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Regulated Pushdown Automata 

Alexander Meduna* Dusan Kolar * 

Abstract 
The present paper suggests a new investigation area of the formal language 

theory—regulated automata. Specifically, it investigates pushdown automata 
that regulate the use of their rules by control languages. It proves that this ' 
regulation has no effect on the power of pushdown automata if the control 
languages are regular. However, the pushdown automata regulated by linear 
control languages characterize the family of recursively enumerable languages. 
All these results axe established in terms of (A) acceptance by final state, (B) 
acceptance by empty pushdown, and (C) acceptance by final state and empty 
pushdown. In its conclusion, this paper formulates several open problems. 

K e y W o r d s : pushdown automata; regulated accepting; control languages 

1 Introduction 
Over the past three or four decades, grammars that regulate the use of their rules 
by various control mechanisms have played an important role in the language the-
ory. Indeed, literally hundreds studies were written about these grammars (see [1], 
Chapter 5 in the second volume of [4], and Chapter V in [5] for an overview of 
these studies). Besides grammars, however, the language theory uses automata as 
fundamental language models, and this very elementary fact gives rise to the idea 
of regulated automata, which are introduced and discussed in the present paper. 

More specifically, this paper introduces pushdown automata that regulate the 
use of their rules by control languages. First, it demonstrates that this regulation 
has no effect on the power of pushdown automata if the control languages are reg-
ular. Based on this result, it points out that pushdown automata regulated by 
analogy with the control mechanisms used in most common regulated grammars, 
such as matrix grammars, are of little interest because their resulting power coin-
cides with the power of ordinary pushdown automata. Then, however, the present 
paper proves that the pushdown automata increase their power remarkably if they 
are regulated by linear languages; indeed, they characterize the family of recursively 
enumerable languages. 
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All results given in this paper are established in terms of (A) acceptance by 
final state, (B) acceptance by empty pushdown, and (C) acceptance by final state 
and empty pushdown. In its conclusion, this paper discusses some open problem 
areas concerning regulated automata. 

2 Preliminaries 

We assume that the reader is familiar with the language theory (see [3]). Set 
N = { 1 , 2 , . . . } and I = { 0 , 1 , 2 , . . . } . 

Let V be an alphabet. V* represents the free monoid generated by V under the 
operation of concatenation. The unit of V* is denoted by e. Set V+ = V* — {e } ; 
algebraically, V+ is thus the free semigroup generated by V under the operation of 
concatenation. 

For w £ V*, |w| and reversal(w) denote the length of w and the rever-
sal of w, respectively. Set prefix(w) = {x \ x is a prefix of w}, suffix(w) = 
{x | x is a suffix of u>}, and alph(w) = {a \ a £ V, and a appears in w). 

For w £ V+ and i £ { 1 , . . . , |u;|}, sym(w,i) denotes the ith symbol of w; for 
instance, sym(abcd, 3) = c. 

A linear grammar is a quadruple, G — (N,T,P,S), where N and T are alpha-
bets such that N fl T = 0, S £ N, and P is a finite set of productions of the form 
A x , where A £ N and x £T*(N U {e})T*. If A ->• x £ P and u,v £ T*, then 
uAv =>• uxv [A —> x] or, simply, uAv uxv. In the standard manner, extend => 
to where n > 0; then, based on =>n, define =>+ and =S>*. The language of G, 
L(G), is defined as L(G) = {w £ T* \ S =>* wj. A language, L, is linear if and 
only if L = L(G), where G is a linear grammar. 

Let G = (N, T, P, S) be a linear grammar. G represents a regular grammar if 
for every A —> x £ P, x £ T(N U {e}) . A language, L, is regular if and only if 
L — L(G), where G is a regular grammar. 

A queue grammar (see [2]) is a sixtuple, Q — (V,T,W,F,S,P), where V and 
W are alphabets satisfying V. n W = 0, T C V, F C W, S £ {V -T)(W - F), 
and P C (V x (W — F)) x (V* x W) is a finite relation such that for every a £ V, 
there exists an element (a, b, x, c) £ P. If u,v £ V*W such that u = arb, v = rzc, 
a £ V,r^z £ V*, b, c £ W and (a,b,z ,c) £ P, then u => v [(a, b, z,c)] in G or, 
simply, u => v. In the standard manner, extend to =>•", where n > 0. Based 
on =>n, define =3>+ and =>•*. The language of Q, L(Q), is defined as L(Q) = {w £ 
T* | S =>* wf where / € F}. 

Next, this paper slightly modifies the notion of a queue grammar. 
A left-extended queue grammar is a sixtuple, Q = (V, T, W, F, S, P), where 

V, T, W, F, S, P have the same meaning as in a queue grammar; in addition, as-
sume that # ^ V U W. If u,v £ V*{#}V*W so u = w#arb, v = wa#rzc, 
a £ V, r,z,w £ V*, b, c £ W, and (a,b,z,c) £ P, then u =>• v [(a, b, z,c)} 
in G or, simply, u => v. In the standard manner, extend =>• to where 
n > 0: Based on define and =>*. The language of Q,L(Q), is defined as 
L{Q) = {v £ T* I # 5 =»* w#vf for some w £ V* and / £ F}. 
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Let REG, LIN, and RE denote the families of regular, linear, and recursively 
enumerable languages, respectively. 

3 Definitions 
Consider a pushdown automaton, M, and a control language, E, over M's rulés. 
Informally, with E, M accepts a word, x, if and only if E contains á control word 
according to which M makes a sequence of moves so it reaches a final configuration 
after reading x. 

Formally, a pushdown automaton is a 7-tuple, M = (Q, E, Cl, R, s, S, F), where 
Q is a. finite set of states, E is an input alphabet, Q is a pushdown alphabet, R is a 
finite set of rules of the form Apa —> wq, where A £ Q, p, q £ Q, a £ E U {e } , and 
w £ fi*, s £ Q is the start state, S £ fi is the start symbol, F C Q is a set of final 
states. In addition, this paper requires that Q, E, fi are pairwise disjoint. 

Let be an alphabet of rule labels such that card(\I/) = card(R), and ip be a 
bijection from R to \I>. For simplicity, to express that ip maps a rule, Apa —> wq £ R, 
to p, where p £ this paper writes p.Apa wq £ i?; in other words, p.Apa--* wq 
means ip(Apa —• wq) = p. A configuration of M, x, is any word from ft*<3E*. For 
every x £ ü*, y £ E*, and p.Apa wq £ R, M makes a move from configuration 
xApay to configuration xwqy according to p, written as xApay xwqy \p\. Let 
X be any configuration of M. M makes zero moves from x t° X according to e, 
symbolically written as x X [£]- Let there exist a sequence of configurations 
Xo,Xi>---iXn for some n > 1 such that x¿- i =>• Xi [p¿], where p¿ £ <3>, for i = 
1 , . . . , n, then M makes n moves from xo to x-n according to p\... pn, symbolically 
written as xo =>n Xn [Pi • • • Pn]• • , • 

Let E be a control language over that is, 5 C Í ' , With E, M defines.the 
following three types of accepted languages: 

L(M, E, 1)—the language accepted by final state ' 

L(M, E, 2)—the language accepted by empty pushdown 

L(M, E,3)—the language accepted by final state and empty pushdown 

defined as follows. Let % £ fi*QE*. If x £ Ü*F, x £ Q, X 6 F, then-x is 
a 1-final configuration, 2-final configuration, 3-final configuration, respectively. 
For i = 1,2,3, define L{M,E,i) as L{M,E,i) = {w | w £ E*, and Ssw =4>* 
X [c] in M for an ¿—final configuration, x, and a £ E}. 

For any family of languages, X, set RPD(X,i) = {L \ L = 
L(M,E,i), where M is a pushdown automaton and E £ X}, where ¿ = 1, 2,3. 
Specifically, RPD(REG,i) and RPD(LIN,i) axe central to this paper. 

4 Results 
This section demonstrates that CF = RPD(REG, 1) = RPD{REG, 2) = 
RPD{REG, 3) and RE = RPD{LIN, 1) = RPD(LIN, 2) = RPD{LIN, 3). 
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Some of the following proofs involve several grammars and automata. To 
avoid any confusion, these proofs sometimes specify a regular grammar, G, as 
G = (V[G\, P[G], S[G],T[G]) because this specification clearly expresses that V[G], 
P[G], S[G], and T[G] represent G's components. Other grammars and automata 
are specified analogously whenever any confusion may exist. 

Regular Control Languages 

Next, this section proves that if the control languages are regular, then the reg-
ulation of pushdown automata has no effect on their power. The proof of the 
following lemma presents a transformation that converts any regular grammar, G, 
and any pushdown automaton, K , to an ordinary pushdown automaton, M , such 
that L(M) = L(K,L(G),l). 

Lemma 1 
For every regular grammar, G, and every pushdown automaton, K, there exists a 
pushdown automaton, M , such that L(M) = L(K,L(G), 1). 

Proof: Let G = (iV[G], T[G], P[G], S[G]) be any regular grammar, and let K = 
(Q[K},T,[K],Q[K],R[K],s[K],S[K],F[K}) be any pushdown automaton. Next, 
we construct a pushdown automaton, M, that simultaneously simulates G and K 
so that L(M) = L{K,L{G), 1). 

Let / be a new symbol. Define the pushdown automaton M = 
[Q[M], £[M], fl[M], R[M], s[M], S[M], F[M]) as Q[M] = {(qB) | q £ Q[K],B £ 
7V[G] U { / } } , £ [M] = S [ K ] , il[M} = fl[K], s[M] = (s[iT]5[G]), S[M] = 
F[M] = {(qf) | q e F\K]}, and R[M] = {C(qA)b -> x(pB) \ a.Cqb xp £ 
R[K], A aB £ P[G]} U {C{qA)b -)• x{pf) \ a.Cqb xp £ R[K\,A^ a £ P[G]} . 

Observe that a move in M according to C(qA)b x(pB) £ R[M] simulates 
a move in K according a.Cqb —> xp € R[K], where a is generated in G by using 
A —» aB £ P[G\. Based on this observation, it is rather easy to see that M accepts 
an input word, w, if and only if K reads w and enters a final state after using a 
complete word of L(G)\ therefore, L(M) = L(K,L(G), 1). A rigorous proof that 
L(M) - L(K, L(G), 1) is left to the reader. • 

Theorem 2 
For i £ {1 ,2 ,3 } , CF = RPD(REG,i). 

Proof: To prove CF = RPD(REG, 1), notice that RPD(REG, 1) C CF follows 
from Lemma 1. Clearly, CF C RPD(REG, 1), so RPD(REG, 1) = CF. 

By analogy with the demonstration of RPD(REG, 1) = CF, prove that CF = 
RPD(REG, 2) and CF = RPD(REG, 3). • 

Let us point out that most fundamental regulated grammars use control mech-
anisms that can be expressed in terms of regular control languages (c.f. Theorem 
V.6.1 on page 175 in [5]). However, pushdown automata introduced by analogy 
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with these grammars are of little or no interest because they are as powerful as 
ordinary pushdown automata (see Theorem 2 above). 

Linear Control Languages 
The rest of this section demonstrates that the pushdown automata regulated by 
linear control languages are more powerful than ordinary pushdown automata. In 
fact, it proves that RE = RPD(LIN, 1) = RPD{LIN, 2) = RPD(LIN, 3). 

Lemma 3 
For every left-extended queue grammar, K, there exists a left-extended queue gram-
mar Q = (V,T,W,F,s,P) satisfying L(K) = L(Q), ! is a distinguished member of 
(W -F),V = UUZUT such that U, Z, T are pairwise disjoint, and Q derives 
every z £ L(Q) in this way 

# 5 =>+ x # M 2 . . . W 
xb1#b2 • • -bnyiP2 

=> xbib2#bz • • -bnyiy2p2, 

=> xbxb2 ... i>„-l#6„2/l2/2 • • -Vn-lPn 
=> xbxb2 . . . 6„-l&n#2/lJ/2 • • -2/nPn+l 

where n £ N, x £ U*, hi £ Z for i = l , . . . , n , yi £ T* for i = 1 ,...,n, z = 
2/i2/2 ••• 2/n, Pi £ W — { ! } for i = 1,..., n — 1, pn £ F, and in this derivation 
x#b\b2 ... bn\ is the only word containing !. 

Proof: Let K be any left-extended queue grammar. Convert K to a left-extended 
queue grammar, H = (V[H],T{H},W[H],F[H},S[H],P{H]), such that L{K) = 
L(H) and H generates every x £ L(H) by making two or more derivation steps 
(this conversion is trivial and left to the reader). 

Define the bijection a from W to W', where W' = {q1 | q £ W}, as a(q) = {?'} 
for every q £ W. Analogously, define the bijection /3 from W to W",- where 
W" = {q" | q £ W), as /3(q) = {q"} for every q £W. Without any loss of gener-
ality, assume that {1 ,2 } n {V U W) = 0. Set 5 = {(a,q,ulv,p) \ (a,q,uv,p). £ 
P[H] for some a £ V,q £ W — F,v £ T*,u £ V*, and p £ W} and 
T = {(a,q,z2w,p) \{a,q,zw,p) £ P[H] for some a £ V,q £ W - F,w £ 
T*,z £ V*, and p £ W}. Define the relation x from V[H] to ET so for every 
a £ V, x(a) = {(a,q,ylx,p){a,q,y2x,p) | (a,q,ylx,p) £ E,(a,q,y2x,p) £ T,q £ 
W - F,x £ T*,y £ V*,p £ W}. Define the bijection <5 from V[H) to V', where 
V' = {a' | a £ V}, as 5(a) = {a ' } . In the standard manner, extend <5 so it is 
defined from (V[Jf]j* to ( V ) * . Finally, define the bijection <f> from V[H] to V" , 
where V" = {a" \ a £ V}, as (f>(a) — { a " } . In the standard manner, extend (f> so it 
is defined from (F[if])* to (V" )\ 

Define the left-extended queue grammar 

Q = (V[Q],T[Ql W[Q],F[Q],S[Q},P[Q]) 
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so that V[Q] = V[H] U 6(V[H}) U <t>{V[H]) U E U T , T[Q] = T[H], W[Q] = 
W[H] Ua(W[H]) U(3(W[H)) U { ! } , F[Q] = 0(F[H]), S[Q] = S(S[H]), and P[V] is 
constructed in this way 

1. if ( a , q , x , p ) G P[H] where a £ V, q £ W - F, x £ V*, and p £ W, then add 
(6{a),q,6{x),p) and (S(a),a(q),S(x),a(p)) to P[Qj; 

2. if ( a , q , x A y , p ) G P[H], where a G V, q G W - F, x, y G V*, A G V, and 
p £ W, then add {6(a),q,6{x)X(A)4>(y),a(p)) to P[Q]; 

3. if ( a , q , y x , p ) £ P[H], where a £ V, q G W - F, y £ V*, x £ T*, and p £ W, 
then add ((a,q,ylx,p),a(q),^>(y),\) and ((a,q , y2x,p),\,x,0(p)) to P[Q}-

4. if (a,q,y,p) £ P[H], where a £ V, q £ W - F, y £ T*, and p £ W, then add 
Ma),0(q),y,l3(p)) to P[Q). 

Set U = S(V[H)) U E and Z - <j>(V[H]) U T. Notice that Q satisfies properties 
2 and 3 of Lemma 3. To demonstrate that the other two properties hold as well, 
observe that H generates every z £ L(H) in this way 

# 5 [ H ] x # M 2 • • -biPi " 
xbi #b2... bibi+1... bnyiP2 

=> xbi b2 #b3 ... bi bi+1... bnyi y2p3 

xbib2... bi-iftbibi+i... bnyiy2 ... yi-iPi 
=> xbib2... 1 ... bnyiy2 • • • yi-mPi+i 

=>• xbib2...bn-i#bnyiy2...yn-iPn 
xb1b2...bn-1bn#yiy2---ynPn+i 

where n £ M, x £ V+, bi £ V for i = l , . . . , n , yi £ T* for i = l , . . . , n , 
= yiy2---Vn, Pi € W for i = l , G , n , pn+1 £ F. Q simulates this generation 

of z as follows 

# 5 [ Q ] i ( s ) # x ( & i M & 2 . . . & i ) « ( P i ) 
6(x)(bi,pi,bi+i...bnlyi,p2)#(bi,pi,bi+1.\.bn2yi>p2) 
4>(b2 ...bibi+i ...bny. 

=>• S(x)x(bi)#<t>{b2...bn)yip2 

5{x)x{bi)4>(b2)#<l>{b3 ... bn)yiy2P3 

=> 6(x)x{bi)<l>(b2 ... bn-i)#4>{bn)yiy2 • • • yn-iPn 
=> 6{x)x(bi)<l>(b2...bn)#yiy2...ynpn+i 

Q makes the first |z| - 1 steps of #S[<3] =>+ ¿ (aO#x(M0(&2 • • • bi )a(pi ) according 
to productions introduced in 1; in addition, during this derivation, Q makes one 
step by using a production introduced in 2. By using productions introduced in 3, 
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Q makes the two steps 

S(x)(b1,pi,bi+1.. •bnlyi,p2)#(bi,pi,bi+i... bn2yup2)(f>(b2 •. • bibi+1 . ,.bn)\ => 
S(x)xQ>i)#4>(b2.--bn)yip2 

with 
x(h) = (bi,p0,bi+1 ...bnlyi,pi)(bi,p0,bi+i .,.bn2yx,p2). 

Q makes the rest of the derivation by using productions introduced in 4. 
Based on the previous observation, it easy to see that Q satisfies all the four 

properties stated in Lemma 3, whose rigorous proof is left to the reader. • 

Lemma 4 
Let Q be a left-extended queue grammar that satisfies the properties of Lemma 3. 
Then, there exist a linear grammar, G, and a pushdown automaton, M , such that 
L(Q) = L(M,L(G), 3). 

Proof: Let Q = (V[Q],T[Q]} W[Q], F[Q], s[Q], P[Q]) be a left-extended queue 
grammar satisfying the properties of Lemma 3. Without any loss of generality, 
assume that ¿MQ D {V U W) = 0. Define the coding, C,.from (F[Q])* to 
{(£as) | a 6 V[Q]}* as £(a) = { ( . fas ) } (s is used as the start state of the push-
down automaton, M , defined later in this proof). 

Construct the linear grammar G = (iV[G],T[G],P[G],S[G]) in the following 
way. Initially, set 

IV[G] = { 5 [ C ] , <!>, {!, 1 ) } U { ( / ) | / E F [ Q ] } 

T[G] = C(V[Q]) U { ( £ § S ) , ( £ @ ) } U { ( £ § / ) | f £ P [ Q ] } 

P[G\ - {S[G} -»• (£§s)</> | / € F[Q}} U {(!) (!, 1)(£@)} 

Increase ^[G], T[G), and P\G] by performing 1 through 3, following next. 

1. for every (a,p,x,q) £ P[Q) where p,q £ W[Q], a£ Z,x £T*, 

JV[G] = N[G] U {(apxqk) \k = 0,..., \x\} U {(p), (q)} 
T[G\=T[G) U {(£sym(y, k)) \ k = 1 . . , |y|} U {(£ apxq)} 
P[G] = P[G] U {(g) -> (apxq\x\)(£apxq),(apxqO) (p)} 

U {(apxqk) —>• (apxq(k — l))(£sym(a;, k)) \ k = 1,..., |x|}; 

2. for every (a,p,x\q) £ P[Q] with p,q £ W[Q], a£U,x£ (V[<9])*, 

i V [ G ] = i V [ G ] U { ( p , l ) , ( 5 , l ) } 
P[G) = P[G} U {(q, 1) -> reversal(C(x))(p, l)C(a)}; 

3. for every (a,p,x,q) £ P[Q] with ap = S[Q],p,q £ W[Q], x £ (V[Q])*, 
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N[G} = N[G]U{{q,\)} 
P[G] = P[G} U {<9,1) ->• reversal(x)(.£$s)}. 

The construction of G is completed. Set $ = T[G]. represents the al-
phabet of rule labels corresponding to the rules of the pushdown automaton 
M = (Q[M],E[M],fi[M],.R[M],s[M],S[M],{"|}), which is constructed next. 

Initially, set Q[M] = {s[M], [ , ] } (throughout the rest of this proof, 
s[M} is abbreviated to s), E [M] = T[Q], f l [M] = { 5 [M] ,§ } U V[Q], R[M] = 
{{£§s).S[M]s -> §s}U {(£§/).§(H/> ->1 | / e F[M]}. Increase Q[M} and R[M] by 
performing A through D, following next. 

A. R[M] = R[M) U { (¿6s) .as abs \ a E Q\M] - { 5 [M] } , b E Í2[M) - {$}}; 

B. R[M] = R[M) U { (¿$s) .as aL | a € V[Q]} U {(¿a).aL->- [ \ aE K[Q]}; 

C. R[M] = R[M] U { ( ¿ § ) . a h a(1f!) \ a E Z}-

D. for every (a,p,x ,q) € P[Q], where p, q E W[Q], aE Z,xE (T[Q})*, 

Q[M} = Q[M] U {(1fp)} U {(%qu) | u E prefix(x)} 
R[M}=R[M]u{(£b).a(<bqy)b-> a{%qyb) | 6 e T[Q],y E'(T[Q])*, 

yb E prefix(x)} U {(£apxq).a(<iqx) (Ifp)}. 

The construction of M is completed. 
Notice that several components of G and M have this form: (x). Intuitively, if 

x begins with £ , then (x) E T[G\. If x begins with f , then (x) E Q[M]. Finally, if 
x begins with a symbol different from £ or f , then (x) E N[G]. 

First, we only sketch the reason why L(Q) contains L(M,L(G), 3). Accordinng 
to a word from L(G), M accepts every word w as 

§&m. . bian . . .aiswi . . . w m - i w m 

§6m- • b\Cln . . .OlLlül • ..Wm-iVUm 
• tlLlül . . . W m - i W m 

=> %bm. • bi(%qi)wi . . . w m - i w m 

§Öm • •bi(%qiwi)w2 . . .Wm-iWm 

•b2(%q2)w2---wm-iwm 

§ 6 m . •b3(%q3)w3 . . . w m - i w m 

=> §MH<7m)Wm 
=>|u'",l §Mf qmwm) 
=> § ( l 9m+l> 

1 
where w — w\ .. .wm-\wm, a\ ..,anb\ ...bm = and Ü[Q] contains 
(a0,p0,xi,pi), (ai,pi,x2,p2), • • •, (an,pn,xn+i,qi), (6i, , , , (&2,92>tf2,93), 
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• • •, ( b m , q m , w m , q m + i ) . According to these members of R[Q], Q makes 

# a 0 p 0 => ao#yoxiPi [(ao.Po,a;i,Pi)] 
=> aoai#yix2P2 [{ai,Pi,x2,P2)} 

a0aia2#y2x3p3 [(02,^2,2:3,^3)] 

=> aoaia2 ... an-i#yn-ixnpn [ ( a „ _ i , p n _ i , x n , p „ ) ] 
a0aia2 ... an#ynxn+iqi [(an,pn,xn+1,91)] 

=> a0 ... anbi#b2 . • • bmwiq2 [ (6 1 ,9 1 ,^ 1 ,92)] 
=> ao . . . a n b \ b 2 # b z . . . b m w i w 2 q z [(62 ,92,^2,93)] 

=> a0 . . . a „ 6 i . . .bm-i#bmwiiv2 .. . u / m _ i9 m [ ( 6 r n _ i , 9 m _ 1 , w m _ i , 9 m ) ] 
^^ a0 • - • d n 6 i . . . O771 m 5 Qm > ^ m ? 9m+l ) ] 

Therefore, L(M,L(G), 3) C L(Q) . 
More formally, to demonstrate that L(Q) contains L{M,L(G)\3), consider any 

h 6 £ ( G ) . G generates /1 as 

5[G] => 
- > „ 1 + 1 (£§s){qm)tm(£bmqmwmqm+i) 

=>|Wm-ll+1 {£§s)(qm-i)tm-i(£bm-iqm-iwm-i qm)tm{£bmqmwmqm+i) 

^ K l + i ( ¿ § s ) < 9 i ) 0 . . . . 
^ K l + i < £ § s ) ( 9 l , l > < £ @ > 0 

[<9i> <gi,l><^@>] 

=> (£§s)C(reversal(a;n+j )){pn, l){£o,n)(£@)o 
[ ( 9 i , l ) ^ r e v e r s a l ( C ( x n + i ) ) ( p „ , l ) ( ^ o n ) < j e @ ) ] 

( ¿ § s ) C ( r e v e r s a l ( x n 2 ; n + i ) ) ( p „ _ i , i ) ( £ a n _ J ) ( £ a „ ) ( i ' @ ) o ' 
[ ( p „ , l ) r eversa l (C (x n ) ) ( p „ _ i , l ) ( £a n _ j ) ] 

=> (¿§s)C(reversal(®s . . . xnxn+1)){pl, l){£ai){£a2). - - (£an)(£@)o 
[(P2,l) ->• reversal (C(x 2 ) ) (p i , l ) (^aj ) ] 

=> (£§s)C(reversal(a: i . . . xnxn+1 ) ) ( / $ s ) ( i : a J ) ( £ a s ) . . . (£an)(£@)o 
[ (p i , l ) reversal(C(xi))(£$s)] 

where n,m € A/"; Oj E { / for i = l , . . . , n ; 6fc G Z for k = 
1 , . . . ,m; X; G V* for I = 1 , . . . ,ri + 1; pi € W for i = l , . . . , n ; 
9; € W for I = 1 , . . . , m + 1 with 91 = ! and 9 m + i £ F\ tk = 
(£sym{wk, 1))... (£sym(wk,\wk\ - l)){£sym(wk,\wk\)) for k = l , . . . , m ; o = 
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h(£bt qi wi qs)... (£ls){qm-i)tm-i{,£bm-iqm-iwm-iqm)tm{£bmqmwmqm+i)\ 
h = (/§s)C(reversal(a;1 . . . xnxn+1)) {£§){£ a 1){£as)... (£an){£@)o. 

In greater detail, G makes S[G] { £ § s ) ( q m + i ) according to S[G] —> 
(£§s)(qm+1). Furthermore, G makes 

=>>m|+i (£§s){qm)tm(£bmqrnwmqm+1) 
^Itum-il+i (£§s)(qm-i)tm-i(£bm-i qm-iWm-i qm)tm(£b m Qm Qm+1) 

^Kl+i (£$s)(qi)o 

according to productions introduced in step 1. Then, G makes 

(£§3){qi)o*(£$s){qi,l)(£@)o 

according to (!) ->• (!, l ) { £ @ ) (recall that q\ =!) . After this step, G makes 

(£§s)(qi,l)(£@)o 
=> ( £ § s) £(reversal(a;n+ ¡))(pn, l)(£an)(£@)o 

(£§s)C(reversal(a;nxn + / ) ) (pn_J j l)(£an.1)(£an)(£@)o 

=>• {£§s)C(reversal(x2 . . . xnxn+i))(pj, l){£aj)(£a2) •.. (£an)(£@)o 

according to productions introduced in step 2. Finally, according to ( p i , l ) —• 
reversal(C(xi))(.£$), which is introduced in step 3, G makes 

(£§s)C(reversal(x2 . . . xnxn+1))(pi, l)(£ai)(£ae)... (£an)(£@)o 
=> (£§s)C(reversal(x2 ... xnxn+1))(M)(£ai)(£as).. • (£an)(£@)o 

If a i . . . anbi... bm differs from x\ . . . x n + i , then M does not accept according to 
h. Assume that a i . . . anbi... bm = x\ ... xn+\. At this point, according to h, M 
makes this sequence of moves 

•§6m. . han ... aiswi . . . w m - \ w m 

§6m- • f>ion . . .ai[«Ji . . . w m - i w m 

§6m'. .bilwi ...wm-iwm 

§&m- •bl(%qi)wi ...Wm-iWm 
•hi^qiw^wi .. . tu m _iw m 

=i> 
• 02(192^2)^3 • • • Wm-lWra 

lbm. •03(1193)^3 • ••Wm-lWm 

=> §bm(^qm)wm 

=> §(1l9m+l> 
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In other words, according to h, M accepts w\.. . w m _ i w m . Return to the 
generation of h in G. By the construction of P[G\, this generation im-
plies that i?[Q] contains (ao,po, z i . P i ) , (ai , p i , x2,p2), ... ,(a.j-i,pj-i,Xj,pj), 
• • •, (an,pn,xn+i,qi), ( 6 1 , 9 1 , ^ 1 , 9 2 ) , (b2,q2,w2,q3), • • •, {bm,qmywm,qm+1). 

Thus, in Q, 

# a 0 p 0 => ao#yoXiPi [ (ao ,Po,z i ,Pi ) ] 
=>• a0a1#yix2p2 [(01, Pi, x2,p2)} 

aoa!a2#y2x3P3 [(a2,P2,x3,p3)} 

=> a0aia2 ... an-i#yn-ixnpn [ ( a n _ i , p „ _ i , a : n , p n ) ] 
=> a 0 a ia 2 • • • an#2/nZn+i9i [ (an,Pn,£n+i,9i) ] 
=> a0 .. .anbi#b2 .. .bmwxq2 [(^1,91,^1,92)] 

ao ... anbib2#b3 ... bmwiw2q3 [{b2,q2,w2,q3)} 

=> a0 .. ,anbi .. .bm-i#bmwiw2 .. .wm-iqm [ ( V - i , 9 m - i , ® m - i , 9 m ) ] 
^ £Z0 • • • anbi . . . Om #Wl»2 . . . Wm9m+1 [(6 771) 9m) ̂ m) 9m+l)] 

Therefore, wxw2 ...wme L{Q). Consequently, L(M,L(G), 3) C L(Q). 
A proof that that L(Q) C L ( M , L ( G ) , 3) is left to the reader. As L(Q) C 

L(M,L(G), 3) and L(M,L(G), 3) C L(Q) , L (Q) = L{M,L{G), 3). Therefore, 
Lemma 4 holds. • 

Theorem 5 
For i <E { 1 , 2 , 3 } , RE = RPD(LIN,i). 

Proof : Obviously, RPD(LIN,3) C RE. To prove C RPD(LIN,3), consider 
any recursively enumerable language, L £ By Theorem 2.1 in [2], L(Q) = L, 
for a queue grammar. Clearly, there exists a left-extended queue grammar, Q', so 
L{Q) = L{Q'). Furthermore, by Lemmas 3 and 4, L(Q') = L(M,L(G),3), for a 
linear grammar, G, and a pushdown automaton, M. Thus, L = L(M,L(G),2>). 
Hence, RE C RPD(LIN, 3). As RPD(LIN, 3) C RE and RE C RPD(LIN, 3), 
RE = RPD(LIN, 3). 

By analogy with the demonstration of RE = RPD(LIN, 3), prove RE = 
RPD(LIN,i) for i = 1,2. • 

5 Future Investigation 

As already pointed out, this paper has discussed regulated automata as a new 
investigation field of the formal language theory. Therefore, it has defined all 
notions and established all results in terms of this new field. However, this approach 
does not rule out a relation of the achieved results to the classical formal language 
theory. Specifically, Theorem 5 can be viewed as a new characterization of RE and 
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compared with other well-known characterizations of this family (see pages 180 
through 184 in the first volume of [4] for an overview of these characterizations). 

Several research topics remain to be explored: 

A . For i = 1 , . . . , 3, consider RPD(X,i), where X is a language family satisfying 
REG C X C LIN\ for instance, set X equal to the family of minimal linear 
languages. Compare RE with RPD(X,i). 

B. Investigate special cases of regulated pushdown automata, such as their de-
terministic versions. 

C. By analogy with regulated pushdown automata, introduce and study some 
other types of regulated automata. 

D . Investigate the descriptional complexity of regulated pushdown automata. 
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