed by a[vi,vj] an odd number 
of times will constitute an M-alternating network T consisting of alternating cycles. 
By the above facts we obtain that e.j+i = el. The edge ej must be traversed by 
a[vj,vn}, consequently there is a first edge em with m> j which is not on a[v,v{]. 
Then, let eT denote the edge for which er = e m _ i with r < i. It is easy to see, 
that because of the choice of Vi, any vertex V[ with I < i is incident with exactly 
two edges of a[v,vj\. Therefore na(m) = 1 and we can select the first edge ek of 
a[vm-i,vn] for which na(k) is even. Again, by the choice of v¿, we conclude that 
a[v,vr-.i\ and a[vm-i,vk] are edge-disjoint. Furthermore, observe that e r ^ M , 
therefore a' = i>r_i] + a[um_i,-ufc_i] is a partial soliton walk with respect to 
M. As we have seen, there exists an M-alternating cycle 7 ' of T containing ek. 
Making use of the former observations for T and for a ' we obtain that 7 ' and a ' 
are edge-disjoint. Now applying Proposition 2.6 for a' , an M-alternating «-racket 
7 can be constructed such that 6 = (/3,7) is a double u-racket with 7C = 7 ' and 
dh = a[u,v r_i] . 

'If' Let a = ( a 1 , « 2 ) be a double «-racket, and let w denote the branching 
vertex of a. Moreover, let us introduce the notation a\ = alh — au and alw = 
a® -I- a'c.+ ( a * ) - 1 for i = 1,2. If a 2 - an is edge-disjoint from a1 we obtain that 
ah. + <*w + oi^ + a^ + a^ + a^"1 is a soliton walk with the desired properties. 
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Otherwise let u be the first vertex of a^ which is also on a1 and extend a2[w,u] 
to an M-alternating path au by continuing its way appropriately on a\ until it 
reaches a2c. Note that au = a2[u>,u] holds if u 6 V(a2). Also note that the 
construction described above is feasible, as G has no M-alternating v-loops. Then 
ah + ah + a u + a l + a^1 + a^1 will result in the requested soliton walk. • 
We now turn to the characterization of v-loops. 
Propos i t i on 4.4 Let v be an external vertex of graph G and M £ S(G). Then G 
contains an M-alternating v-loop iff there exists an internal edge (u,w) such that 
both u and w are accessible from v in M. 

P r o o f . It is sufficient to prove the 'If' part. Let a and ¡3 be positive external 
M-alternating paths from v to internal vertices u and w, respectively, such that 
(u, w) e E(G) and | E(a) U E(/3) | is minimal. Then let wp denote the last vertex 
of ¡3 with wp = ua for some ua 6 V(a). We claim that a[v,ua] is positive. Indeed, 
otherwise both endpoints of the last edge of a[v,ua] would be accessible from v 
in M by the appropriate subpaths of a and /3, which would be a contradiction in 
the choice of u and w. Therefore an M-alternating v-loop can be formed from the 
edges of the set E(a) U E{P[wp,w]) U { (u, io)} , as desired. • 

To state the following important consequence of Proposition 4.4, let us call two 
states Mi , M2 compatible if Mi and M2 cover the same external edges. 
Corol lary 4.5 Let Mi and M2 be compatible states of G and v 6 Ext{G). Then 
G contains an Mi-alternating v-loop iff G contains an M2-alternating v-loop. 

Proo f . The role of Mi and M2 is symmetric, so we need to prove one direction only. 
To this end let (vi ,v2) be an edge of the cycle of an Mi-alternating v-loop a and let 
ai and a2 denote the appropriate positive external Mi-alternating subpaths of a 
running to vertices vi and v2, respectively. According to Theorem 2.1, there exists 
a mediator alternating network T between Mi and M2 containing only alternating 
cycles. Clearly, we can suppose without loss of generality that T consists of one 
Mi-alternating cycle ¡3. We claim that for « ¿ , ¿ = 1,2, either ai is accessible from v 
in M2 or an M2-alternating v-loop can be formed from the edges of E{ai) U E{f3). 
If the latter case holds for at least one of a 1 and a2, then we are ready-. Otherwise 
the Corollary can be obtained by Proposition 4.4. 

Our claim is obviously enough to be proved for QI with the assumption that 
E(ai) fl E{P) 0. Let w and w' denote the first and the last vertex of ai which 
are also in V(f3). If w and w' are in odd distance on ¡3, then the requested M2-
alternating path is obtained by combining a[v, tu], the positive M2-alternating sub-
path of f3 between w and w', and a[w',vi]. Otherwise it is easy to see that there 
must exist a subpath a1 having its endpoints x and y, but no other vertices, in 
V(/3) such that both x and y are in an odd distance from w on 0 . This allows 
an M2-alternating v-loop to be constructed from a[v,u>], a' and an appropriate 
M2-alternating subpath of /3. Hence the proof is complete. • 

For a further analysis of v-loops we introduce the graph Cff, where C is an exter-
nal elementary component of G containing external vertex v and M £ S{G). The 
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graph C^ is the subgraph of C spanned by the edges that are Mc-viable from v in 
the subgraph C. Moreover, let C^f denote the set C{Mc,v) U {C™}. Finally, G™ 
will denote the graph which consists of LiCff plus the edges connecting different 
elements of C^f. 

Note that generally G^f is not equal to the graph G{V{UC^)\. Moreover, we 
might have the impression that G^f contains all the edges M-viable from v. How-
ever, by Lemma 3.8 and by Proposition 2.13, it is easy to see that the above fact 
is true iff C(Mc,v) = Ch(Mc,v) and any edge of C Mc-viable from v in the aug-
mentation of C is also Mo-viable from v in C. 

Proposition 4.6 G^f is a soliton subgraph with respect to M. Furthermore, the 
set of elementary components of G^f is Cff . 

Proof. The first sentence is evidently tru if C is a trivial component. Further-
more, if C is non-trivial, then any maximal M-alternating trail starting from v is 
entirely contained in C^f, which implies that Gff is indeed a soliton subgraph with 
respect to M . To verify the second sentence, observe that if an edge of a soliton 
subgraph G' of G is forbidden in G, then it is also forbidden in G'. For this reason, 
all we have to prove is that C^f is elementary. To this end we will make use of the 
following two claims. 
Claim A If an edge of C^ is part of an even M-alternating cycle a of G, then a 
is enterily contained in C^1. 

Proof. Straightforward. 
Claim B Any edge of C^f traversed by an M-alternating crossing in G is in the 
unique external elementary component of Cff. 

Proof. It is clear that Cff has a unique external elementary component. Let 
a = vo, e i , . . . ,en,vnbe & fixed M-alternating crossing and ej be an arbitrary edge 
of a which is also in . Furthermore let /3 be an external M-alternating trail 
starting from v and terminating at ê  such that k =| E(P)\E(a) | is minimal. We 
will prove the claim by induction on k. The basis step k = 0 is trivial. For the in-
duction step, consider the last edge ep of /3 not on a and let w denote the endpoint 
of ep contained in V(a). We can assume without loss of generality that w = Vj 
with j < i. Then clearly ej+1 6 M. If /3[v,w] does not overlap with a[vi,vn], then 
the crossing fi[v,w] + a[vj,vn] does the job. Otherwise, let v^ be the first vertex 
of a[vi,vn] incident with an edge e of E(P)\E(a) and let u denote the vertex of 0 
with u = Vk- Observe that, starting from v, ¡3 must go through e before reaching 
u. Indeed, if not, then - since ek+i G M - fi[v,u] + alvk^i-i]"1 would contradict 
the choice of /3. Therefore a' — P[u,w] + a[vj,vk] will form an even M-alternating 
cycle, which shows by Claim A that ei and ek+i are in the same elementary com-
ponent of C^f. Finally, by applying the induction hypothesis for ek+i we obtain 
Claim B. • 

Continuing the proof of Proposition 4.6, let us suppose by way of contradiction that 
C f has an internal elementary component C". Then, there must exist an allowed 
edge e of C having exactly one endpoint in C". Let / denote the edge of C' incident 



Elementary decomposition of soli ton automata 649 

with e such that / £ M. Clearly e $ M, consequently, by Corollary 2.2, a complete 
M-alternating trail a must go through e. Applying Claim A and Claim B for / 
and a , we obtain a contradiction, which makes the proof complete. • 

Corollary 4.7 Each edge of G^ is viable from v in MQM . 

Proof. Based on Proposition 4.6, we have CQM{MQM ,v) = CQ{MC,V), i.e. 
CGM ( M c M , v) contains all elementary components of G^f which are different from 
O f f . Then the claim is obtained with the help of Lemma 3.8. • 

Proposition 4.8 For any external vertex v ofG, there exists an alternating v-loop 
with respect to state M iff G™ is non-bipartite. 

Proof. 

'Only if' Let C be the elementary component containig v, and a be an M-
alternating u-loop. If each edge of a is also contained in O f f , then we are ready. 
Otherwise, starting from v, let VJ be the first vertex of a such that an appropriate 
subpath a' of a forms a C-loop with one of its endpoints being w. Then, it is easy 
to see with the help of Corollary 2.21, that each edge of a[v,w\ is contained in 
G^f. Therefore a' is also a C-loop in G^f, consequently, because of Claim 3.7, both 
endpoints of a' are MQM -accessible from V. Finally, applying Proposition 4.4 for 
the endpoints of the last edge of a[v, w], we obtain that G^f has a u-loop, indicating 
that it is non-bipartite. 

'If' Let us suppose by way of contradiction that G^f does not contain M -
alternating u-loops. Then let G' denote a maximal bipartite soliton subgraph of 
Gwith respect to MQM such that v 6 V(G') and each edge of G' is viable from 
v in M c - Note that such a subgraph G' exists under our assumption, because 
any maximal external alternating trail starting from v as a v-racket or a crossing 
from v has the required properties. Based on Corollary 4.7, there exists a maximal 
external Mqm-alternating trail (3 from v to some vertex v' traversing an edge not in 
G'. Let e denote the first edge of /3 not in E(G'). Moreover, let w be the endpoint 
of e belonging to V(G') with A being the bipartition class of G' containing w. 
Observe that E(P[w,v']) fl E(G') ^ 0 and starting from w, the first overlap will 
occur at a vertex u in A. Indeed, checking any other possible cases, because of 
G' + ¡3[w, v'), we would obtain a contradiction with the choice of G'. Furthermore, 
every edge is viable from v in Mc, consequently there exists an MQI-alternating 
trail 7 from v to u. Observe that 7 is also positive, as the parity of the length of 7 
and that of f3[v, w] must be equal because of the bipartition of G'. Finally, applying 
Proposition 4.4 for any edge of /3[w, u], we obtain a contradiction. Hence the proof 
is complete. • 

Considering double v-rackets too, we can describe non-trivial self-transitions via 
the elementary structure of soliton automata. We also obtain that, similarly to 
Theorem 3.9, the problem can be reduced to elementary automata. For this final 
result we introduce the following concept. 

Definition 4.9 Let { C i , . . . , C „ } be the set of the elementary components of G 
with Ci being external. G is a component-chain graph if it can be decomposed in 
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the chain-form G = C\ + (w\, v2) + C2 + (w2,v3) + ... + (wn-i, vn) + C„ such that 
for each 2 < i < n — 1, (u;i_i,?;i), 6 E(G) with the vertices « j and uij 
belonging to different canonical classes of Cj. 

We shall be interested in situations when G'¡f is a component-chain graph for 
some graph G with external vertex v and M e S(G). In that case we augment 
Definition 4.9 by taking vi = v. We will call a (external or internal) positive Mc{-
alternating path Mv-transit if it connects Vi and W{. Component Ci is said to 
be Mv-transit if i ^ n and either Ci has two different M"-transit paths or there 
exists an even Mc{-alternating cycle disjoint from the unique M"-transit path of 
Ci. Finally, Ci is called an Mv-terminal if i = n and C[ has an Mc{-alternating 
double w-racket, where either C\ = Cj with w = v or C[ = Ci + (wj ,«t_i ) with 
w = Vi-i depending on whether n = 1 or not. 
Theorem 4.10 Let A(G) be a soliton automaton, M be a state of A(G) and C be 
an elementary component of G containing external vertex v. Then, there exists a 
non-trivial self-transition ofv with respect to M, iff one of the following conditions 
holds. 

(i) G^f is not a bipartite component-chain graph. 
(ii) Gy4 is a bipartite component-chain graph having an Mv-transit or an Mv-

terminal elementary component. 
Proof. 
'Only if' Based on Theorem 4.3 and Proposition 4.6, it is enough to prove 

that if G contains an M-alternating double «-racket a = (a1 , a 2 ) such that G ^ is a 
bipartite component-chain graph, then (ii) holds. To this end, first we claim that 
in this case a is entirely contained in G^f. Indeed, if, on the contrary, e denotes 
the first edge of a 1 (or a 2 ) which is not in E(G^f), then, based on Corollary 2.21 
and the definition of G^f e must connect two elementary components belonging to 
{ C } U C(Mc,v). Then, clearly, one of the endpoints of e, denoted by w, will be 
contained in V(C). However, it is a contradiction in the choice of e, because an 
appropriate subpath of a[v,w\ will be a G-loop between w\ and w, which implies 
that w is also in the unique canonical class of Vc(Mc,v), consequently e should 
be contained in G ^ . 

Therefore let us consider the chain form G^ — C\ + (tui, u2) +... + (uin_i, un) + 
G„ with Gi = C^ and v\ = v. Let Ci and Cj, 1 < i,j < n, denote the elementary 
components containing a j and a\, respectively. Furthermore, let a f , with k = 1,2 
and I = i,j, denote the subtrail of ak running entirely in Ci, whereas the notation 
(Ai,Bi) will be used for the bipartition of Ci with Wi 6 Bi. We may suppose 
without loss of generality that i < j. Now consider the elementary component Ck 

containing the branching vertex of a. If k < i, then it is easy to see that Ck is 
M"-transit. Therefore we may suppose for the rest of the proof that i = k. Then 
we distinguish two cases. 

Case (a) i < j. Then af is an M"-transit path. Therefore, we are ready, if a 2 

is disjoint from a\. Otherwise, let u' denote the first vertex of a\ incident with an 
edge of E(a\)\E(af). Then u' ^ im, because it is easy to check that af is not a 
subpath of aj. Thus continuing a\ from u', there will be a first vertex u" of the 
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appropriate subtrail of a ] which is also in V(a j ) . Now it can be easily observed 
that u' € B{ and u" 6 Ai, therefore the edges of E{al) U E(a\[u',u"} form two 
M^-transit paths, as desired. 

Case (b) i = j. If i = n, then Ci is clearly M"-terminal, thus we are ready. 
For other alternatives we will prove that C» is M"-transit. To this end let Pi be an 
Mv-transit path of Ci. Furthermore, starting from Vi let Ui denote the last vertex of 
Pi which is also in V(a])LlV(a?). The role of a\ and af is symmetric, thus we can 
assume that m = u for some vertex u oi a]. Obviously, a' = a\[vi,u] + Pi[ui, wi\ 
is an AP-transit path, because Ui must belong to Bi. Now following the same 
argument for a1 and a? which was applied in the proof of Case (a), we obtain the 
claim. 

'IF' By Theorem 4.3 and Proposition 4.8, it is sufficient to prove that a bipartite 
G c o n t a i n s an MQM-alternating double v-racket, if (i) or (n) holds. In this 
case observe that each family of G ^ is singleton. Indeed, if family..T7 is not a 
singleton, then there must exist an Mi-alternating C"-loop p connecting vertices 
vi,v2 S V(C'), where MX G S(GF) and C' = r{T). It was proved in [1] that any 
two vertices of an elementary graph is contained in a common complete alternating 
trail. Consequently, there exists for some M' 6 S(C') a complete M'-alternating 
trail 7 traversing both and v2. The length of ^[v\,v2] is clearly even, thus 
P + 7[t>i , v2} indicates that G^f is non-bipartite, which contradicts our assumption. 

Therefore, if (i) holds, then there must be elementary components C i , C 2 , C 3 

of G^f such that ^ Tci for i = 2,3 by two different edges e2 ^ e3. Then, 
as we have seen in the proof of Theorem 3.5, for i = 2,3, the endpoint of ê  in 
Ci is connected to some vertex of any even Mc,-alternating cycle by an internal 
positive Mci-alternating path. Based on Corollary 4.8, both e2 and are viable by 
alternating paths entering C2 and C3 through e2 and e3, respectively. Summerizing 
the above facts we can easily obtain the claim, if (i) holds. 

Finally, making use of Corollary 4.7, we can build an M-alternating double 
v-racket by an obvious way in a graph with the conditions of (ii). Therefore the 
proof is complete. • 
Finally, observe that C^f is trivially determined for constant automata, thus Defi-
nition 4.9 has a simplified form. Therefore the use of Theorem 4.10 is much easier 
in this special case. 

5 Conclusion 

We have worked out a decomposition of soliton automata into elementary automata. 
As the internal component automata are full and the appropriate ao"P r o^u ct is 
effectively computable, future research will concentrate on elementary automata 
only. Moreover, with the help of our results, the class of constant soliton automata 
is fully characterized. Considering practical issues, non-trivial self-transitions have 
an important role. We have also reduced this problem to elementary components, 
namely we have proved that to find self-transitions we only need to search for a 
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double u-racket or a pair of disjoint alternating paths in a bipartite elementary 
graph. 
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