
Acta Cybernetica 15 (2001) 75-100. 

Logical definability of Y-tree and trellis systolic 
(¿-languages* 

Monti Angelo^and Peron Adriano* 

Abstract 

In this paper we investigate the correspondence (in the style of the well 
known Biichi Theorem) between aj-languages accepted by systolic automata 
and suitable (proper) extensions of the Monadic Second Order theory of one 
successor (MSO[<]). To this purpose we extend Y-tree and trellis systolic 
automata to deal with a»-words and we study the expressiveness, closure and 
decidability properties of the two classes of w-languages accepted by Y-tree 
and trellis automata, respectively. We define, then, two extensions of MSO[< 
], MSO[<,adj] and MSO[<, 2x], which allow to express Y-tree w-languages 
and trellis cj-languages, respectively. 

1 Introduction 
The subject of automata accepting infinite sequences was established in the sixties 
by Biichi, McNaughton and Rabin (for a survey, see [16, 17]). One motivation for 
considering automata on infinite sequences (Biichi automata) was the analysis of 
the sequential calculus ( M S O [ < ] ) , a system of monadic second order logic for the 
formalisation of properties of sequences. Biichi showed that any condition on se-
quences that it is written in this calculus can be reformulated as a statement about 
acceptance of sequences by a Biichi automaton (Biichi Theorem). The resulting 
theory is fundamental for those areas in computer science where non-terminating 
computations are studied, for instance modal logics of programs and specification 
and verification of concurrent systems (e.g. see [15]). This paper is an attempt to 
set a correspondence between (¿-languages accepted by systolic automata and suit-
able (proper) extensions of M S O [ < ] . Systolic automata (see [8] for a survey) are 
synchronous networks of (memoryless) processors working in discrete time. These 
automata have been the main theoretical models used to study various basic prob-
lems concerning systolic architectures, systems and computations. In this paper we 

•Research partially supported by M U R S T Progetto Cofinanziato TOSCA. 
tDipartimento Scienze dell'Informazione, University di Roma (La Sapienza), 00198, ViaSalaria 

113, Italy, e-mail: montiadsi.uniromal.it 
iDipartimento di Matematica e Informatica, Universita di Udine, 33100, Via Zanon 6, Italy, 

e-mail: peronidimi.uniud.it 

75 



76 Monti Angelo, Peron Andriano 

a) b) 

c) 

Figure 1: Interconnection structures for systolic automata: binary tree (a), Y-tree 
(b) and trellis (c). 

consider systolic automata enforcing three of the most widely studied types of inter-
connection structures, i.e. leafless binary tree, leafless binary Y-tree and downward 
unbounded trellis (see figure 1). These automata have been mainly, considered 
as acceptors of finitary languages. Only recently, binary tree systolic automata 
have been considered as acceptors of w-languages in [12], showing that the class 
of binary tree id-languages properly extends the class of w-languages accepted by 
Biichi automata though preserving the same closure and decidability properties. In 
this paper we introduce also the class of Y-tree ui-languages (i.e. the class of u-
languages accepted by Y-tree), which extends the class of binary tree w-languages, 
and the class of trellis u-languages which, in its turn, extends the class of Y-tree ui-
languages. The class-of Y-tree w-languages is closed under union and intersection, 
it is not closed under complement and the emptiness problem is undecidable. The 
class of trellis a;-languages is closed1 under union and intersection. The emptiness 
problem is undecidable. As well as in the finitary case (see [9]), the closure under 
complementation remains an open question. The logical characterisation of binary 
tree w-languages has been established in [13], where it has been shown that such a 
class of languages corresponds (in the sense of Biichi theorem) to a proper extension 
of MSO[<] by a suitable function flip (the extension is denoted by MSO[<, flip]). 

In this paper we propose two suitable extensions of MSO[<], denoted by 
EMSO[<,adj] (the fragment of MSO[<,adj] allowing only existential quantifi-
cation over predicates) and MSO[<} 2x], which allow to express Y-tree and trellis 
w-languages, respectively. Actually, we believe that EMSO[<,adj] characterises 
the class of Y-tree u-languages. The question, whether M S O [ < , 2x] is a char-



Logical definability of Y-tree and trellis systolic co-languages 77 

acterisation of w-languages accepted by trellis automata, is an (hard) problem di-
rectly related to the open problem of the closure under complement of both finitary 
and w-languages. The hierarchy of extensions of regular w-languages accepted by 
Biichi automata and the corresponding hierarchy of extensions of MSO[<] are 
summarised in figure 2. 

We believe that investigating logical characterisations of systolic languages is 
meaningful for both theoretical and practical reasons. The results of the characteri-
sation of binary tree w-languages have been fruitfully applied in [10] for studying the 
decidability properties of logics for time granularity interpreted over w-layered met-
ric temporal structures (the traditional basic engine of MSO[<] was, in that case, 
not powerful enough). We believe that the results presented in this paper could 
be fruitfully applied for formally studying and comparing the expressive power of 
meaningful extensions of the temporal logics for time granularity considered in [10]. 
Moreover, we expect that our investigation could contribute in an original way to 
the research oriented to developing systematic and sufficiently automatisable meth-
ods to synthesise systolic systems from high level specifications. 

2 Preliminaries 
Throughout this paper E denotes an alphabet; E* denotes the set of (finite length) 
words on E, and denotes the set u — words on E. Finite words are indicated 
by u,v,w,..., e is the empty word and letters a , / ? , . . . are used for w-words. The 
symbol • denotes concatenation on strings. For an w-word a, a(i), with i £ IN, 
denotes the i-th element of a; a(m,n) denotes the subword a ( m ) • . . . • a(n) of a , 
and a(n,cj) denotes the suffix a(n) • a(n + 1) • . . . of a. For V C E*, is the set 
of w-words having the form vq • vi • v2 • • • • with Vi £ V, for i £ IN. 

2.1 Logical definability 

Properties of words will be described by monadic second order logic formulas. 
Since logical formulas will be interpreted over words, it is more convenient to 
identify a word a £ £ w with the structure a = (IN, < , ( Q a ) a e s ) , where < is the 
usual ordering of natural numbers and Qa = {i : a(i) = a } . 

In the sequel we shall consider a second order language over a set of (inter-
preted) binary relation symbols Bi,... ,Bn, denoted as MSO[Bi,...,Bn] (for 
notation we follow [17]), whose syntax is as follows. 

Given an alphabet of individual variables x,y,z,..., predicates X, Y, Z,... 
and predicate symbols Qa (with a £ E), 
Atomic formulas have the form x = y, xBiy, X(x) and Qa{x)\ 
Formulas are built up from atomic formulas by means of the boolean connectives 
->, A, V, and the quantifiers V and 3 ranging over both individual variables and 
predicates. 



78 Monti Angelo, Peron Andriano 

£u(Trellis A.) C 
U 

£W(Y — Tree A.) C 
u 

CU{B - Tree A.) = 
u 

Cu(Buchi A.) = 

MSO[<, 2x] 
U l 

EMSO[<,adj} 
U 

EMSO[<,flip) = MSO[<,flip} 
U 

EMSO[<] = MSO[<} 

Figure 2: The hierarchies of systolic w-languages and of the related MSO[<] ex-
tensions. 

Individual variables are interpreted as elements of IN (i.e., positions of an cj-word) 
and predicates as subsets of IN (i.e., sets of positions of an w-word). Atomic formulas 
x == y and X(x) are interpreted as equality between x and y, and x € X. For a fixed 
interpretation of binary relational symbols B t (as subset of IN x IN), atomic formulas 
xBiy, are interpreted as (x,y) £ Bi. Given an u-word a, Qa(x) is interpreted as 
x £ {i : a(i) = a} . Boolean connectives and quantification operators are endowed 
with the standard semantics. 

If (j){Xi,..., Xn) is a formula with at most the predicates X\,..., Xn occur-
ring free in <f>, a is a w-word and Pi,... ,Pn are subsets of IN, then we write 
(a, Pi,..., Pn) |= (¡>{Xi,..., Xn) if a satisfies <f> under the above mentioned 
interpretation taking Pi as interpretation of X j . A formula without free variables 
and predicates is said to be a sentence. If ^ is a sentence, for sake of simplicity, 
we write a |= <f>. The language L(</>) defined by a sentence (f> is the set of all words 
a e E " such that a |= (j). A language L is MSO[Bi,..., ¿?„]-definable if there is 
a formula <j> of MSO[Bx,..., Bn] such that L = £(<£); L is EMSO[Bi,... ,Bn]-
definable if there is a sentence (j) having the form 3 X i . . . 3Xnip(X-i,... ,Xn) of 
MSO[Bi,..., Bn] such that L = L(cf>) and i> contains only first order quantifiers 
(i.e. quantifiers occurring in ip range only over individual variables). In the 
following the binary relational symbol < is interpreted as the standard order-
ing of natural numbers. In this setting Biichi Theorem can be formulated as follows. 

Biichi Theorem An w-language is regular iff it is MSO[<]- definable. 

In the sequel, for simplicity, atomic formulas over relational symbols inter-
preted as functions will be written in functional form (i.e. flip(x) = y, adj(x) = y, 
2x = y instead of x flip y, x adj y, x 2 y). 

3 Systolic computations 
Let us recall how systolic automata process a word in the finitary case. Systolic 
automata are networks of (memoryless) processors (called also nodes in the fol-
lowing) working in discrete time. As far as systolic binary tree are concerned, the 



Logical definability of Y-tree and trellis systolic co-languages 79 

Layer 

3 

2 

1 

0 

Figure 3: The upward unbounded binary tree structure. 

interconnection structure of a binary tree automaton is an (infinite) leafless per-
fectly balanced binary tree (see figure l.a). In order to process a word w, whose 
length |io| is equal to 2 l , the i-th level of the tree is chosen (the level of the root is 
0). Now, the automaton is fed in such a way that adjacent processors at level i-th 
are fed with adjacent symbols of w, and that the leftmost processor is fed with the 
first symbol of w. All the processors at level z-th synchronously output a symbol 
belonging to the state alphabet Q, according to the input relation of the automa-
ton. Each processor at level (i — l)-th receives the two states output by its two 
sons (placed at level i) and it synchronously (with respect to processors at the same 
level) outputs a symbol belonging to Q according to the transition relation of the 
automaton. Therefore, information flows bottom-up, in parallel and synchronously, 
level by level. The result of the computation is collected at the root of the tree and 
the word w is accepted if the state associated with the root is a final state. 

Let us consider now the case of w-languages. Though the local topology of the 
interconnections of processors remains unchanged, the whole structure is gener-
alised. In the finitary case the structure is a leafless binary tree, namely a down-
ward unbounded multilevel structure (provided with infinitely many layers) having 
a bounded number of processors at each layer. On the contrary, the structures we 
shall considering are upward unbounded multilevel structures where each layer is a 
structure isomorphic to natural numbers (with the usual order). In this respect, an 
upward unbounded structure (see figure 3) can be represented as a grid of proces-
sors which is unbounded both in the horizontal dimension (processors in a layer) 
and vertical dimension (number of layers). In the following we shall mention the 
i-th column of the structure intending the set of i-th elements of each layer. 

Nodes of a layer (with the exception of the 0-th layer) are connected to nodes of 
the previous layer drawing a regular topology: either binary tree like as in figure 3, 
or Y-tree like as in figure 6 or trellis like as in figure 13. In such a framework, the 
oj-word to be processed is associated with the 0-th layer of the upward unbounded 
structure, adjacent symbols being associated with adjacent nodes. The information 
flows up, in parallel and synchronously, level by level exactly as in the finitary case. 
Therefore, a systolic computation is a labelling (over the alphabet of states of the 
automaton) of the upward unbounded structure compatible with the transition 



80 Monti Angelo, Peron Andriano 

relation of the automaton. In order to accept/discard a computation on an u>-
word, we impose a Biichi criterion on the labels of the 0-th column, namely the 
computation is successful if an infinite number of final states label that column. 
In the following we shall see how a computation on a w-word a, defined here as a 
labelling of the whole structure, can be indeed defined incrementally step by step 
as the result of composing the results of finite computations on segments of finite 
length of a . Notice that the interconnection structure we are proposing allows one 
to easily simulate the systolic computation defined in the literature for the finitary 
case. 

In the remaining part of this section we recall (from [13]) the definitions and 
results concerning systolic automata operating over an upward unbounded binary 
tree structure. The cases of Y-tree and trellis interconnection structures are intro-
duced and discussed in the two next sections. 

Definition 1 A binary tree automaton is a tuple A = ( £ , Q, QQ. g, f ) , where 

• Q is the finite set of states and QQ C Q is the set of final states; 

• g C E x Q is the input relation; 

• fQQxQxQ is the transition relation. 

Let us introduce now a notion of step-wise binary tree computation on u-words. 
Consider an w-word a. At each computation step, the automaton process a segment 
of a whose length is a power of two and doubles step, by step. The computation of 
a systolic automaton A is defined for a word,«; € £* only if |w| = 2fc (with k > 0) 
and it is given by the relation Oa C E* X Q defined recursively on A; as follows: 

• if |u;| = 2°, then (w, q) £ Ojt if and onlyif (w, q) £ g; 

• if = 2k, with k > 0, then (w,q) £ Oa if and only if {q\,q2,q) 6 /, 
with {wi,qi), (w2,q2) £ Oa, |u>I| = |w2| = 2k~1 and w\ • w2 = w. 

The step-wise computation of an automaton A over an w-word a is recorded into 
an w-sequence of states called B-run. Such a sequence stores at the i-th position the 
state q resulting from processing the prefix a(0 ,2 l — 1) of a. The state resulting 
from processing. the next prefix a (0 ,2 t + 1 — 1) is obtained from q and from the 
states q', output by the systolic automaton fed with a ( 2 l , 2 t + 1 - 1), according to 
the transition relation / . The structure of the step-wise computation is depicted 
in figure 

4. Notice that the B-run is the sequence of states labelling the 0-th column of 
the structure. 
More formally, a B-run of A on a € Ew is a map tp :~SN Q s.t. 

. ( a ( 0 ) , m ) e s ; 

• (t/>(i - 1 ),q,ip(i)) e f , with (a (2 i _ 1 ,2* - 1 ),q) £ 0A, for i > 0. 



Logical definability of Y-tree and trellis systolic co-languages 81 

+ 1) 

m 
a(0) a ( l ) a( 2,3) a( 4,7) a ( 2 i - 1 , 2 i - l ) 

Figure 4: A B-run tp on a. 

A B-run is successful iff there are infinitely many i such that ip(i) £ Qo• An 
oj-word a is accepted by A iff there exists a successful run of A on a. The set of 
w-words (i.e. the language) accepted by A is denoted by Cu,(A). 

In [13] we proved that the logical counterpart of (¿-languages accepted by 
binary tree automata is obtained by extending MSO[<] with a function flip given 
as follows. 

Definition 2 The function flip : EST1" —> IN is such that 

if x — 2kn + 2*""1 + . . . + 2ko with kn> ... > ki > k0, then flip{x) - x - 2k°. 

The logical definability of w-languages accepted by binary tree automata is 
proved by showing that the function flip allows to impose on natural numbers the 
upward unbound binary tree structure depicted in figure 5. Such a structure is 
obtained by associating with each even number 2 = 2kn + ... + 2kl + 2k° (with 
kn > . . . > ki > ko > 0), the left and right son, respectively, 

Such a childhood relationship can be easily defined into MSO[<, f lip] since 

x = 2kn + ... + 2kl + 2k°~1 and 

y = 2kn + ... + 2kx + 2k° + 2ko~1. 

(1) 

(2) 

x = max{s : s < z, flip{s) — flip{z)} and 

y = max{s : flip{s) = z}. 

(3) 

(4) 

Notice that the elements of the i-th layer (with i > 0) are 

{2* + k2i+1 :k>0} (5) 



82 Monti Angelo, Peron Andriano 

2 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

Figure 5: The upward unbounded binary tree structure on IN. 

and the elements of the i-th column (with i > 0) are 

Remark. Notice that the 0-th layer of the upward unbounded binary structure on 
IN is isomorphic but not equal to IN (even numbers are missing). As a consequence, 
when such a structure is exploited for simulating a systolic computation on an 
input word a, a cannot be associated directly with the 0-th layer (i.e. a (0 ) with 
1, q(1) with 3 and so on) since, in this case, the set of numbers IN would not 
be in correspondence with the index set of a. The correspondence between IN 
and the index set of a is recovered by associating with the 0-th layer, instead of 
a, the sequences of states of the systolic automaton q\, q3, q$,..., q2n+I, • • •, with 
Qi G f(g(a(i ~ l)),g(a(i))) (a preprocessing of a). 

Theorem 1 (cf.[13j) An u-language is accepted by a binary tree automaton iff it 
is MSO[<, flip}-definable (or equivalently, iff it is EMSO[<, flip] -definable). 

4 Y-Tree w-Languages 
The interconnection structure of a Y-tree automaton is a leafless perfectly balanced 
binary tree augmented with links from a node to the immediate neighbour (if any) 
of its right son called the adoptive son (see figure l .b) . The expressive power and 
properties of Y-tree automata as acceptors of finitary languages have been studied 
in [5, 7]. In this section we introduce and study Y-tree automata as acceptors of u -
languages. In this respect, a Y-tree automaton processes a word exactly as a binary 
tree automaton does with the only exception that the computation is performed 
over an upward unbounded Y-tree structure (see figure 6). 

Definition 3 A Y-tree automaton is a tuple y = (E, Q, Qo,g, f ) , where 

• Q is the finite set of states and QQ C Q is the set of final states; 

• g C E x Q is the input relation; 

{ ( 2 1 + 1 )2* : k > 0 } . (6) 



Logical definability of Y-tree and trellis systolic co-languages 83 

Figure 6: The upward unbounded Y-tree structure. 

• fCQxQxQxQ is the transition relation. 

A computation of a Y-tree automaton is then a labelling of an upward un-
bounded Y-tree structure compatible with the input and transition relations of the 
automaton. As in the case of binary tree automata, we define now the step-wise 
version of such a computation. Given an w-word a, at each computation step, the 
automaton processes a segment of a whose length is a power of two and which dou-
bles step by step. In this way, at the i-th computation step, the prefix a(0,2®+1 — 2) 
of a turns out to be processed, and the result of such a computation is stored into 
a sequence QO QI of states of Q. The sequence QO QI is precisely the se-
quence of states labelling the path of adoptive edges from the i-th element of the 
0-th column of the upward unbounded Y-tree structure leading to the 0-th layer 
(see, for instance, the path labelled by v(0)u(l)v(2) in figure 7 which codifies the 
result of the 2-th step of a computation). Now, the i 1-th step transforms the 
sequence qo qi, encoding the computation at the i-th step, into a sequence of 
states q'0 q\, q'i+1 as a result of composing qo qi with the result of processing 
the segment a (2 t + 1 — 1,2 I + 2 — 2) of a. Notice that, in order to store the information 
about the computation on the prefix of a w-word, a sequence (of unbounded length) 
of states is required (in the case of binary tree automata a single state suffices). For 
a Y-tree automaton }>(£, Q, Qo,g, / ) , the transformation above, called run step, is 
given by the relation 

Oy C Q* x £* x Q* 

which satisfies the property that (v,w,u) € Oy implies = k, \w\2k and = 
k + 1, for some k > 0, and is defined recursively on k as follows (see figure 7 for a 
graphical hint): 

• if k = 0, then (e,w,q) & Oy, with (w,q) £ g\ 

• if k > 0 and wi • W2 = uj with |u;i| - \w2 \ = 2 f c _ 1 , 
then (v ,w,q • u2) € Oy, where 

- {v(l,k- l ) , iu i ,u i ) e Oy, (tti(l,fc - l ) , iu2 ,u2 ) € Oy, 
(v(0) ,u1 (0) ,u2 (0) ,q) E / . 



84 Monti Angelo, Peron Andriano 

Figure 7: A Y-tree step. 

A Y-run for an w-word a stores the result of each computation step and it is defined 
as a map tp : IN Q* such that: 

• (ip(i), a(2i+1 - l,2i+2 - 2),ip(i + 1)) £ Oy, for i > 0. 

A Y-run tp over a £ is successful iff there are infinitely many i € IN s.t. ip(i) — vl 

and u,(0) € QO- The structure of a Y-run is shown in figure 8. The definition of 
a w-language accepted by Y-tree automaton is exactly as the one for binary tree 
automata. 

Example 1 An instance of Y-tree u-language is: 

L = {ae {0,1}W : a(2s + k2s+l) = 1 for some s > 0, for all k > 0}. (7) 

Notice that a G L iff the positions where a is set to 1 include at least the set of 
natural numbers belonging to a layer of the upward unbounded binary tree structure 
on IN (see figure 5 and Eq.5). 
Before giving a formal definition of the automaton accepting the language L, we 
sketch the idea behind the recognising process. The automaton propagates the sym-
bols {0,1}, received at its input layer, till a layer which is supposed to be uni-
formly labelled by symbol 1 is reached. At this point, all of the processors in the 
active layer check the uniformity of the labelling of the previous layer, by verify-
ing that all of their left and adoptive sons are uniformly labelled, and propagates 
the successful/unsuccessful result of the test. A symbol is propagated along the 
adoptive edge at the first step and along the right edge in all the remaining steps. 
At each step a processor chooses non-deterministically whether to propagate the 
signal it is receiving from its right son or to perform the uniformity check. The 
check can be successful only if all of the processors of a layer choose simultane-
ously and non-deterministically to perform the uniformity check. The automaton 
^ = (£, Q, Qo, g, f ) accepting L is given by the following components: 

• Q = { 0 ,1 ,0 ,1 , o k } , Qo = {ok}, g= {(x,x) : x £ { 0 , 1 } } ; 



Logical definability of Y-tree and trellis systolic co-languages 85 

vi (0 

*o(0) wi ( l ) V2(2) 

Figure 8: The structure of a Y-run (Vi — ip(i)). 

« 3 ( 3 ) 

• / = {(x,l,y,ok),{x,y,z,z),(l,x,l,ok),{x,y,z,y),{ok,ok,ok,ok) : 
with x,y,z G { 0 , 1 } } . 

Over-lining of states is used to distinguish the first step of the computation from 
the others. The state ok is output after a successful uniformity check. The first 
and second schemas of tuples manage check and transmission, respectively, at the 
first step. The third and fourth schemas of tuples manage check and transmission, 
respectively, in all the other steps. 

As far as expressivity is concerned, the class of Y-tree w-languages includes the 
class of binary tree w-languages as an immediate consequence of the fact that the 
upward unbounded Y-tree structure is a upward unbounded binary tree structure 
enriched with adoptive edges. In fact, as in the finitary case, Y-tree automata are 
more expressive than binary tree ones. 

Theorem 2 The class of Y-tree ui-languages strictly includes the class of binary 
tree ui-languages. 

Proof. We show that the Y-tree language L of Example 1 is not accepted by any 
systolic binary tree automaton. The proof is by contradiction. Let us assume that 
there exists a systolic binary tree automaton A having n states and accepting L. 
We take now the n + 1 (different) w-words ao,... ,an of L such that « ¿ ( j ) = 1 
iff j = 2% + k2l+1 (for all k > 0). The positions set to 1 in a.i are exactly those 
associated with the i-th layer of the upward unbounded structure. Let ipi be a 
successful B-run of A for al (with 0 < i < n). Since the number of states is n, 
there must be two runs ipj and ipk with j k such that ipj(n + 1) = i/>k(n -I- 1). 
This immediately implies, by the definition of B-run, that the w-word 

has a succesful run (e.g. ipj(0,n + 1) • ipk(n + 2,w)). This leads to a contradiction 

a' = o>j(0,2n+1 — 1) • a f c ( 2 n + 1 , u ; ) 

since a' £ L. • 

By exploiting standard techniques it is easy to prove the closure properties of 
Y-tree w-languages stated in the following proposition. 



86 Monti Angelo, Peron Andriano 

Figure 9: Trasmitting a; along the third column and bj along left edges. 

Proposition 3 The class of Y-tree co-languages is closed under union, intersection 
and projection. 

As in the finitary case (see [7]), the class of languages accepted by F-tree au-
tomata is not closed under complementation. We show in the following example a 
F-tree language whose complement is not accepted by any F-tree automaton. 

Example 2 An instance of Y-tree co-language is 

L={a 6 {0 ,1 } " : a(2s + k2s+1) ± a(2s' + k2s'+1) for some s', s, k,>0}. (8) 

Notice that a £ L iff there are two positions i and j of a such that a(i) ^ a(j) and 
i and j belong to the same column of the upward unbounded binary tree structure on 
IN (see Eq.6). In order to prove that a € L, it is sufficient to check that there exists 
an odd position i (i.e. the least element of a column) of a such that a(i) ^ a(j) 
and i and j are elements of the same column. We sketch the algorithm used by 
the automaton to check that positions i and j as above belong to the same column. 
The idea is that of (upward) propagating the symbol ai from position i, and bj 
from position j, till they meet at a common node (see figure 9). The symbol bj 
is forced to move only along left edges. The symbol at is propagated, by exploiting 
non-determinism, along the i-th column. Following this procedure, symbols ai and 
bj meet if and only if i and j belong to the same column. In fact, if i and j belong 
to the same column, then j = i2k (for some k). When j moves from the 0-th layer 
to the 1-th along a left edge, it reaches the i2k~l-th position of that layer, and then 
the i2k~2 at the next step, and so on (see figure 9). It remains to show that it is 
possible to move the symbol ai along the i-th column. Let us consider the example 
of figure 10. The symbol a is input at position 5. At the second computation step, 
the node at position 5-th in the 1-th layer guesses that it is an element of the 5-
th column and it enters the state A. The correctness of such a guess has to be 
checked. To this purpose, both the nodes labelled by a and A transmit upward a 
check-symbol (ca and CA, respectively). The guess is correct if the sequences of 
edge types (left/right) in the two paths from the nodes labelled by a and A to the 
0-th column is the same. Since the path length could be arbitrarily long and the 



Logical definability of Y-tree and trellis systolic co-languages 87 

CA 

Figure 10: Transmitting a symbol along the 5-th column. 

number the states is finite, this comparison cannot be performed at the completion 
of the path but must be performed step by step in the following way. Each sequence 
of nodes in the segment of the layer bounded by the path of ca and CA keeps trace 
of the last two types of edges crossed by ca in its way. In figure 10, R-, LR and RL 
stand for Right, Left — Right and Right — Left, respectively. This information 
is used by the nodes on the path of CA to force the crossing of an edge of the same 
type as the one crossed by ca a step before. The formal definition of the automaton 
is now easy and it is, for the sake of simplicity, omitted. 

Theorem 4 The class of Y-tree w-languages is not closed under complementation. 

Proof. We show that the language 

L = {a G { 0 , 1 } " : a(2s + k2s+1)a(2s' + k2s'+1), for all s1, s > 0 with k > 0} (9) 

is not a Y-tree w-language. Note that such a language is the complement of the 
y-tree w-language of Example 2, since a G L iff all of the positions of a belonging 
to the same column are labelled by the same symbol. The proof is by contradiction. 
Let us assume that there exists a systolic Y-tree automaton y having n states and 
accepting L. For a suitable m, we take now s = 2~ 2 " > nm+1 (different) w-words 
a i , . . . , as of L such that ai {k) ± aj(fc') for odd k, k', with 1 < k, k' < 2 m + 1 - 2, 
for all 1 < i < j < s. Notice that each odd number identifies a column, and then a.i 
and a j disagree at least in the labelling of a column. Let ipi be a succesful Y-run 
of y for Q{ (with 1 < i < s). Since there are at most n m + 1 < s different strings on 
states of y of length m-1-1, there must be two runs ipj and ipi with i ^ j such that 
ipi(m) = ipj (TO). This immediately implies, by definition of Y-run, that the w-word 

a' =aj{Q,2m+1 -2)-ai(2m+1 -l,w) 



88 Monti Angelo, Peron Andriano 

has a succesful Y-run, namely ip such that ip(k) = ipj{k), for 0 < k < m and 
ip = tpi, elsewhere. This lead to a contradiction since a' $ L. • 

Proposition 5 The emptiness problem for Y-tree co-languages is not decidable. 

Proof. In order to show that emptiness is undécidable, it is sufficient to realise 
that for a given Y-tree automaton y (for finitary words on the alphabet E) we 
can construct a Y-tree automaton y ' for w-words on alphabet E U {J!} (with fl not 
in E), such that the language accepted by y is empty iff the language accepted by 
y 1 is empty. Now, the undecidability of emptiness problem for the case of w-words 
follows from the undecidability of the emptiness problem in the finitary case (see 
[6]). - • 

To define a calculus which is as powerful to accept Y-tree w-languages, we extend 
MSO[<] by a (partial) function adj i l N n - l N , s.t. 

if x = 2k" + 2*"-1 + ... + 2k°, with kn > fcn_i > ... > k0 > 0, then 
adj(x) = x + 2k° + 2k°~1. 

The logical definability of w-languages accepted by Y-tree automata can be proved 
by showing that the function adj allows lis to impose on natural numbers the up-
ward unbound Y :tree structure depicted in figure 11. Such a structure is obtained 
by enriching the binary tree structure of figure 5 with an edge between x and y iff 
adj{x) - y . 
In fact, MSO[<,adj] allows one to define two predicates Right.son(z,x) and 
Leftson(z,x), which are true iff the number x is the right and left son, respec-
tively, of z (in the sense of Eq.2 and Eq.l ). 
Now, x is the left son of z, if either x + 1 = z and z is at the 1-th layer (i.e. 
3s(adj(z) = s A ->3t(adj(s) = i ) ) ) , or z is at the i-th layer (with i > 1) and 

x = min{s : s < z A adj(s) > z)}. 

The two cases above can be expressed by a formula of MSO[<,adj] which, for sim-
plicity, we denote by Left.son(z, x). Thé formula Rightson(z, x) can be expressed 
in terms of adj and Left.son(z,x) as follows 

->3s(adj(x) = s) A x = z + IV 
3s, t(adj(x) = s A adj(z) = t A Leftson(t, s)). 

Example 3 A EMSO[<, adj}-formula defining the language L of Eq.7 is 

3Y(Vx(Y(x) => Qi(x))A 
Vy, z(son(z, y) A Y(y) Vs(son(z, s) => Y(s)))), 

where son(z,y) stands for Leftson(z,y) V Rightson(z,y) V adj(z) = y. 



Logical definability of Y-tree and trellis systolic u-languages 89 

2 30 . . 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

Figure 11: The upward unbounded Y-tree structure on IN. 

Now, we can state the main theorem of this section, namely the logical defin-
ability of F-tree oj-languages. As it is precisely shown in the proof of Th. 6, the 
upward unbounded Y-tree structure on IN allows to simulate a Y-tree systolic com-
putation. Also in this case, as remarked in the end of section 2, an w-word a cannot 
be associated directly with the 0-th layer of the structure but it is associated to 
this layer only after a preprocessing step. 

Theorem 6 Any ui-language accepted by a Y-tree automaton is EMSO[<,adj]-
definable. . - ' 

Proof. Assume without loss of generality that the set of states of the Y-tree au-
tomaton ^ i s Q = l , . . . , m . A Y-tree computation can be obtained by labelling, 
compatibly with the transition relation / , the upward unbounded Y-tree structure 
with elements of Q. Such a labelling is defined by partitioning the set of natural 
numbers into m sets Y i , . . . , Ym and assuming that a number x belongs to Y{ iff the 
state i labels the node x of the upward unbounded Y-tree structure. We introduce 
some short notations: 
Odd(x) (i.e. x is an odd number) stands for ->3z(adj(x) = z). 
Power(x) (i.e. a; is a power of two) stands for 
x = 1 V 3 z ( a d j ( x ) = z A Vy, s((y < x A adj(y) = s) s < z)). 

(i.e. the left son of x is.associated with the state i) stands for 
3y (Left.son(x, y) A Yi(y)). 
x —> i (i.e. the right son of x is associated with the state i) stands for 
3y (Rightson(x, y) A Yj(j/)). 

x A i (i.e. the adoptive son of x is associated with the state i) stands for 
3y (adj(x) = y A Yi(y)) 
Given a Y-tree automaton y = ( { 1 , . . . , m } , Qo, g, f ) , a formula <f) belonging to 
EMSO[<,adj] accepting C u ( y ) is the following: 
3 Y 1 , . . . , Y m ( 

(10) 



90 Monti Angelo, Peron Andriano 

VX (Odd{x) =• (Aa,6,c6S QÁX - 1) A Qb(x)A 

Q c ( x + 1)) V ) ] A 
( H ) 

Vz [ / \ ( z 4 ¿ A z 4 ¿ A z 4 l ) = > V A < 1 2 ) 
Ki,j,l€Q \ {fc:<i,i,i,fc)e/} / / 

\J Vx3y(x <y APower(y) AYi(y)) (13) 
IEF 

• 

As a consequence of Theorem 6 and the undecidability of emptiness for Y-tree 
w-languages (see Proposition 5), we have the following corollary. 

Corollary 7 The theory EMSO[<,adj] is undecidable. 

The theory EMSO[<,adj] extends MSO[<, flip] since the class of Y-tree u>-
languages strictly includes the class of binary tree w-languages (see Theorem 2) 
and MSO[<, flip] is a characterisation of that class of languages (see Theorem 1). 

Corollary 8 EMSO[<,adj] is a proper extension of MSO[<, flip]. 

The function adj we have chosen to extend MSO[<] seems not to be more 
expressive than it is required to define Y-tree w-languages. This is suggested by 
the fact that the w-language encoding the function adj (as well as its complement) 
can be accepted by a Y-tree automaton. Given a relation R C IN x IN, the w-word 
on the alphabet { 0 ,1 ,2 } encoding the pair (i,j) e R is a^j) € { 0 , 1 , 2 } " such 
that a^jjii) = 1, £*(»,;)(j) = 2 and = 0 for all k ± i,j. The w-language 
encoding the relation R is the set {d(i,j) : (i, j) £ R}-

Proposition 9 There exists a deterministic Y-tree automaton accepting the u>-
language L encoding the adj function. 

Proof. We define two Y-tree automata [Vi and y2 such that L = Cu(y\) UC^iy^)-
The automaton (resp. ^2) accepts GJ-words having the form 

Q2fc" + ...+2fco ^ 0 2 f c ° + 2 l o- i_ i 2 g" 

with kn > fcn_ 1 > . . . > fc0 and k0 = 1 (resp. kQ > 1). The claim follows from 
closure under union of languages accepted by Y-trees. As concerns the automaton 
y x , notice that the node of the Y-tree unbound structure that receives the input 1 
(resp. 2) must be the left son of a right son node (resp. the right son of a left son 
node). Such a pattern can be detected in two steps by the following automaton: 

= ( {0 ,1 ,2 } , {0 ,1 ,2 ,1 ,2 , s } , { s } , <?i,/i), where 



Logical definability of Y-tree and trellis systolic co-languages 91 

1 2 

Figure 12: The pattern recognised by automaton y 2 of Proposition 9. 

• gi is the identity; 

. h = { <0,0,0,0), (0,0,1,1), (0,2,0,2), (1,0,0,0), <1,0,2, s), 
<2,0,0,0), <0,0,1 ,0) , (s, 0,0, s), <0, a, 0, s), <0,0, s, 0)}; 

The pattern detected by automaton y 2 is depicted in figure 12. The symbol 1, 
received at input level, must be propagated the first time along an adoptive edge 
and then along a right edge as far as possible. The symbol 2 must be propagated 
the first time along an adoptive edge, then along a right edge as far as possible, 
and, finally, again along an adoptive edge. Signals propagated in this way must be 
eventually collected by a node from the left and right son. The automaton y 2 is as 
follows: 

3̂ 2 = < { 0 , 1 , 2 } , { 0 , 1 , 2 , 1 , 2 , 1 , s } , { s } , <72, / 2 ) , Where 

• g2 is the identity; 

• / 2 = { < 0 , 0 , 1 , 1 ) , < 0 , 1 , 0 , 1 ) , <1 ,0 ,0 ,0) , <0,0,1 ,0) , _ 

(0,0,2,2), (0,2,0,2), (0,0,2,2), <2,0,0,0), (2,0,0,0), 
<1,2,0, a), (s, 0,0, s), (0, s, 0, s), <0,0, s, 0)}. 

In general, if a(i) = 1, then T flows up to A;-th layer and labels a left-son pro-
cessor iff i = 2k + m2k+1 with (m > 0). If a(j) = 2, the signal flows up to the 
fc-th layer labelling a right-son processor iff j = 2k~} + m2k + 1 (with m > 1). 
If i and j are the left and right son of the same node, then i — 2k + m2k+1 and 
j = 2*-1 + (m + 1)2*+1 and then j = i + 2k~l +2k = adj(i). • 
Since Y-tree w-languages are closed under union and intersection; by Proposition 
3, any formula freely constructed from atomic formulas using the boolean connec-
tives A, V and -1 has a corresponding y-tree automaton. If ip is a formula with a 
corresponding y-tree automaton, also the existential quantification of <f> (on both 
individual and predicates) has a Y-tree automaton as a counterpart since Y-tree 
w-languages are closed under projection. The problem whether any formula ->3x(f>, 



92 Monti Angelo, Peron Andriano 

Figure 13: An upward unbounded trellis structure. 

with x an individual variable and cf> a first order formula, can have a correspond-
ing y - tree automaton, remains an open problem. If such a problem had positive 
answer, we would have that EMSO[<,adj] would be a characterisation of y - t ree 
w-languages, namely that an w-language is accepted by a y -tree automaton iff it 
is EMSO[<, adj]-definable. 

5 Trellis (¿-Languages 
The expressive power and properties of trellis automata as acceptors of finitary 
languages (over the standard interconnection structure of figure l .c ) have been 
studied in [1, 2] for the deterministic case and in [9] for the non-deterministic 
case. In this section we introduce and study non-deterministic trellis automata 
as acceptors of w-languages. In this respect, a trellis automaton processes a word 
exactly as a binary tree (or a y -tree) automaton does with the only exception that 
it uses, for the computation, an upward unbounded trellis structure (see figure 13). 

Definition 4 A trellis automaton is a tuple T = (£, Q, Qo,9, f ) , where 

• Q is the finite set of states and Q0 C.Q is the set of final states; 

• g C £ x Q is the input relation; 

• f Q Q x Q x Q is the transition relation. 

A computation of a trellis automaton is then a labelling of an upward unbounded 
trellis structure compatible with the input and transition relations. As in the 
case of binary tree and y - tree automata, we define a step-wise version of such 
a computation. Given an UJ-word a, at. each computation step, the automaton 
processes a symbol of a. So, at the i-th step (with i > 0) the prefix a(0, i) of a is 
processed and the result of such a computation is stored into a sequence q0 qi 
of states of Q. The sequence QO QI is precisely the sequence of states labelling 
the path of right edges, from the i-th element of the 0-th column of the upward 
unbounded trellis structure, leading to the 0-th layer. Now, the i + 1-th step 



Logical definability of Y-tree and trellis systolic co-languages 93 

t>o(0) «i(l) V2{2) u3(3) 

Figure 14: The structure of a T-run. 

transforms the sequence qo qi, encoding the computation at the i-th step, into 
a sequence of states q'0 q[, q'i+1 as a result of composing qo qt with the result 
of processing the symbol a(i + 1). For a trellis automaton T = (£, Q, Qo,g, f ) , the 
transformation above, called run step, is defined by the relation 

0T C Q* x £ x Q*, 

which is such that (v,a,u) £ Or implies |u| = k and |u| = k + 1, for some k > 0 
and is defined recursively on k as follows: 

• if k = 0, then (e, a,q) £ Or, with (a,q) £ 3 ; 

• if k > 0, then (v ,a ,u ) € Or, where 

— (a,u(k)) £ g and ( v ( i ) , u { i + l ) , u ( i ) ) € / , for 0 < i < k. 

A T-run for an w-word a stores the result of each computation step and it is defined 
as a map ip: IN Q* such that: 

(a(0) , </>(0)) S g and {ip(i),a{i + 1), <4>{i + 1)) £ 0T, for i > 0. 

A T-run tp is successful iff there are infinitely many i £ IN such that ip(i) = and 
Vi(0) £ Qo-

The structure of a T-run is depicted in figure 14. 

Example 4 An instance of trellis ui-language is: 

L= { a £ { 0 , 1 } " : a(i)a(i + k) for some k > 1, for all i > 0} . (14) 
Notice that a £ L iff a = with w £ {0 ,1 }* . Before giving a formal definition 

of the automaton accepting the language L above, we sketch the idea of the recognis-
ing process. Assume that a = wu, with = k. Each input symbol is propagated 
upward along the left and the right edges till it reaches the k — 1-th layer. Each 
processor of the k-th layer checks whether the symbols, received from the left and 
the right sons, agree. Processors in the next layer check that all their sons had a 



94 Monti Angelo, Peron Andriano 

successful result and so on. A processor chooses non-deterministically whether to 
propagate the signals it is receiving or to perform the test, and the computation 
can be successful only if all of the processors of the k-th layer non-deterministically 
choose to perform the test. 

The automaton T = (£, Q, Qo, g, f ) accepting L has the following components: 

• Q = {ok, x, [x, y]:x,ye { 0 , 1 } } , Q0 = {ok}, g = {(x,x) :x£ { 0 , 1 } } ; 

• / = {{x,y,[y,x]),{[x,y],[z,t],[z,y}),{[x,y],[y,z},ok),(ok,ok,ok) : 
x,y,z,te {0,1}}. 

States [a;, J/] are used to forward properly the input symbols upward along the 
left and right edge, respectively. Each node of the 1-th layer enters the state [y,x] 
after receiving symbol x from the left-son and symbol y from the right-son. Each 
processor, after receiving state [x,y] from the left-son and state [z,t] from the right-
son, • propagates the symbols y and z by entering the state \z,y\. An example of 
successful computation is shown in figure 15 for k = 3. 

We consider now the expressive power of trellis automata with respect to Y-tree 
automata. 

Theorem 10 The class of trellis co-languages strictly includes the class of Y-tree 
ui-languages. 

Proof. We start showing that a systolic computation over an upward unbounded 
Y-tree structure can be simulated over an upward unbounded trellis structure. 

Let y be a Y-tree automaton, we outline the construction of a trellis automaton 
T accepting the same w-language of . The behaviour of the node of y placed in the 
i-th layer and j - th column of the upward unbounded Y-tree structure is simulated 
by the behaviour of the node of the automaton T placed in the j(3l - 3 i _ 1 ) - t h 
column and the 3 l — 3 t - 1 - t h layer of the upward unbounded trellis structure (for 
i > 1, j > 0). With reference to figure 16, simulating nodes are labelled by symbol 
x. The left, right and adoptive edges connecting a node with its children in the 
upward unbounded Y-tree structure are simulated by the left, right and adoptive 
paths (in bold in the figure). Notice that the states coming from a left and right re-
labelled node are collected by a y-labelled node and then forwarded to the z-labelled 
father node. Let us consider now the complete labelling of the figure 16 given in 
figure 17. States to an ii label nodes in the left and right path, respectively, from 
a rc-labelled node to a y-labelled node. State ti labels nodes in the path between 
a ¿/-labelled and a re-labelled state. State t2 labels nodes in the adoptive path 
between two x-labelled nodes. The nodes in the region bounded by a ii-labelled 
and i2-labelled path (i.e. the region where a left and right son are collected) are 
labelled by symbol b. The region of nodes where an adoptive son is transmitted 
(bounded by a i2-labelled path) are labelled by symbol a. All the remaining nodes 
are labelled by symbol c. Now, it is not difficult to define an automaton whose 
successful computations are exactly those producing the above described labelling 



Logical definability of Y-tree and trellis systolic co-languages 95 

0 1 0 0 1 0 0 1 

Figure 15: A successful computation for the w-word (010)". 

of the upward unbounded trellis structure. Such an automaton can then be easily 
adapted to simulate any given Y-tree automaton. 

We prove now that the inclusion is proper, by showing that the trellis w-language 
L of Example 4 is not a Y-tree w-language. The proof is by contradiction. Let us 
assume that there exists a Y-tree automaton y having n states and accepting L. 
For a suitable m, we take now s = 22 > nm+1 (different) w-words Q i , . . . , as 

of L such that a* = w^, = 2 m + 1 — 1, Wi ^ Wj, 1 < i ^ j < s. Let ipi be a 
successful Y-run of y for a* (with 1 < i < s). Since there are at most n m + 1 < s 
different strings of states of length m + 1, there must be two runs ijjj and tpi with 
i ^ j such that ipi(m) = ipj(m). This immediately implies, by definition of Y-run, 
that the w-word 

a' = ctj(0,2m+1 - 2) • a i ( 2 m + 1 -l,u) = wj • w? 

has a successful Y-run, namely the run ip such that ip(k) = ipj(k), for 0 < k < m 
and ip = tpj, elsewhere. This leads to a contradiction since a' L. • 

Since the emptiness problem is undecidable for the class of Y-tree w-languages 
we have the following corollary. 

Corollary 11 The emptiness problem for the class of trellis ui-languages is not 
decidable. 

By applying standard techniques, the following closure properties can be proved. 

Proposition 12 The class of trellis co-languages is closed under union, intersec-
tion and projection. 

Moreover, it remains an open question whether the class of trellis w-languages 
is closed under complementation. Also in the case of finitary languages accepted 
by trellis automata the closure under complementation remains still an hard open 
question. In [9] it is suggested that the question has probably negative answer 
since, otherwise, a positive answer would imply the closure under complementation 
of the well known complexity class NP. 



96 Monti Angelo, Peron Andriano 

Figure 16: Embedding of the upward unbounded Y-tree structure in the upward 
unbounded trellis structure. 

Let us consider now the logical definability of trellis w-languages. In order to 
capture the class of w-languages accepted by trellis automata we extend MSO[<] 
with the function 2x giving, for a number x, its double. 

Example 5 We show that the language encoding the function adj can be defined in 
MSO[<,2x]. With reference to the upward unbound Y-tree structure, it is easy to 
see that if x belongs to the column c which includes the odd number k, then adj(x) 
belongs to the column c' which includes the odd number 2k + 3. Notice also that if 
c is the i-th column (with i > 0), then adj(x) is the least element in c' greater than 
x. Otherwise, if c is the 0-th column, then adj(x) is the double of the least element 
in d greater than x. 
The formula Column(x,y) (i.e. y belongs to the the column containing the odd 
number x) stands for 

Odd(x) A3X(X{x) A X(y)A 
Vz, s(X(z) => X(2z)A Odd(z) z = x A (X(s) A 2z - s) => X(z)), 

where Odd(x) stands for ->3y(x = 2y). 
Now, the formula defining the function adj is as follows: 

3 x,y(x < y A Qi(x) A Qi(y) A \/z(z / L A Z / ^ QO(Z) )A 

32, s(Column(z, x) A Column(s, y) A s = 2z + 3A 
(z = 1 =>• 3 h(Column(s, h)Ax<hAy = 2hA 

Vr(Column(s, r)Ax<r=$>h< r))) A 
(z > 1 =i> Vh(Column(s, h)Ax<h=>h< y))), 

with z = 1 and z > 1 obvious shorthands. 

As an immediate consequence of Example 5 we have the following expressiveness 
property. 



Logical definability of Y-tree and trellis systolic co-languages 97 

. a . a . a . a , a . x . 6 . 6 . 6 . 6 

¿ 3 >*vf2 / V y v S \ 3 S \ 2 y*c 

/ K 2 S K V v ? K 2 y v 
•o yrfi y f i }<f 2 SK2 y v ^ v i o 

•2 X^2 xfz yd) X^2 \ q i X&2 x ' 2 jQ) > i 2 

Figure 17: A Y-tree labelling of an upward unbounded trellis structure 

Proposition 1 3 MSO[<, 2x] is at least as expressive as EMSO[<,adj]. 

Notice that if EMSO[<,adj] were a characterization of Y-tree w-languages, 
then MSO[<,2x] would be a proper extension of EMSO[<, adj). The double 
function allows impose on the set of natural numbers an upward unbounded trellis 
structure (see figure 18). The sets identifying the ¿-th layer and column of the 
structure are defined exactly as in Eq.5 and Eq.6, respectively. The left son of a 
number x is the half part of x. As concerns the right son, we proceed as follows. If. 
X belongs to the 0-th column, then the right son of a; is 

y = min{z : z belongs to the 1-th column, z > x } . 

If x belongs to the ¿-th column (with i > 0), then the right son is 

y = max{z : z belongs to the i + 1 — th column, z < x } . 

Theorem 1 4 Any ui-language accepted by a trellis automaton is MSO[<, 2x]-
definable. 

Proof. Assume without loss of generality that the set of states of T is Q = 1 , . . . , m. 
The idea of the proof is similar to that of Theorem 6. In particular, we shall consider 
predicates Y i , . . . , Ym assuming that a number x belongs to Yi iff the state i labels 
the node x of the unbounded trellis structure. We introduce some short notations: 
x —> i (i.e. the left son of x is associated with the state '¿) stands for 
3y{2y = x AYi(y)). 
Right — son(x,y) (i.e. y is the right son of x) stands for 

3r(Column(r, x) A Column(r + 2, y)A 
(r = l = > ! / > i A \/s(Colurnn(v + 2, s ) A s > x = 4 > y < s))A 
(r>l=>y<xA Vs(Column(r + 2,s)As<x=>y> s))). 



98 Monti Angelo, Peron Andriano 

x 4 i (i.e. the right son of x is associated with the state i) stands for 
3y (Right - son(x,y) A Y{(y)). 
Given a trellis automaton T, a formula <j> € MSO[<, 2x] accepting CU(T) is the 
following: 
3Yu...,Ym( 

(15) 

V * (odd(x) =• ( A a , t e s ( Q a ( x - 1) A Qb(x)) 

V W ] ) A 
{i-(j,k,i)€f,(a,j),(b,k)€g} J J 

(16) 

V* / \ ( * 4 » A z 4 j ) = > \ / № ) A (17) 
\ i j ' 6 Q V { t : ( i j . * > e / } J J 

\J Vx3 2/ (x <y A Column( 1, y) A yi(y)) (18) 
ieF 

)• • 

The fact that M S O [ < , 2x] is undecidable, is well known (see [4, 14]). Moreover, 
if trellis w-languages were closed under complementation, then MSO[<, 2x] would 
be a characterisation of trellis w-languages. This would follow from the fact that the 
w-language which encodes the function double (as well as its complement) can be 
accepted by a trellis automaton, and from the closure of trellis w-languages under 
union, intersection and projection (see Proposition 12). 

Proposition 15 There exists a deterministic trellis automaton accepting the OJ-
language encoding the double function. 

Proof. We define a deterministic trellis automaton T = ( £ , Q, Qo,f, g) which 
accepts w-words having the form O^l.O1-1.2.0"' with x > 1. This automaton is as 
follows: 

• S = { 0 , 1 , 2 } ; 

• Q = { 0 , 1 , m i , m r , o k } ] Qo = {ofc}; 

• 3 = { ( 0 , 0 ) , ( l , m r ) , ( 2 , l ) } ; 

• / = { (0 ,0 ,0) , ( 0 , m r , m i ) , (m r , 0 ,0 ) , (0 ,mi ,m o ) , ( m i , 0 , m r ) , 
( 0 , 1 , 1 ) , ( 1 , 0 , 0 ) , ( m r , 1 , 1 ) , (mi, 1, ok), (ok, 0 , ok)}. 

• 



Logical definability of Y-tree and trellis systolic co-languages 99 

1 3 5 7 9 11 13 15 

Figure 18: The upward unbounded trellis structure on IN. 

6 Conclusions 
In this paper we have introduced the classes of w-languages accepted by Y-tree 
and trellis systolic automata, and we have studied some of their expressiveness, 
closure and decidability properties. We have, then, defined two monadic second 
order logics, EMSO[<,adj] and MSO[<, 2x], which allow to logically define the 
two mentioned classes of languages. The problem whether EMSO[<,adj] is a char-
acterisation of the class of w-languages accepted by Y-tree automata remains open, 
and the first step of our future work will be devoted to solve it. The question 
whether MSO[<,2x} is a characterisation of the class of w-languages accepted by 
trellis languages is, conversely, a problem which hardly will have an answer. More-
over, this paper provides the theoretical framework for investigating expressiveness 
issues of monadic second theories of time granularity interpreted on different types 
of w-layered metric temporal structures (see [11] for a discussion on the open related 
questions). Our future work will consider also such an investigation. 

References 
[1] K. Culik II, J. Gruska, A. Salomaa, Systolic trellis automata. Part I, Interna-

tional Journal of Computer Mathematics, 15 (1984) 195-212.. 

[2] K. Culik II, J. Gruska, A. Salomaa, Systolic trellis automata, International 
Journal of Computer Mathematics, 16 (1984) 3-22. 

[3] K. Culik II, J. Gruska, A. Salomaa, Systolic trellis automata: Stability, decid-
ability and complexity, Information and Control, 71 (1986) 218-230. 

[4] C.C. Elgot, M.O. Rabin, Decidability and undecidability of extensions of secon 
(first) order theory of (generalized) successor, The Journal of Symbolic Logic, 
31 (1966)169-181. 

[5] E. Fachini, M. Napoli, C-tree systolic automata, Theoretical Computer Sci-
ence, 56 (1988) 155-186. 



100 Monti Angelo, Peron Andriano 

[6] E. Fachini, R. Franes, M. Napoli, M. Parente, BC-tree systolic automata: char-
acterization and properties, Journal of Computer and Artificial Intelligence, 
1 (1989) 53-82. 

[7] E. Fachini, A. Monti, Chomsky hierarchy and systolic Y-tree automata, Fun-
tamenta Informaticae, 29 (1996) 325-339. 

[8] J. Gruska, Synthesis, structure and power of systolic computations, Theoretical 
Computer Science, 71 (1990) 47-78. 

[9] H. Ibarra, S.M. Kim, Characterizations and computational complexity of sys-
tolictrellis automata, Theoretical Computer Science, 29 (1984) 123-153. 

[10] A. Montanari, A. Peron, A. Policriti, Theories of w-layered metric temporal 
structures: Expressiveness and decidability, Logic Journal of the IGPL, 7 
(1999) 79-102. 

[11] A. Montanari, A. Peron, A. Policriti, The way to go: Multi-level temporal 
logics, Proceedings of IWTS'99: 1st International Workshop on Specification 
and Verification of Timed Systems, N. Yonezaki (Ed.) Kyoto Research Institute 
of Mathematical Science, march 1999. 

[12] A. Monti, A. Peron, A logical characterization of systolic languages, in: Proc. 
STACS'98, LNCS Vol. 1373 (Springer, Berlin,1998), 466-476. 

[13] A. Monti, A. Peron, Systolic tree ¿¿-languages: The operational and the logical 
view, Theoretical Computer Science, 233 (2000) 1-18. 

[14] R.M. Robinson, Restricted set-theoretical definitions in aritmetic, Proc. Amer. 
Mat. Soc. Vol. 9, 1958, 238-242. 

[15] M.Y. Vardi, Nontraditional applications of automata theory, LNCS Vol. 789 
(Springer, Berlin,1994), 575-597. 

[16] W. Thomas, Automata on infinite objects, in: J. van Leeuwen, ed., Handbook 
of Theoretical Computer Science, Vol. B, (Elsevier, Amsterdam, 1990) 133-

191. 

[17] . W. Thomas, Languages, Automata and Logic, in: G. Rozemberg and A. Sa-
lomaa, eds., Handbook of formal languages, Vol. 3, Springer, 1997, 389-455. 

Received March, 2001 


