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Affine matching of two sets of points in arbitrary 
dimensions 

Attila Tanács * Gábor Czédli t Kálmán Palágyi * 

Attila Kuba § 

Abstract 
In many applications of computer vision, image processing, and remotely 

sensed data processing, an appropriate matching of two sets of points is re-
quired. Our approach assumes one-to-one correspondence between these sets 
and finds the optimal global affine transformation that matches them. The 
suggested method can be used in arbitrary dimensions. A sufficient existence 
condition for a unique transformation is given and proven. 

1 Introduction 
Many applications lead to the following mathematical problem: Two correspond-
ing sets of points { p i } and {qi} (i = 1,2, . . . , n ) are given in the fc-dimensional 
Euclidean space IR*, and the transformation T : ]Rfc -»• IRfc is to be found that 
gives the minimal mean squared error 

¿= i 

The dimension k is usually 2 or 3. Some solutions have been proposed for 
this problem assuming rigid-body transformation (i.e., where only rotations and 
translations are allowed) [1, 3, 6, 7, 13], affine transformation (i.e., which maps 
straight lines to straight lines, parallelism is preserved, but angles can be altered) 
[8], and non-linear transformation (i.e., which can map straight lines to curves) 
[2, 5, 8]. In [10], a solution is proposed when the correspondence between the 
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point sets is unknown, assuming affine transformation. It is mentioned, that if the 
correspondence was known, a simpler solution is possible e.g., using least squares 
method, but neither such a method nor a sufficient existence condition for unique 
solution is given or referenced. 

In this paper, we present a method for solving the problem assuming affine trans-
formation, which can be used in arbitrary dimensions! The method is described in 
Section 2. We state and prove a sufficient existence condition for a unique solution 
in Section 3. A related open problem concerning degeneracy is presented in Section 
4. 

2 Method for affine matching of two sets of points 
Given a matrix 

T = 

ft 11 ¿12 

¿21 ¿22 

tkl ¿fc2 
V 0 0 

¿lfc ¿l,Jfc+l \ 
¿2 k ¿2,fc+l 

tkk tk,k+1 
0 1 / 

it determines an affine transformation T : IRfc —> IRfc as follows: For x = 
(x\,... ,Xk) and y — ( y i , . . . , y k ) in IRfc we have y = T(x) if and only if 

fyn\ 
Vi2 

Vik 
\ 1 ) 

/¿11 ¿12 
¿21 ¿22 

tkl tk2 
\ 0 0 

t\k ¿l,fc+l\ 
¿2fc ¿2,fc+l £¿2 

tkk tktk+1 
0 1 / 

Xik 
\ 1 / 

Note that homogeneous coordinates are used. Each affine transformation T can 
uniquely be represented in this form [4]. The transformation has k- (k + 1) degrees 
of freedom according to the non-constant matrix elements. 

Let us fix an affine transformation T : IRfc —> IR* and the corresponding T as 
above. Let {pi} and {g ; } be two sets of n points, where 

Pi = {Pii,Pi2,---,Pik) € H f c and 
Qi = (Qn ,Qi2> • • • >Qik) G IRfc (i = l , 2 , . . . , n ) . 

Let {p^} be a set of n points in IRfc, where p\ = T(qi) (i = 1 , 2 , . . . ,n) . Define the 
merit function S oi k • (k + 1) variables as follows: 

S(tn,...,tk,k+i) = ^2\\p'i-Pi\\2 = 'qil + --- + tjk -Qik +tj,k+i -Pijf 
¿=i j=l i=l 

which is generally regarded as the matching error. 
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The least square solution of matrix T is determined by minimizing the function 
S. Function S may be minimal if all of the partial derivatives . . . , i are 
equal to zero. The required k • (k + 1) equations: 

dS 
Otuv 

2 • ^ qiv ' -Piu + Y t u l ' = 0 

i=l 1=1 
(u = 1 ,2 , . . . ,A : , u = l , 2 , . . . , f c ) , 

ds 
dtu,k+i 

2 ' _ Piu + tul " 9«) = 0 
j=i (=i 

(u = l , 2 , . . . , * ) . 

We get the following system of linear equations: 

fan ••• a ik bi 

a-ki • • • o-kk bk 
bi ... bk n 

0 

an aik h 

a-ki • • • o-kk bk 
bi ... bk n 

bi 

0 
\ / in \ / c u \ 

Oil ••• a.1 k bi 

a-ki • • • &kk bk 

tik 
ti,k+i 

¿21 

h k 

tkl 

tkk 
bk n. / \tk,k+i/ 

Cik 
di 
C21 

C2k 
d2 

Cki 

Ckk 
\ d k / 

where 

Oit v — OiiU — ^ ] Qiu ' Qiv 
¿=1 

bu — ^ ] J 
¿=1 

Ci/ii — ^ ^ Piu ' Qiv 
• i=l 
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du = E P i u 

i=l 
( « = 1 , 2 , . . . , * , v = l, 2, . . . , * ) . 

The above system of linear equations can be solved by using an appropriate 
numerical method [9]. There exists a unique solution if and only if det(M) ^ 0, 
where 

/ a n . . . aik bi \ 

M= 
o-ki • • • o,kk bk 

\ b\ ... bk n / 
Note that if a problem is close to singular (i.e., det(M) is close to 0), the method 

can become unstable. 

3 Discussion 
In this section we state and prove a sufficient existence condition for a unique 
solution for the system of linear equations. 

By a hypefplane of the Euclidean space we mean a subset of the form 
{a + x : x £ S} where S is a (k — l)-dimensional linear subspace. Given some 
points qi,..., qn in ]R , we say that these points span IR* if no hyperplane of 
]Rfc contains them. If any k + 1 points from q\, • • • ,qn span IR* then we say that 
<7i,... , g n are in general position. 
Theorem 1. If qi,... ,qn span IRfc then det (M) ^ 0. 

Proof. Suppose det (M) = 0. Consider the vectors Vj = (qij,Q2j, • • • ,qnj) (1 < 
j < k) in ]Rn , and let w^+i = ( 1 , 1 , . . . , 1) € ]Rn . With the notation m = k + 1 
observe that M = i(vi,vj)) where ( , ) stands for the scalar multiplication. 

V / mxm 
Since the columns of M are linearly dependent, we can fix a (Pi,..., Pm) £ IRm \ 
{ ( 0 , . . . , 0 ) } such that Pj (w»> vj) = 0 h o l d s for i = 1 , . . . , m. Then 

m m m m m 
o = y , ßi • o = £ ßi E ft (Vi' vi) = Y , & (V i > E p m ) = 

i = l i=1 j = l ¿=1 j = l 
m m m m 

i=1 j=1 i=1 1=1 

whence JZi^i P%v% = 0- Therefore all the qj, 1 < j < n, are solutions of the following 
(one element) system of linear equations: 

Pix1 + ---+Pkxk = -Pm- (1) 

Since the system has solutions and (Pi,..:,Pm) ^ (0, . . . , 0 ) , there is an i £ 
{ 1 , . . . , * } with Pi ± 0. Hence the solutions of (1) form a hyperplane of IRfc. 
This hyperplane contains qi,..., qn. Now it follows that if q\,..., qn span lRfc then 
de t (M) 0. Q.e.d. 
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4 Conclusions 
In real applications, it is assumed that both pi,...,pn and qi,-..,qn span ]Rfc. 
Then, if the matching error is zero (i.e., p\ = T(qi) = pi for i — l , 2 , . . . n ) , the 
transformation is necessarily non-degenerate, i.e., det (T) 0. Moreover, in this 
case the following property is fulfilled: 

Observation 2. For all I C { 1 , . . . ,71} with k-1-1 elements, the pi, i 6 / , span HI* 
if and only if the qi, i € I, span IRfc. 

This raises the question whether the transformation is necessarily n o n -
degenarete in general or when Observation 2 holds or at least when Observation 2 
"strongly" holds in the following computational sense: each simplex with vertices 
in { p i , . . . ,pn} or with vertices in {q\,..., qn} has a large volume (fc-dimensional 
measure) compared with its edges. 

Surprisingly, all these questions have a negative answer, for we have the following 
three dimensional example. 

Example 3. With n = 5 and k = 3 let 91 = (0,0,24) , <72 = (24,0,0) , 93 = (0,24,0) , 
94 = (0 ,0 ,0) , and 95 = (—24, —48,16). These five points determine five tetrahedra 
with reasonably large volumes, the smallest of them being 1536, the volume of 
the tetrahedron (92,93,94,95)- Let pi = (0 ,0 ,0) , p2 = (3 ,0 ,0) , p3 = (0 ,3 ,0) , 
Pi — (0 ,0 ,3 ) , ps = (3 ,3 ,3 ) , these are some vertices of a cube, so the tetrahedra 
they determine are at least of volume 9 /2 . Yet, 

( 2 - 6 - 6 12 \ 
- 9 - 1 - 9 18 

0 0 0 8 
K 0 0 0 1 J 

which is degenerate. 
Experience shows that in real applications the choice of points always guarantees 

that the transformation is non-degenerate [11, 12]. However, from theoretical point 
of view the following open problem is worth raising: Find a meaningful sufficient 
condition to ensure non-degeneracy. 
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