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On isomorphic representations of generalized
definite automata*" |

Ferenc Gécseg Baldzs Imreh?

To Professor Magnus Steinby on his 60th birthday

Abstract

In this paper, the generalized definite automata are studied. In particular,
systems which are isomorphically complete for this class with respect to the
ai-products are characterized.

1 Introduction

Generalized definite languages and recognizers were introduced by Ginzburg in [5].
Generalized definite automata were also studied in the works [2], [7], [8]. This class
is so wide that the classes of definite and reverse definite automata are its proper
subclasses (see [7]). Here, we deal with the isomorphic representations of the gen-
eralized definite automata with respect to the a;-products. In particular, necessary
and sufficient conditions are given for systems of automata to be isomorphically
complete for this class with respect to the a;-products. The paper is organized as
follows. After the preliminaries of Section 2, we recall the characterizations of the
subdirectly irreducible definite, reverse definite, and generalized definite automata
in Section 3. Then we describe the isomorphically complete systems for the class
of all generalized definite automata with respect to the a;-products.

2 Preliminaries

In what follows, X always denotes a finite alphabet, and as usual X* denotes the
set of all words over X. For every nonnegative integer 7, let X7 = {w : w €
X* and |w| = j}, where |w| denotes the length of the word w.

By an automaton we mean a pair A = (A,X), where A is a finite nonempty
set of states, X is a finite nonempty set of the input symbols, and every z € X
is realized as a unary operation z# : A — A. For any word w = 21 ...z, € X*,
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wA : A - A is defined as the composition of the mappings zf*,...,zA. If A is
known from the context, we write simply aw for aw™.

By the definition above, an automaton can be considered as a unoid. There-
fore, such notions as subautomata, congruences, homomorphisms, isomorphisms,
embeddings, direct products, subdirect products, subdirect irreducibility can be
defined in the usual way (see e.g. (1] or [6]). We shall use a particular isomor-
phism defined as follows. Let A = (A,X) and B = (B,Y) be two automata,
4 a one-to-one mapping of A onto B and T a one-to-one mapping of X onto Y.
Then the pair g, 7 of mappings is called an (A4, X)-isomorphism of A onto B if
az®p = ap(zT)B is valid, for all a € A and z € X. In this case, it is said that A
and B are (4, X)-isomorphic.

We introduce some particular congruence relations which we need in the sequal.
For this purpose, let A = (4, X) be an arbitrary automaton with at least three
states. A congruence p of A is called elementary if p = w4 U {(a,b), (b,a)} for two
distinct states a,b € A, where w4 denotes the diagonal relation, i.e., wa = {(a,a) :
a € A}. Let us denote by Con.(A) the set of all elementary congruences of A.

Now, let j > 0 be an arbitrary integer. Let us define the relation p; on A by

ap;b if and only if ap =bp, for all pE X7,

It is easy to see that for every nonnegative integer j, p; is a congruence relation of
A

For every integer j > 0, let us define the state set A; as follows:
Ao={a:a€ A and az =qa, for all z € X},

Ajy1={a:a€ A and ax € A, for all z € X}.

Then A; = (A, X) is a subautomaton of A provided that Ap # 0, and the Rees
congruences defined by

aosb if and only if a,b€ A; or a=b
are congruence relations of A.

For any integer k > 0, an automaton A = (A, X) is called weakly k-definite, if
|Ap| = 1, for every p € X*. Moreover, it is said that A is definite if it is weakly
k-definite for some integer k > 0. In particular, if a weakly k-definite automaton
A has such a state a*, called dead state, that a*z = a*, for all z € X, then A is
called a nilpotent automaton. In this case Ap = {e*} holds, for every p € X*.

For any integer k > 0, an automaton A = (A4, X) is called weakly reverse k-
definite if apz = ap is valid, for alla € A, p € X* and z € X. A is reverse definite
if it is weakly reverse k-definite for some k > 0.

Following [8], for any pair of integers h,k > 0, an automaton A = (4, X) is
called weakly (h,k)-definite if aupv = aquv is valid, for alla € A, u € X* v € X*,
and p € X*. It is worth noting that for every pair of integers ' > h, k' > k, an
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automaton A is weakly (h', k')-definite if it is weakly (h, k)-definite. An automaton
is called generalized definite if it is weakly (h, k)-definite for some integers h, k > 0.
Let us denote by G the class of all generalized definite automata. By the definitions,
one can obtain the following observation.

Lemma 1. If A € G and B is a homomorphic image of A, then B € G as well.
We recall here the notion of a;-products (see e.g. [3], [4]). This product family
is a natural generalization of the serial connection or cascade product of automata.

Let ¢ be an arbitrary nonnegative integer. Let us consider the automata A =
(X,A), A; = (X;,4;),i=1,...,m, and let ® be a family of feedback functions
below '

<pj:A1><...xAj+i_1 XX—)X]‘, j:l,...,m.

It is said that A is the a;-product of A;, 7 = 1,...,m, if the following conditions
are satisfied:

(1) A= H;nzl Aja
(2) for all (a,...,anm) € Aand z € X,

(a1,...,am)z® = (@12, . .., apsi™)

is valid where =; = ¢;(a1,-..,aj4i-1,2), for all j € {1,...,m}.

For the a;-product introduced above, we use the notation
m
A=]]A;x.2).
=1

When the component automata A; are equal, say A; = B, j =1,...,m, then
it is said that the a;-product A is an a;-power of B and it is denoted by B™(X, ).

In particular, if each of the feedback functions is independent of the states, i.e.,
if the feedback functions have the forms ¢; : X — X;, j = 1,...,m, then the
a;-product is called guasi-direct product. It corresponds to the parallel connection
of automata where the sign-transformation is allowed.

Lemma 2. If an automaton A can be embedded into an ag-product of automata
Aj, 7 =1,...,k, moreover, each automaton A; can be embedded into an ag-product
of automata Ay, t = 1,...,m;, then A can be embedded into an og-product of
automate Ay, t=1,...,m;; j=1,...,k.

Let A be an arbitrary class and M a system of automata. It is said that M is
isomorphically complete for N with respect to the a;-product if for any automaton
B € NV, there exist automata A; € M, j = 1,...,m, such that B can be embedded
into an a;-product of the automata A, j=1,...,m.
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3 Isomorphic representations

We shall use the subdirectly irreducible definite, reverse definite, and generalized
definite automata, whose charcterizations can be found in [2].

Proposition 1 ([2]). A definite automaton A with |A| > > 3 is subdirectly irreducible
if and only 1f Cone(A) = {pm}.

To characterize the subdirectly irreducible reverse definite automata we need
some preparations.

For any m > 2, let X, = {Z1,...,Zm} and define the sets A(m, k), £ =0,1,.
inductively so that

A(m,0) = {0,1},
A(m,1) = {0,1} U {(¢1,...,im) € {0,1}™ : i, # is for some 1 <7 < s < m},

.y

and for any k > 1,
Am,k+1) =
Am, kYU {(i1,...,im) € Am, k)™ : {i1,...,im} N (A(m, k) \ A(m,k — 1)) # 0}.

For any m > 2 and k > 1, we define an automaton A(m,k) = (A(m, k), Xm) as
follows:

(1) for both i € A(m,0) and = € X, let iz = 1;
(2) for all (1,...,im) € A(m,k)\A(m,0) and z;, € X, let (41,...,0m)Ts = is.
It is clear that for any m > 2 and k > 1, A(m, k) is a subautomaton of A (m, k+

1).
We recall that an automaton A = (4, X) is input reduced if z® # y» for all
pairs of distinct input symbols z,y € X.

Proposition 2 ([2]). Let A = (A, X) be an input reduced automaton such that
|A] > 3 and | X| = m. If A is subdirectly irreducible and reverse k-definite, but not
nilpotent, then m > 2, k > 1 and A is (A, X)-isomorphic to o subautomaton of
A(m,k). '

From this statement the next observation follows immediately.

Corollary 1. If A (|A]| > 3) is subdirectly irreducible and reverse k-definite, but
not nilpotent automaton, then there is an m > 2 such that A can be embedded into
a quasi-direct product of A(m, k) with a single factor.

Proposition 3 ([2]). A generalized definite automaton A with at least three states
is subdirectly irreducible if and only if Con.(A) = {pl} or Con.(A) = {o0}.

We also need some particular automata. Let R = ({0,1}, {z,y}) denote the
two-state reset automaton defined by 0z® = 1z® = 1 and 0y® = 1yR = 0.
Finally, for every positive integer s > 2, let I = ({0,...,s},{z1,...,2s}) denote
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the automaton defined as follows: for all i € {0,1,...,s}, 4 # s —1 and z; €
{.’1}1, ce ,.’Es}, let

i+7 ifi+7<s,
s otherwise,

(s — l)z;f =s—1.
It is easy to see that each of the automata defined above is generalized definite.
Now, we are ready to characterize the isomorphically complete systems for G.

Theorem 1. A system M of generalized definite automata is isomorphically com-
plete for G with respect to the ag-product if and only if there exists an automaton
R' € M such that R can be embedded into a quasi-direct product of R' with a
single factor, moreover, for every positive integer s > 2, there ezists an automaton
I, € M having at least s+1 distinct states denoted by 0,1, ..., s, such that for every
1< j€{0,1,...,s}, {i,7} # {s — 1, s}, there exists an input symbol z;; of I, with
iz;; = Jj, and there is an input symbol z of I\, with sz =s and (s — 1)z =s — 1.

Proof. To prove the necessity of the conditions, let us suppose that M is an
isomorphically complete system of generalized definite automata for G-with respect
to the ag-product. Since R € G, there exist automata A; = (4;,X;) € M,
7 =1,...,m, such that R can be embedded into- an ag-product H;';l A(X,®).
Then it is easy to see that R can be embedded into a quasi-direct product of some
A; with a single factor. Similarly, by our assumption, Iy can be embedded into an
ag-product HJm:l A;(X, ®) of automata in M, since I, € G. Let u denote a suitable
embedding and let tu = (a1, ...,atm), t = 0,...,s. Moreover, let us denote by r
the least integer for which as_; ,» # asr.

First we show that ai; & {as—1r,asr}, for any 0 < ¢ < s — 1. Contrary,
let us suppose that a; = ag for some 0 < 7 < s — 1. Then there exists an

input symbol y = ¢, (ai1,. .., qir-1,Zs—1—;) € X, such that as,y = ai;ry = as_1,r.
On the other hand, by our assumption, as—1,r2 = @s—1, and 642 = asr, where
z = ¢r(as1,...,a50—1,71). Therefore, azz"y2*¥ = a,_1, and a,2"2*F = ag, is

valid for every pair of integers h,k > 0. This contradicts the fact that A, is-a
generalized definite automaton. Consequently, a;. # aqr, for any 0 < 7 < s — 1.
One can prove in similar way that a;r # as—1,, for all i € {0,1,...,s —2}.

Next we show that the elements a;, t = 0,1,...,5 — 2, are pairwise different.
Contrary, let us suppose that a;» = a;, for some integers 0 <7 < j < s — 2. Since
i < j and p is an embedding, there exists an input symbol z € X, such that a"xh
a;, holds, for every nonnegative integer h. Moreover, there are such input symbols
¥,%1,T2 € X, for which ai;y = as_2,, As—2,,%1 = Qs-1,r, and a;—2,Z2 = Qgp.
Finally, asr2 = agr and @512 = as_1,, where z = @.(as1,...,0,,-1,21) again.
Then a;z"yz;2*¥ = as-1, and a;;z yZ22* = a,, hold, for every pair of integers
h,k > 0, which contradicts the fact that A, is generalized definite. Therefore,
air # ajr, for any integers 0 <4 < j < s —2. By the two observations given above,
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we obtain that the elements aor, @1r, ..., are pairwise different. This results in
that A, can be considered as the required automaton Ij.

In order to prove the sufficiency of the conditions, let us suppose that M has
the required properties. We prove that M is an isomorphically complete system
for G with respect to the ag-product. For this reason, let us consider an arbitrary
generalized definite automaton A = (A, X) of n states. We prove by induction on
n that A can be embedded into an ag-product of automata in M. If n = 1 or
n = 2, then the statement is obviously valid. Now, let n > 2 and suppose that
the statement is valid for every m < n. If A is subdirectly reducible, then it can
be embedded into a direct product of generalized definite automata having fewer
states than n. By our induction hypothesis, each component automaton of this
direct product can be embedded into an ap-product of automata in M, and thus,
by Lemma 2, A can be also embedded into an ap-product of automata in M.

Let us suppose now that A is subdirectly irreducible. Then, by Proposition
3, Cone(A) = {p1} or Con.(A) = {o0}. We distinguish two cases depending on
Con.(A).

Case 1. Con.(A) = {p1}. Let ¢ # d € A with cp1d for some states c,d € A.
Then, by the definition of p1, cx = dz, for all z € X. Let X; = {z : z €
X ‘and ez = c¢}. Moreover, let 0, 1 and u,v denote the states and the input
symbols of R’ for which Ou = lu = 0 and Ov = 1v = 1 hold. Let us consider the
ag-product A/p; X R'(X,®) defined as follows. For alla € A\ {¢,d} and z € X,
let :

pi(z) =2
and

_Ju ifaz® €{c,d} or az? =¢,
‘P2({a}’z) - {v otherwise,

p2(p1(c),z) = {u if cz® ¢ {c,d} or z € X1,
’ v otherwise.

Let us define the mapping u: A — A/p; x {0,1} by

p:a— ({a},0), for all a € A\ {c,d},

e = (p(c),0),

wid— (pi(), ),
where p; (¢) denotes the equivalence class containing c. Then it is easy to see that p
is an embedding of A into the ag-product A/p; x R'(X, ®), and thus, our induction

hypothesis and Lemmas 1 and 2 imply that A can be embedded into an ag-product
of automata in M. '

Case 2. Con.(A) = {o¢}. Let c#d € A with copd. Then cz = ¢ and dz = d,
for all £ € X. Let us suppose that A is weakly (h, k)-definite for some h > .0,
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k>0. Foralla € A and u € X", let us define the subautomaton Ay = (4w, X),
where Ay, = {aup: p € X*}. Then A, is a weakly k-definite automaton. Indeed,
let v € X* be an arbitrary word and a’ € A,,. Then there is a word p € X* such
that a’ = aup. Since A is weakly (h, k)-definite, a’v = aupv = auv is valid for all
a' € Agu, and hence, Ay,v = {auv}.

Now, we distinguish two subcases depending on the subautomata A,.,.

Subcase 1. There exist a state ¢ € A and a word v € X" such that A,, is
not singleton. Then A,, is a subdirectly irreducible definite subautomaton of A,
since for any congruence v of A,,, the relation yUwy4 is a congruence relation of
A. If |Agy| > 3, then by Proposition 1, Cone(Agy) = {p}}, where p} denotes the
corresponding relation belonging to A,,. Then there are states e, f € A, such
that ex = fz, for all z € X. Then it is easy to see that the relation 8 defined on A
by

a'©a" if and only if {da',a"} C {e, f} or ' =a"

is an elementary congruence of A distinct from ¢ which contradicts our assumption
that Con.(A) = {oo}. If |Asu| = 2, then Agy, = {e, f} for some states e, f € A
and ez = fz is valid, for all z € X. Then one can define © in the same way as
above, and O is an elementary congruence of A which results in a contradiction
again. Consequently, this subcase is impossible.

Subcase 2. For all @ € A and u € X", A,, is singleton. Then, auz = au,
for all w € X" and z € X, and hence, A is weakly reverse h-definite, moreover,
by Con.(A) = {00}, A is not nilpotent. Since A is subdirectly irreducible, by
Corollary 1, A can be embedded into a quasi-direct product of A(m, k) with a single
factor for an integer m > 2. Without loss of generality, we may assume that h is the
least integer with this property. Let 7 denote a suitable embedding of A into the
quasi-direct product of A(m, h) with a single factor. Let B; = (A7 N A(m,i))771,
i=0,1,...,h. Since 7 is an embedding, it is easy to show that

(3){c,d}=ByCB; C...CB,=A
(4) BizA C B;_;,forall1<i<handz € X.

Let us consider now the ao-product A/og x I}, (X, ®) defined as follows. For
alla € A\ {c,d} and z € X, let

®1 (Zl:) =,

Th—jh-i ifa € Bj\ Bj_1 and az® € B;\ B;_;

- for some 1<i<j<h,
Th—jn  ifa € Bj\ Bj-1 and az® =c for some 1< j<h,.
Th—jnt1 ifa € B;\ Bi_; and az® =d for some 1< j <A,

(PZ({C: d}:z) = xl’

p2(a,7) =
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where z' denotes now the input symbol of I,y for which hz’ = h and (h + 1)z’ =
h+ 1 hold. By (3) and (4), the feedback functions are well-defined.

Let us define the mapping p of A & A/og x{0,1,...h+ 1} as follows. For every
a € A\ {c,d}, let '

p:a— ({a},h~j)ifa€ B;\Bj_ forsomel <j<h,

prc— ({c,d},h),
p:d— ({c,d},h+1).

Now, it is easy to check that p is an embedding of A into the ag-product under
consideration. Then, the induction assumption and Lemmas 1 and 2 yield that A
can be embedded into an ap-product of automata in M. This ends the proof of
the statement.

From Theorem 1, the next observation follows.

Corollary 2. There is no finite system M of generalized definite automata which
is isomorphically complete for G with respect to the ag-product.

The following statement shows that we can obtain finite isomorphically complete
systems by allowing automata as components which are not necessarily generalized
definite.

Theorem 2. A system M of automata is isomorphically complete for G with
respect to the ag-product if and only if M satisfies the conditions below:

(1) there ezisté an automdton R' € M such that R can be embedded into a quasi-
direct product of R' with a single factor,

(2) (a) for every positive integer s > 2, there exists an automaton I, € M

which has s + 1 distinct states, denoted by 0,1,...,s, such that for all

1< je{0,1,...,s}, {i,5} # {s — 1, s}, there exists an input symbol z;;

of I, with iz;; = j, and there is a further input symbol « of I, such that
st=sands—lz=s5~-1,

or

(b) there exists an A € M which has a state a and not necessarily distinct
" input symbols u,v,w,z such that au = a, av # aw, avz = av, and
awz = aw.

Proof. To prove the necessity of the conditions, let us suppose that M is isomor-
phically complete for G with respect to the ag-product. The necessity of (1) follows
from the proof of Theorem 1.

Now, we prove that (2)(a) or (2)(b) is valid for M. For this purpose, let us
suppose that (2)(a) is not valid. Then there is a positive integer so > 2 such
that I{, ¢ M. By our assumption, I, can be embedded into an ao-product
1'[;.';1 A;(X,®) of automata in M since I, € G. Let u denote a suitable isomor-
phism and let tp = (as1,...5atm), t = 1,...,80. Let 7 be the least integer for which
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Qso—1,r # Qsq,r. Let us observe that if the elements ag,, @1r, ..., a5, » are pairwise
different, then A, can be considered as I which is a contradiction. Consequently,
there are i < j € {0,1,...,50}, {¢,5} # {so — 1,50} such that a; = aj,. Now, it is
easy to show that A, satisfies condition (b), and therefore, (2)(b) is valid for M.
In order to prove the sufficiency, let us suppose that M satisfies the conditions.
If (1) and (2)(a) are valid, then Theorem 1 implies that M is isomorphically com-
plete for G with respect to the ap-product. Let us assume now that (1) and (2)(b)
are valid for M with R' and A, respectively. Then, by Lemma 2 and the sufficiency
of conditions (1) and (2)(a), it is suffficient to show that I, can be embedded into
an ap-product of automata in {R, A}, for every positive integer s > 2. For this
purpose, let s > 2 be an arbitrary positive integer. Let us define the ag-product

RX...xRxA({wl,---,zs}a‘I))’

where the number of the occurences of R is equal to s — 1, in the following way.
For every (r1,...,7s-1) € {0,1}*7}, 21 € {21,...,25}, and j € {2,...,5 — 1}, let
¥1 (zk) =z,
Y r +k>j
i(r1y ..., Tj—1,Tg) = t=1 =0
©3{rs e -, 2) {y otherwise,
u YTtk <s—1,
v i+ k=s-1,
w ST re+k>s and Y As—1,
z otherwise,

@s(T1y .y Ts—1,Tk) =

where a and u, v, w, z denote the suitable state and input symbols of A, respectively.
Now, let us consider the mapping u defined by

©:0-—(0,0,0,...,0,a),
p:1-—(1,0,0,...,0,a),
p:2—(1,1,0,...,0,a),

pw:s—2-(1,1,...1,0,qa),
pis—1-(1,1,...,1,1,av),
prs—=(1,1,...,1,1, aw).

Then it is easy to see that u is an isomorphism of I, into the ag-product R x
xR x A({z1,...,Zs}, ®) under consideration which ends the proof of Theorem

The next statement directly follows from the definition of the «;-products.

Lemma 3. If the automaton A can be embedded into an ag-product of automata
A;, 5 =1,...,n, and each A; can be embedded into an o, -product of automata
Aj, t=1,...,mj, then A can be embedded into an a;-product of automata Ay,
t=1,...,m;; j=1,...,n. . :
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Now, let ¢ > 1 be an arbitrary integer. Then the isomorphically complete
systems of generalized definite automata with respect.to the a;-product can be
characterized as follows.

Theorem 3. A system M of generalized definite automata is isomorphically com-
plete for G with respect to the aj-product (i > 1) if and only if there exists an
automaton R" € M such that'R" has two distinct states denoted by 0,1 and four
not necessartly -distinct mput symbols v,Z,Y,% ‘such that lv =0,0z =0, 0y =1,
1z=1.

Proof. The necess'rﬁy of the conditions can be proved in a similar way as in the
case of Theorem 1.

Regarding the sufficience, let us observe, that R can be embedded into an «;-
product of R” with a single factor, and this product is an a;-product of R” with
single factor. Now we show that for every integer s > 2, the automaton I can be
embedded into an a;-power of R".

Let s > 2 be an arbitrary integer. Let us consider the a1-power
(R")*({z1,...,7s}, ®) defined as follows. For all 1 < k <'s, (v1,...,vx) € {0,1}*,
and z; € {1,...,%s}, let .

z i+ Y5 v <k,
k(1,6 T5) =y ifj—hzlethk and v =0,
z otherwise,

furthermore, for all (vy,...,vs) € {0,1}* and z; € {z1,...,z,}, let

let l’Ut—S—l

if Y, <s—1 and ]+Zt LU <s—1,
1fzt LU <s—1 and- ]+2t 1Ut>8,

if Y, v =s.

<ps((v1, .. .,’US,IE]') =

IS ]

Then it is easy to see, that the mapping p given by
w:0-—(0,0,0,...,0),
pw:l1—-(1,0,0,...,0),
p:2(1,1,0,...,0),

p:(s—-1)-(,1,...,1,0),
pis—(1,1,...,1,1),
is an embeddlng of I; into the a1- power under consideration.

.By ‘Theorem 1, the system K = {R}U{I; : s = 2,3,.. } is an isomorphically
complete system for G with respect to the ag-poduct. Therefore every generalized
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definite automaton can be embedded into an ag-product of automata in X. On
the other hand, we have proved that every automaton in K can be embedded into
an ay-power of R”. Then, by Lemma 3, we obtain that every generalized definite
automaton can be embedded into an a;-power of R”, and consequently, {R"}, and
also M, are isomorphically complete systems for G with respect to the a;-product.

The following assertion shows that we obtain the same characterization of the
isomorphically complete systems consisting of not necessarily generalized definite
automata with respect to the a;-product (i > 1).

Theorem 4. A system M of automata is isomorphically complete for G with
respect to the a;-product (i > 1) if and only if it contains an automaton R" such
that R has two distinct states, denoted by 0, 1, and four not necessarily distinct
input symbols z,y, z,v with 0z®" =0, YR =1, 1zR" =1, IWR" = 0.

Proof. The validity of Theorem 4 follows immediately from Theorem 3.
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