
Acta Cybernetica 15 (2000) 9-23.

P Systems with Communication Based on
Concentration

Jürgen Dassow * Gheorghe Päun *

Abstract
We consider a variant of P systems where the communication of objects

is controlled by the "concentration" of these objects: after each evolution
step, the objects are redistributed among the regions of the system in such
a way that each region contains the same number of copies of each object
(plus/minus one, when the number of objects is not divisible by the number
of regions). We show that P systems of this form, with only one flip-flop
catalyst but without using other control ingredients, can generate the Paxikh
images of all matrix languages. When an unbounded number of catalysts
is available, a characterization of recursively enumerable sets of vectors of
natural numbers is obtained (by systems with only one membrane).

1 Introduction
The P systems are a class of distributed parallel computing devices of a biochemical
type (so, they belong to the rather active area of Molecular Computing) which were
recently introduced in [11]; an early survey can be found in [12].

In short, in the basic model one considers a membrane structure consisting of
several cell-membranes which are hierarchically embedded in a main membrane,
called the skin membrane. The membranes delimit regions, where we place ob-
jects, elements of a finite set (an alphabet). The objects evolve according to given
evolution rules, which are associated with the regions. An object can evolve in-
dependently of the other objects in the same region of the membrane structure,
or in cooperation with other objects. In particular, we can consider catalysts,
objects which do not evolve alone, but only assist other objects to evolve. The
evolution rules are given in the form of transition rules for multisets, can be the
subject of a given priority relation, and in their right hand members contain sym-
bols (a, here), (a, out), (a, inj), where a is an object. The meaning is that one

•Fakultat fur Informatik, Otto-von-Guericke-Universitat Magdeburg, PSF 4120, D-39016
Magdeburg, Germany, E-mail: dassoufflius.cs.uni-magdeburg.de

^Corresponding author. Research supported by Alexander von Humboldt Foundation. Insti-
tute of Mathematics of the Romanian Academy, PO Box 1 - 764, 70700 Bucure§ti, Romania,
E-mail: gpaunfflimar.ro

9

10 Jiirgen Dassow, Gheorghe Faun

occurrence of the symbol a is produced and remains in the same region, is sent out
of the current region, or is sent to the region associated with membrane j (which
should be reachable from the region where the rule is applied), respectively. The
membranes can be dissolved. When such an action takes place, all the objects of
the dissolved membrane remain free in the membrane placed immediately outside,
but the evolution rules of the dissolved membrane are lost. The skin membrane is
never dissolved.

The application of evolution rules is done in a maximally parallel manner: at
each step, all objects which can evolve should evolve.

Starting from an initial configuration and using the evolution rules, we get a
computation. We consider a computation completed when it halts, no further rule
can be applied. The multiplicity of objects present in a designated membrane in
a halting configuration is the result of the computation. Thus, in this way we
compute vectors of natural numbers.

Many variants are considered in [3], [4], [5], [10], [11], [13], [14], [16]. Most of
them are computationally complete, equal in power to Turing machines. When
an enhanced parallelism is provided, for instance, by allowing membrane division,
then linear time solutions to NP-complete problems can be obtained, [7], [10], [14],
[19].

One of the most non-realistic features of many of these variants is the use of
the target indications out and irij] expecially the last one is rather far from bio-
chemistry. Attempts to get rid of indications of the form inj were already done in
[13] (where electrical charges are used instead of labels: each object is marked with
+ , —, or 0 and the same with the membranes; when an object is introduced with
a mark + or —, it will be passed to a membrane of the opposite sign, nondeter-
ministically chosen among the neighboring membranes) and in [15] (indications of
the form in, without any membrane specification, are used, associated with other
ingredients which are used to control the communication).

Here we make one more step "towards reality": the main way of communicating
chemical objects in biochemistry is based on differences of concentration (gradient)
among regions of a cell, see;[8], [9]. We consider here a variant of P systems where
this idea alone governs all communications (that is, we remove all commands out
and inj, and we use only communication driven by the concentration difference).
We use no other control ingredients (priority among evolution rules, actions con-
trolling the thickness of membranes, such as the dissolving action, etc), but only
catalysts (in the powerful form of bistable catalysts, able to change their state
among two states, in a flip-flop manner). Using only one catalyst, we cover in this
way. at least the Parikh images of matrix languages. When an arbitrary number
of bistable catalysts is used, we can characterize the recursively enumerable sets of
vectors of natural numbers. Systems consisting of one membrane only are enough
(hence in such a case only the communication to the outer region of the system is
possible).

P Systems with Communication Based on Concentration 11

2 A Remark on Matrix Grammars ™
Before we consider P systems we briefly recall the definition of matrix grammars
and their associated languages because we shall use those grammars in the study
of the generative power of P systems. Moreover, we add a new normal form for
matrix grammars which is useful in this paper and is of some interest in the theory
of matrix grammars. For further elements of formal language theory we refer to
[17]. (We only mention that V* is the free monoid generated by V under the
operation of concatenation; A is the empty string, |x| is the length of x G V* and

is the Parikh vector associated with x € V*.)
A matrix grammar with appearance checking is a construct G = (TV, T, S, M, F),

where TV, T are disjoint alphabets, 5 £ TV, M is a finite set of sequences of the
form (Ai —• x\, ...,An —> xn), n > 1, of context-free rules over J V U T (with
AI € N,Xi £ (TV UT)* , in all cases), and F is a set of occurrences of rules in M
(we say that TV is the nonterminal alphabet, T is the terminal alphabet, S is the
axiom, while the elements of M are called matrices).

For VJ, z 6 (TV U T)* we write w = > z if there is a matrix {A\ x\, ..., An

xn) in M and the strings Wi e (TV U T) * , l < i < n + 1, such that w — wi,z =
w n + i , and, for all 1 < i < n, either Wi = w^Aiw'-, tuj+i = w'^iw'-, for some
w^w'l € (TV U T)*, or Wi = Wi+1, Ai does not appear in Wi, and the rule Ai Xi
appears in F. (The rules of a matrix are applied in order, possibly skipping the
rules in F if they cannot be applied; we say that these rules are applied in the
appearance checking mode.) If F = 0, then the grammar is said to be without
appearance checking (and F is no longer mentioned).

We denote by ==>* the reflexive and transitive closure of the relation = > . The
language generated by G is defined by L(G) = {w e T* \ S = > * w}. The family of
languages of this form is denoted by MATac. When we use only grammars without
appearance checking, then the obtained family is denoted by MAT. By PsMAT
we denote the Parikh sets associated with languages in M A T .

It is known that MAT C MATac = RE and that each one-letter language in
the family MAT is regular, [6]. Further details about matrix grammars can be
found in [2] and in [17]. -

A matrix grammar G = (TV, T, S, M, F) is said to be in the binary normal form
if TV = TVX U TV2 U {S, t } , with these three sets being mutually disjoint, and the
matrices in M are of one of the following forms:

1. (S XA), with X e Ni, A e TV2,

2. (X Y,A x), with X,Y e Ni,A £ N2,x G TV2Ma;| < 2, or x € T U {A} ,

3. (X Y,A f) , with X,Y e Ni, A £ TV2,

4. (X A, A x), with X e TVi, A £ TV2, and x 6 T U {A}.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules
A —> f appearing in matrices of type 3; f is a trap symbol, once introduced, it is
never removed. A matrix of type 4 is used only once, at the last step of a derivation.

12 Jiirgen Dassow, Gheorghe Faun

Furthermore, for any symbol X € Ni, there is a matrix whose left-hand side of the
first rule is X .

According to Lemma 1.3.7 in [2], for each matrix grammar there is an equivalent
matrix grammar in binary normal form.

We now introduce a stronger normal form.
A matrix grammar G = (N, T, S, M, F) is said to be in strong binary normal

form, if N = Ni U N2 U {S, f } , with these three sets being mutually disjoint, and
the matrices in M are of one of the following forms:

1. (5 XA) with X G Ni, A € N2,

2. (X y, A a) with X, F <E Nlt A € N2, a e N% U N2 U T U {A} ,

3. (X Y, A-+ f) with X, Y € Nlt A e N2,

4. (X A) with X £ Nr.

Moreover, there is only one matrix of type 1 (the start matrix) and only one of
type 4 (the final matrix) and F consists exactly of all rules A —> f appearing in
matrices of type 3, where f is the trap symbol, again. The matrix of type 4 is
used only once, in the last step of a derivation such that after the application of
this final matrix only terminal symbols and possibly some trap symbols are left.
Finally, we may assume that each control symbol from Ni appears at least once
on the left-hand side of the first production of a matrix in M and that the final
control symbol only appears on the left-hand side of the final production.

Lemma 1. For any matrix grammar G with appearance checking there is a matrix
grammar G' in strong binary normal form such that L(G') = L(G).

Proof. Let G = (N, T, S, M, F) be a matrix grammar. Without loss of generality,
we can assume that G is in binary normal form as given above. Thus N = Nx U
N2\J { 5 , f } - Let n be the cardinality of N2 and N2 = {Ak \ 1 < k < n}. We
immediately obtain the corresponding matrix grammar in strong binary normal
form-G' = [n',T, S, M', F') in the following way:

• N' = N U {Zk | 0 < k < n } , where the 0 < k < n, are new symbols not
contained in N .

. M' = (M\{(X A, A a) I (X A, A a) 6 Mj) U M" with
M " = { (X Z0, A a) | {X A, A a) <E M } U

{ (Z f c _ ! Zk, Ak t) | 1 < k < n} U {(Zn A)} ,

• (Zn —> A) is the final matrix.

Obviously, instead of one of the final matrices (X ->• A, A a) of G we
use (X —Zo, A —> a) , check the presence of an element of N2 by the rules
(Zk-i -t Zk, Ak f) , 1 < k < n, and finally terminate by (Z n A). •

P Systems with Communication Based on Concentration 13

3 P Systems: Some Variants ;>
We first introduce the basic class of P systems, then we briefly define several vari-
ants. The definitions are not completely formal; for details, the reader is referred
to the papers listed in the bibliography.

A membrane structure is a construct consisting of several membranes placed
in a unique "skin" membrane; we identify a membrane structure with a string of
correctly matching parentheses, placed in a unique pair of matching parentheses;
each pair of matching parentheses corresponds to a membrane. Graphically, a
membrane structure is represented by a Venn diagram.

Each membrane identifies a region, delimited by it and the membranes immedi-
ately inside it (if any). A membrane without any other membrane inside it is said
to be elementary.

Figure 1 represents a membrane structure, described by the string

L1L2L3L4 J 4J 3 L 5 J 5J 2 L6 UtI 8 J 8J 6 L J 9J1 '

skin regions

membranes

elementary
membranes

Figure 1. A membrane structure.

If in the regions delimited by the membranes we place multisets of objects from
a specified finite set V, as well as evolution rules for these objects, then we obtain
a P system.

More precisely, a P system (of degree m,m > 1) is a construct

n = {V, T, C, /x, wi,..., wm, Ri,,..., Rm),

where:
(i) V is an alphabet; its elements are called objects',

14 Jiirgen Dassow, Gheorghe Faun

(ii) T Ç V (the output alphabet);

(iii) C Ç V,C (~)T = Qi (catalysts);

(iv) fj. is a membrane structure consisting of TO membranes (labeled with
1 , 2 , . . . , to);

(v) Wi, 1 < i < m, are strings over V associated with the regions 1 , 2 , . . . , m of ii\
they represent multisets of objects present in the regions of /x (the multiplicity
of a symbol in a region is given by the number of occurrences of this symbol
in the string corresponding to that region) ;

(vi) Ri, 1 < i < TO, are finite sets of evolution rules over V associated with the
regions 1 , 2 , . . . , m of fi.
The evolution rules are of the forms a v or ca —» cv, where a G V — C,
c E C , and v is a string over

(V x {here, out}) U (V x {inj | 1 < j < m }) .

When presenting the evolution rules, the indication "here" is often omitted.
The membrane structure and the multisets w^, 1 < i < m, in II constitute the

initial configuration of the system. We can pass from a configuration to another
one by using the evolution rules. This is done in parallel: all objects, from all
membranes, that can be the subject of local evolution rules, should evolve simulta-
neously.

The use of a rule ca —> cv (similarly for rules a —> v) in a region with a multiset
w means to subtract the multiset a from w, then to follow the prescriptions of v:
if an object appears in v in the form (b,here), then it remains in the same region;
if we have (b,out), then a copy of the object b will be introduced in the membrane
immediately outside the region of the rule ca cv (if the rule is applied in the
skin membrane, then the object leaves the system); if we have (b,ini), then a copy
of b is introduced in the membrane with the label i, providing that this membrane
is adjacent to the region of the rule ca —> cv, otherwise the rule cannot be applied

A sequence of transitions between configurations of a given P system II is called
a computation with respect to II. A computation is successful if and only if it halts,
that is, there is no rule applicable to the objects present in the last configuration.
The result of a successful computation consists of the vector of natural numbers
which specify the number of copies of terminal objects which leave the skin mem-
brane (e.g., if T = {a,b,c} and no copy of a, four copies of b, and two copies of c
leave the system, then the computed vector is (0,4,2).)

Several further ingredients were considered in the literature: priority relations
among evolution rules, the action of dissolving a membrane, an opposite action
to dissolving, which makes thicker the membranes, inhibiting the communication,
"electrical charges" associated with objects and membranes, used for controlling
the communication [13], bistable catalysts [16]. We introduce here only the last of
these ingredients, because it will be also used in our variant of P systems.

P Systems with Communication Based on Concentration 15

The bistable catalysts are catalysts able to change their state among two possi-
bilities, c and c. Specifically, we allow rules of the forms co —> cv and ca —> cv, but
not also of the forms ca —> cv and ca —> cv; that is why we also call these catalysts
flip-flop catalysts.

For the power of P systems which use certain combinations of these ingredients
we refer to the papers mentioned at the end of the present work. In particular,
several characterizations of the recursively enumerable sets of vectors of natural
numbers can be found in [11], [13], [15].

4 Définition of P Systems with Communication
Based on Concentration

The indication im looks rather unrealistic from a biochemical point of view, so
it is of interest to try to avoid its use. Actually, we will remove all indications
here, out, inby controlling the communication of objects only by means of their
concentration in the regions of the system.

At the first sight, this can be done in a very simple way: in the set V of objects
we consider a subset, Vc Ç V, and whenever such objects are introduced, they
are immediately redistributed among all regions of the system in such a way that
all regions will have the same number of occurrences of each symbol from Vc; a
difference of one occurrence is allowed when the total number of occurrences is not
divisible by the number of regions. Note that a system with m membranes defines
m + 1 regions, m regions inside the system, plus the outer region. -

Note also that always we take into consideration each object in Vc separately
and we do not count these objects (and then redistribute them) as being indistin-
guishable.

A problem appears when the number of copies of one object to be redistributed
is not a multiple of m + 1, where m is the number of membranes in the system. In
such a case, the "remainder objects" are redistributed according to the following
"efficiency principle" : we move objects at the lowest distance (crossing the smallest
number of membranes). For instance, if we have m -1-2 objects in a region, then all
regions (including the outer region) will get one object, while the region where the
objects were produced will remain with two copies. If we have started with m + 3
objects, then each region will get one object, one further object will remain in the
region where the objects were produced, and one further object will be sent to one
of the neighboring regions, randomly choosen.

Because in the proofs in the following sections we will always introduce objects
to be communicated in only one region at a time, the above mentioned principle will
be enough to govern the communication, so we ignore the more complex situations
which can appear.

In this framework, no indication here, in, out is necessary. The objects in Vc

will go in or out, according to their concentration, the objects in V — Vc remain in
the region where they are introduced.

16
Q

Jiirgen Dassow, Gheorghe Paun

Of course, no catalyst can appear in Vc and all terminal symbols are in this set
(we have to read the result of a computation outside the system, hence we have to
send out of the system the terminal symbols).

How the redistribution of objects takes place in a practical circumstance is not
considered here. We assume that the redistribution is done instantaneously, always
correctly, and at the level of the whole system in a step, by a magical mechanism
which is not explicit in our model.

We denote by Ps(II) the set of vectors of natural numbers computed by a
P system II and by PsLPm(con,2Catk) the family of sets Ps(II) of this form
generated by P systems which communicate by concentration, use at most k bistable
catalysts, and have at most m membranes; when m oik are not specified, we replace
them with *. (The notation reminds the notion of a Parikh set, ^v(L), associated
with a language L ÇV*.) We also denote by PsRE the Parikh images of recursively
enumerable languages (the family of such languages is denoted by RE), which is
nothing else than the family of recursively enumerable sets of vectors of natural
numbers.

5 The Power of P Systems with Concentration-
Based Communication

First we show that systems with one pair of catalysts are sufficient to generate all
matrix languages (without appearance checking).

Theorem 1. PsMAT C PsLP*(con,2Cah).

Proof. We first prove the inclusion.
Let us consider a matrix grammar without appearance checking, G =

(N, T, S, M), in the binary normal form (that is, N = NiUN2U{S}). Assume that it
contains n two-rule matrices, labeled in a one-to-one manner with m i , m 2 , . . . , mn.

We construct the P system (of degree n + 1)

n = (V,Vc,T,C,n,wo,wi,... ,wn,Rv,Ri,... ,i?„),

with

V = NuTUVcUCu{D,E,E',E",É,t,#}U{X' ¡X eNi),
Vc = {Xi,Ai | nu = {X a, A -> 0) e M,l < i < n)

U { X | X € A^i} U T U {â | a 6 T} ,
C = {c,c},

» = loll] 1 [2] 2 - - - [„]Jo>
wq = XADEc, for (S —> XA) being the initial matrix of G,

Wi = Ec, for all i — 1 , 2 , . . . ,n,

and with the following sets of evolution rules:

P Systems with Communication Based on Concentration 17

1. The set Ro contains the following rules:

(a) X -> X 2 n + 2 ,
cA -> cA"+2, for all 1 < i < n such that mi : (X a , A -)• (3) 6 M ,

(b) cD cf,
t t,

(c) cX -> cX, for all X 6 Nu

(d) cE" ->• cE,

(e) E
E' E",
E" -> E,

(f) a -> a n + 2 ,
a # , for all a G T,

(g) X i -»• # , for all X G Nui = 1 , 2 , n ,
->• # , for all A G N2,i = 1,2, . . . , n .

2. For each i = 1 , 2 , . . . , n such that nu : (X —> a, A —> /3), the set Ji, contains
the following rules:

(a) c X j - » ca2

(of course, if a = A, then the rule is cX{ —> c),
(b) cAi -»• cp2 ,

where j3 is a for ¡3 = a, a G T and /? = /3 if ^ G Ar2*,
(c) cAi - t cf,

cE ->• cf,

(d) ^ ->• # , for all y G Nu 1 < j < n,j ± i,
Bj -)• # , for all B G iV2,1 < j < n,j jt i,

(e) Y -»• # , for all y G iVi,
B # , for all B G JV2,
a -»• # ,

a # , for all a G T.

The system works as follows.
The object f is a trap object, once introduced it can evolve forever, thus the

computation will never finish. The object # is a dummy one, non-active.
Each matrix from M is simulated in II in three steps, as follows.
Assume that in the skin membrane we have one symbol from N\, some symbols

from N2, the symbols D,E, and the catalyst c (plus occurrences of the dummy
symbol, which we will ignore from now on); initially, we have here the multiset
represented by XADEc, where (5 —> XA) is the initial matrix of M. Assume that
at the same time in each membrane 1 , 2 , . . . ,n we have the objects E and c, as in
the initial stage.

18 Jiirgen Dassow, Gheorghe Faun

In the skin membrane, the symbol X £ N2 will introduce n + 2 copies of X,,
for some 1 < i < n, and, at the same time, the catalyst plus a symbol A £ N2
will introduce n + 2 symbols Aj, for some 1 < j <n, while the catalyst becomes c;
moreover, E will be replaced by E'. The symbols X{, Aj should be redistributed.
Because we have exactly n -1-2 copies of each of them, exactly one copy of each of
them will be placed in each region of the system (one symbol leaves the system).
Note that if the catalyst is not used by a rule cA cA"+2, then it must be used
by the rule cD —>• cf and the computation never stops.

We distinguish eight cases, according to the symbols present in a membrane
i, 1 < i < n, after one evolution step (we denote by z\ the string representing the
multiset of these symbols):

1. Zi = XiAiEc . Using the rule cXi ->• ca2 we pass to (the multiset represented
by) z' = a2AiEc. One copy of a is sent to the skin membrane, one remains
here. Using the rules cAi ->c/32 and a —> # , we pass to z" = #fi2Ec. One
copy of each symbol from ¡3 is sent to the skin membrane, one remains in
membrane i and at the next step is replaced by # .

Note that if we do not use the rule cXi —> ca2 at the first step, then we have
to use the rule cAi —» cf; similarly, if we do not use the rule cAi —> eft2 at
the second step, then we have to use the rule cE —> cf. In both cases, the
computation will never halt.

Simultaneously, in the skin membrane we proceed as follows. After the first
step we here have a multiset z\ = XiAiDE'cu, where u consists of all symbols
from N2 which remain here (plus dummy symbols). At the same time, we
receive from membrane i a symbol Y, for some Y £ N\ (or nothing, if the
matrix mi was a terminal one, rrii : (X —» A, A —» x)) , and E' is replaced
by E". At the next step, the symbols Xi,Ai are replaced by # , while cY
are replaced by cY and E" is replaced by E. The multiset still contains
the symbols E and c. At the same time, we receive from membrane i either
symbols from N2 or a symbol a, a £T. The multiset contains again D,E,c,
a symbol from and some symbols from N2, hence we return to a contents
as that from the beginning. At the next step, for the symbol a, a £ T, we
produce n+2 copies of a; exactly one of these copies enters each of the regions.
In all membranes of the system, a is immediately replaced by # . The copy
which leaves the system contributes to the result of the current computation.

Therefore, after three steps in membrane i and three steps in the skin mem-
brane, we have accomplished the simulation of the matrix rrii. The procedure
can be iterated.

2. Zi = X i A j E c , for some i ^ j. At the first step we can again use the rule
cXi ca2, simultaneously with Aj # , but at the next step we have to
introduce the trap-object f, because we have to use the rule cE — c f . The
computation never stops.

3. Zi = X iEc , exactly as in case 2, without using the rule A j —» # .

P Systems with Communication Based on Concentration 19

4. Zi = X j A i E c , for some j ^ i. At the first step we have to use the rule
cAi —> cf (simultaneously with X j —> #) , so the computation never stops.

5. Zi = AiEc; exactly as in case 4 (without using the rule X j #) .

6. Zf = XjAkEc, for some j ^ i,k ^ i. We replace Xj,Ak by # and, from the
point of view of membrane i, the computation can continue.

7. Zi = XjEc, for some j ^ i\ exactly as in case 6.

8. Zi = AjEc, for some j i; exactly as in case 6.

Therefore, if a symbol Xi or a symbol Ai is introduced, then the computation
can correctly continue and halt if and only if both symbols Xi and Ai were intro-
duced. At the first sight, cases 6, 7, 8 do not correctly control the computation,
but this is still done: when a symbol X j or Ak is introduced, n-(-2 copies of it are
introduced; one of these copies will reach membrane j, respectively k, and these
membranes check whether or not both these symbols are present and whether or
not j = k.

The derivation in the grammar G stops by using a matrix of the form rrii =
(X —> A, A —> a), for some a £ T U {A}. When this matrix is simulated in II,
no symbol Y is sent from membrane i to the skin membrane. Instead of the rule
cY cY, we can use the rule cE" cE. If no symbol from TV2 is present, then
the computation stops.

As long as any nonterminal is present in the skin membrane, the computa-
tion must continue. If we have only symbols from Ni or only symbols from N2,
then the computation will never stop (see again cases 3, 5, 7, 8 discussed above).
Consequently, a computation stops if and only if it correctly simulates a terminal
derivation with respect to G.

From the previous construction, it is now clear that ^ t (L (G)) = Ps(II), that
is, PsMAT C PsLP,(con,2Cat1).

In order to prove the strictness of the inclusion we consider the P system

n = ({A, B, D, X, X',X", Y, c, a, f } , {a}, {a } , {<:},[,],, cAB,

with

Ri = {cA -» cAB, cA -> cA, A -» f, cA cXY, B Baa,

a D, cB cD, cX' cX, X ->• X',

X' f, cX' -> cX", cY -> cf, t t } -

We start by having one copy of the object B. The first phase of a computation
consists in using n — 1, n > 1 times the couple of rules cyl —> cAB, cA-> cA, which
introduces n copies of B. When using the rule cA cAB, in parallel, we also use
the rule B -> Baa, while in parallel with using the rule cA —» cA, we use both
rules B —> Baa and a —> D. This means that for each B, one of the two copies of a

20 Jiirgen Dassow, Gheorghe Faun

introduced by the rule B —» Baa is sent out of the system and one remains inside;
the copy which remains in the system is then replaced by the "dummy" object D.
After these 2(n — 1) steps, we use the rule cA —> cAB,cA —> cXY - in parallel
with B —• Baa and a —> D. In this way, we send out of the system 1, 2, 2, 3, 3 , . . . ,
n,n,n + 1 copies of a, which is, in total (n + l) (n + 1) - 1, for some n > 1.

Note that during this phase, we cannot use the catalyst together with another
object, because of the rule A —> \\ as long as A is present, it has to evolve by one
of the rules cA —>• cAB, cA —> cA, otherwise the computation will never terminate.

After removing the object A (and introducing the objects X, Y), we have to use
the rule cB —> cB; one copy of B is replaced by D, the others introduce two copies
of a, while X becomes X'. The rule cB —> cD must me used, otherwise we have to
use cY —> cf. For each B, one copy of a is sent out, the other one will remain inside
the system and it will be replaced by D at the next step. The catalyst returns to
the non-barred version by using the rule cX' cX. The process is iterated, and it
is somewhat symmetric to the first phase: the number of copies of B is decreased
step by step and, in parallel, copies of a are sent out of the system. Again, we
have pairs of steps, hence we send out n + l , n , n , . . . , 2 , 2 , l , l , which means in total
(n + l) (n + l) .

When exactly one copy of B is present, we can use the rule cX' —> cX", which
can be followed only by cB cD, and then no rule can be used.

Therefore
P s (n) = {2n2 + 4 n + l | n > l } .

By the above mentioned fact that all languages L £ MAT where L C {a}* for
some letter a are regular,, we obtain -Ps(II) $ PsMAT. •

In the proof of the strictness of the inclusion we have used a P system with
one region and one catalyst. If we keep the restriction concerning the number of
regions but delete that concerning the number of catalysts, we are able to generate
all recursively enumerable languages.

Theorem 2. PsRE = PsLP^ccm, 2Cat*).

Proof. Because PsMATac — PsRE and because the inclusion PsLP\ (con,
2Cat*) C PsRE is straightforward, we only have to prove that PsMATac C
PsLPi(con,2Cat,).

Starting from a matrix grammar G = (TV, T, S, M, F) in strong binary normal
form with N = Ni UN2 U {5 , f } and n matrices of the form : (X Y, A a),
1 < i < n, and k matrices of the form mn+j : (X Y, A f) , 1 < j < k, we
construct the corresponding P system

U = (V,T,C,[1)1,w1,R1)

where

V = N UTUC U {E,f}U {X',X" | X e N1},

C = {ci,ci | 1 < i < n} U {dj,d] | 1 < j < k) ,

wi — XAEciC2...Cnd\d2...dk,

P Systems with Communication Based on Concentration 21

where (5 X A) is the start matrix in M , and the set Ri contains the following
rules:

1. For each matrix m* : (X —> Y, A —> a) , 1 < i < n, we consider the rules:

dX ->• ciY , Y' —» Y, CjE - 4 Cif, CiA a,

where a = a 2 for a £ T , and a = a otherwise.

2. For each matrix mn+j • (X Y, A -» f) , 1 < j < k, we consider the rules:

dj-Ji -> d j y ' , y ' -> Y", djA -> d,-t, d j Y " -> d , -y .

3. For the final matrix (Z —» A) we take the rule Z -> A, and we also use the
rule f —> f to ensure that the computation never stops if the trap symbol f
has been introduced.

At any moment, except after the last step of a computation, where the final rule
Z —> A is applied, exactly one symbol from Nx U A'i U N" is present. If a matrix
mi : (X -4- y, A —> a), 1 < i < n, is simulated, then first the first production
X —> Y is evolved together with the catalyst c, yielding Y from X in two steps,
and in the second step the corresponding second rule A —> a must be simulated
together with the catalyst 57, otherwise the trap symbol f is introduced. For a € T
we generate a second copy, which can leave the system.

For simulating a matrix m n + ; - : (X Y, A -> f) , 1 < j < k, three computation
steps in II are necessary: if the symbol A is present, in the second step catalyst dj
must react together with A thus generating the trap symbol f ; otherwise, dj can
wait for being evolved to dj again together with Y".

A computation in II now stops if and only if the final matrix has been simulated
and no trap symbol f is present, i.e., exactly if and only if a successful derivation
in G has been simulated correctly in II.

Consequently, we obtain $ t (L (G)) = ^ (¿ (I I)) , which concludes the proof. •

We close this paper with the observation that the concentration of symbols was
already used in [1] as a control mechanism of L systems. We can combine the idea
of [1] with that proposed in this paper and we can consider a sort of "bi-cameral
DOL systems", as a pair of DOL systems (morphisms) which work separately on
multisets of symbols and, after each rewriting step, redistribute the symbols in the
same way as in a P system with a concentration-controlled communication. As
the output of such a device we consider the union of the two multisets (or the
Parikh image of this union). The power and the properties of these cooperative
DOL systems remain to be investigated. Anyway, it is clear that they can induce
growth functions and length sets which are not growth functions or length sets of
usual DOL systems: take two different unary DOL systems; by redistribution we will
get a length set which does not consist of the powers of a given natural number, as
the length set of a unary DOL language is.

Acknowkedgement. The authors are very grateful to the referee for her/his
detailed comments and proposals for an improvement. Especially, Lemma 1 and
its use in the proof of Theorem 2 belong to the referee.

22 Jiirgen Dassow, Gheorghe Faun

References
[1] J. Dassow, Concentration dependent OL systems, Intern. J. Computer

Math., 7 (1979), 187-206.

J. Dassow, Gh. Päun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, 1989.

J. Dassow, Gh. Päun, On the power of membrane computing, J. of Universal
Computer Sei., 5, 2 (1999), 33-49 (www.iicm.edu/jucs).

R. Freund, Generalized P systems, Fundamentals of Computation Theory,
FCT'99, Ia§i, 1999, (G. Ciobanu, Gh. Päun, eds.), LNCS 1684, Springer,
1999, 281-292.

R. Freund, F. Freund, Molecular computing with generalized homogeneous
P systems, Proc. Conf. DNA6 (A. Condon, G. Rozenberg, eds.), Leiden,
2000,113-125.

D. Hauschildt, M. Jantzen, Petri nets algorithms in the theory of matrix
grammars, Acta, Inform., 31 (1994), 719-728.

S. N. Krishna, R. Rama, A variant of P systems with active membranes:
Solving NP-complete problems, Romanian J. of Information Science and
Technology, 2, 4 (1999), 357-367.

W. R. Loewenstein, The Touchstone of Life. Molecular Information, Cell
Communication, and the Foundations of Life, Oxford Univ. Press, New
York, Oxford, 1999.

S. S. Mader, Biology (Fifth Edition), McGraw-Hill, Boston, 1996 (Chapter
6: Membrane structure and function, 84-102).

[10] C. Martin-Vide, V. Mitrana, P systems with valuations, in vol. Unconven-
tional Models of Computation (I. Antoniou, C.S. Calude, M.J. Dinneen,
eds.),. Springer-Verlag, London, 2000, 154-166.

[11] Gh. Päun, Computing with membranes, J. Computer and System Sei., 61,
1 (2000), 108-143 (see also TUCS Research Report No. 208, November 1998,
http://www.tucs.fi).

[12] Gh. Päun, Computing with membranes. An introduction, Bulletin of the
EATCS, 67 (Febr. 1999), 139-152.

[13] Gh. Päun, Computing with membranes. A variant, Intern. J. of Foundations
of Computer Science, 11, 1 (2000), 167-182.

[14] Gh. Päun, P systems with active membranes: Attacking NP complete prob-
lems, J. Automata, Languages, and Combinatorics, 6, 1 (2001), 75-90.

http://www.iicm.edu/jucs
http://www.tucs.fi

P Systems with Communication Based on Concentration 23

[15] Gh. Päun, Y. Sakakibara, T. Yokomori, P systems on graphs of restricted
forms, submitted, 1999.

[16] Gh. Päun, S. Yu, On synchronization in P systems, Fundamenta Informat-
icae, 38, 4 (1999), 397-410.

[17] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Springer-
Verlag, Heidelberg, 1997.

[18] Y. Suzuki, H. Tanaka, On a LISP implementation of a class of P systems,
Romanian J. of Information Science and Technology, 3, 2 (2000), 173-186.

[19] CI. Zandron, CI. Ferretti, G. Mauri, Solving NP complete problems using
P systems with active membranes, in vol. Unconventional Models of Com-
putation (I. Antoniou, C.S. Calude, M.J. Dinneen, eds.), Springer-Verlag,
London, 2000, 289-301.

Received August, 2000

