
Acta Cybernetica 15 (2001) 107-117. 

The complexity of coloring graphs without long 
induced paths 

Gerhard J. Woeginger * Jiri Sgall * 

Abstract 
We discuss the computational complexity of determining the chromatic 

number of graphs without long induced paths. We prove NP-completeness 
of deciding whether a Ps-free graph is 5-colorable and of deciding whether a 
Pi2-free graph is 4-colorable. Moreover, we give a polynomial time algorithm 
for deciding whether a Ps-free graph is 3-colorable. 

Keywords: graph coloring - chromatic number - computational complexity 
- induced path. 

1 Introduction 
A graph G = (V, E) is k-colorable if there exists a coloring / : V —> { 1 , . . . , A;} such 
that f(u) ^ f(v) for every edge € E. The chromatic number x{G) of graph 
G is the smallest k for which G is A;-colorable. A graph G = (V, E) is Pm-free if it 
does not contain the path Pm on m vertices as an induced subgraph. For v £ V, 
we denote by r (v) = {w £ V : [u,iu] £ E} the neighborhood of v. For W C V, 
denote r(W) = \Jwewr(w). 

In this note we discuss the computational complexity of deciding whether a given 
Pm-free graph G is fc-colorable. For all m > 2 and k > 2, we call the corresponding 
coloring problem P(m, k). 

The problems P(m, 2) are polynomially solvable, since 2-coloring is polynomi-
al^ solvable even for arbitrary graphs; see e.g. Garey & Johnson [1]. Similarly, 
the problems of type P(4, k) are polynomially solvable: A graph is fVfree if and 
only if it is a cograph, and the chromatic number of a cograph can be determined 
in polynomial time; see Golumbic [2]. (The special cases P(2,k) and P(3,k) are 
trivial since Pß-free graphs are disjoint unions of cliques.) 

In this note we will prove the following results. 
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Theorem 1.1 It can be decided in polynomial time whether a P^-free graph is 3-
colorable: 

Theorem 1.2 It is NP-complete to decide (a) whether a P$-free graph is 5-
colorable, and (b) whether a -Pi 2 -free graph is A-colorable. 

These results and some of their implications are summarized in the table in Figure 1. 
The proof of Theorem 1.1 is in Section 2, and the proofs of statements (a) and 

(b) in Theorem 1.2 are given in Sections 3 and 4, respectively. 

m 4 5 6 7 8 9 10 11 12 13 14 15 . . . 
k = 3 P P ?? ?? ?? 77 77 77 77 77 77 77 

II P ?? ?? ?? ?? ?? 77 7? NP NP NP NP . . . 
k — 5 P ?? ?? ?? NP NP NP NP NP NP NP NP . . . 
k = 6 P ?? ?? ?? NP NP NP NP NP NP NP NP . . . 

: 
II

 -4
 

P ?? ?? ?? NP NP NP NP NP NP NP NP . . . 

Figure 1: A summary of complexity results for the coloring problems of type (m,k) . 
An entry 'P' means that the problem is polynomially solvable, an entry 'NP' means 
that the problem is NP-hard, and an entry '??' means that the complexity of the 
problem is currently unknown. 

2 The polynomial time result 
In this section we prove Theorem 1.1. Consider a P5-free graph G = (V, E)\ without 
loss of generality, we assume that G is connected. Our polynomial time algorithm 
distinguishes two cases for G\ note that it is easy to distinguish the cases in time 
0(n3). 

• Case 1: G is triangle-free. In this case we prove that the graph is 3-colorable 
and, in addition, we show how to construct a 3-coloring. 

• Case 2: G contains a triangle. In this case we give an algorithm which reduces 
the problem to 2-satisfiability of propositional formulas. 

Case 1. If G is bipartite, a 2-coloring is constructed easily. Otherwise G 
must contain an induced cycle of odd lengh. It cannot contain an induced cycle 
of length seven or more, since such an induced cycle would also yield an induced 
P5. The case of C3, i.e., a triangle is excluded in Case 1. Thus the induced cycle 
is C5; denote its vertices v q , , v 2 , V 3 , V 4 in this ordering along the cycle. Denote 
Vo = {V0,V1,V2,V3,V4}. 
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Consider any vertex x adjacent to a vertex in Vo. If a; is adjacent to only a 
single vertex from Vo, say to vo, then x,v0,v1 ,v2 ,v3 would form an induced P5 in 
G. If x is adjacent to two adjacent vertices from Vo, then these three vertices would 
form a triangle in G. As a consequence, x must have exactly two neighbors in Vo, 
and these two neighbors are not adjacent to each other. Denote by Wi, 0 < i < 4, 
the set of all vertices in V — Vo that are adjacent to Vi-1 and (all indices are 
taken modulo 5). 

Now we state two simple observations. Our first observation is that V = Vo U 
Wo U Wi U W2 U W3 U W4. If not, since G is connected, there exists a vertex x not 
adjacent to Vo but adjacent to some y € W{. But then x,y,Vi+i,Vi+2,Vi+3 is an 
induced PA • Our second observation is that two distinct vertices x and y in some 
set Wi U Wi+2 cannot be adjacent to each other, since this would yield a triangle 
x,y,vi+i. 

Consequently G can be 3-colored by coloring all vertices in Wo and W2 by 1, all 
vertices in W\ and W3 by 2, and all vertices in W3 by 3. Moreover, the partition 
Wo, W\, W2, W3, W4 can be computed in polynomial time. 

Case 2. Whereas all graphs in the first case were 3-colorable, the second case 
covers several graphs that are not 3-colorable, for example K4 (the complete graph 
on 4 vertices) or C5 -I- K\ (the graph that results from connecting a new vertex to 
all vertices of a cycle on five vertices). 

Consider an arbitrary triangle in G and color its vertices by 1, 2, 3. As long 
as there is an uncolored vertex v that has neighbors of two different colors, color, v 
with the remaining third color. Note that all these moves are forced. If we find an 
uncolored vertex that has neighbors of three different colors, then we conclude that 
G is not 3-colorable. When this process terminates, we denote by Vo the set of all 
colored vertices, we denote by Vi (respectively, V2 and V3) the set of all uncolored 
vertices that are adjacent to some colored vertex of color 1 (respectively, color 2 
and 3). Furthermore, we denote by V4 the set of all vertices in V — Vo U Vi U V2 U V3 
that are adjacent to some vertex in V\ U V2 U V3. 

We claim that V = VQ U V\ U V2 U V3 U V4. Suppose otherwise. Then since G is 
connected, there must exist some vertex x outside of V^ U Vi U V2 U V3 U V4 that is 
adjacent to some vertex y in V4. Vertex y is adjacent to some vertex in Vi U V2UV3, 
say to vertex 2 £ V V e r t e x 2 is adjacent to a 1-colored vertex v\ in Vo, and vi is 
adjacent to a 2-colored vertex v2 in Vo- But then x, y, z, v\. v2 form an induced P5 
in G. This contradiction shows that indeed V = V0 U Vi U V2 U V3 U V4. 

Lemma 2.1 Let C = {x} be a connected component in V4 that consists of a single 
vertex. If the graph G is 3-colorable, then one of the following two situations holds. 

(i) r(x) C VI for some i with 1 < i < 3. Any 3-coloring of V0 U Vi U V2 U V3 

uses at most two colors on T(a;) C Vj. Any such 3-coloring can be extended 
to vertex x. 

(ii) T(a;) n Vi ^ 0 and T(a;) n V} ^ 0 for some i,j with 1 < i < j < 3. In this 
case r ( z ) forms a complete bipartite subgraph of G with bipartition r ( x ) fl V* 



110 Gerhard J. Woeginger, Jiri Sgall 

and T(x) fl Vj. In any 3-coloring of G, all vertices in r(x) fl Vj must receive 
the same color and all vertices in T(x) fl Vj must receive the same color. Any 
such 3-coloring can be extended to vertex x. 

Proof. First suppose that there are two vertices ui\ € V\ nT(x ) and w2 £ V2 n F ( i ) 
such that [w\,w2] ^ E. Then w\ is adjacent to a 1-colored vertex in Vo, and 
this vertex vi is adjacent to a 3-colored vertex in Vo. But then w2, x, VJI,V\, v3 

would form an induced P5 in G. As a consequence, any two vertices in r ( x ) that 
do not form an edge in G must both belong to the same set Vi, V2, V3. 

We now consider several cases. First assume that r ( x ) intersects all three sets 
Vi, V2, and V3. Then three vertices in F(x) D Vi, r ( x ) fl V2 and r ( x ) n V3 together 
with x would form a K4, and G would not be 3-colorable in this case. Next assume 
that r ( x ) D Vi ^ 0 and T(x) D Vj £ 0 for some i,j with 1 < i < j < 3. By the 
observation in the preceding paragraph, G must contain all edges between r(x)f~l Vi 
and T(x) fl Vj. Then T(x) fl Vi and T(x) D Vj must both be independent sets, since 
otherwise G would contain a K4. Hence, in this case we are in situation (ii). Finally, 
T(x) C Vi might hold for some i with 1 < i < 3 as in situation (i). • 

Lemma 2.2 Let C be a connected component in V4 that contains at least two 
vertices. Denote the set T(C) D (Vi U V2 U V3) by D. 

(i) All vertices in C are adjacent to all vertices in D. 

(ii) If the graph G is 3-colorable, then the component C is bipartite and D forms 
ah independent set. 

(iii) In any 3-coloring of G, all vertices in D receive the same color. 

(iv) Assume that C is bipartite. Then any 3-coloring of Vo U V\ U V2 U V3 in 
which all vertices in D have the same color can be extended to a 3-coloring 
of V0 U Vi U V2 U V3 and C. 

Proof, (i) Let x,y £ C with [x, y] £ E. Suppose that there exists some z € D that 
is adjacent to x but not to y\ without loss of generality-z £ Vi. Then z is adjacent 
to some 1-colored v\ in Vo, and Vi is adjacent to a 2-colored vertex v2 in Vo- Then 
x,y,z,vi,v2 form an induced P5 in G. This contradiction shows that x and y have 
exactly the same neighbors in D. This yields statement (i). 

Statement (ii) is an immediate consequence of (i): Any 3-coloring of G must 
color the component C with two colors, and the neighborhood D of C with the 
third color. This also yields statement (iii). Statement (iv) is straightforward. • 

With the help of Lemmas 2.1 and 2.2, we will now translate the 3-coloring 
problem into a TWO-SATISFIABILITY problem. Since the colors of vertices in 
Vo have already been fixed, we will concentrate on the vertices in Vi, V2, and V3. 

• For every v £ Vj (1 < i < 3) we introduce two variables x(v,j) and x(v,k) 
such that {i,j, k] = { 1 , 2 , 3 } . A TRUE variable x(v,j) will mean that vertex 
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v is colored by color j. By introducing two clauses with two literals, we can 
enforce that exactly one of x(v,j) and x(v,k) must be T R U E and the other 
one must be false. 

• Consider a connected component C = { x } in V4. If neither situation (i) 
nor (ii) from Lemma 2.1 hold, then we stop the construction since G is not 
3-colorable. If situation (i) holds, we do not need to do anything. And if 
situation (ii) holds, then we introduce several clauses (each with two literals) 
that enforce that all vertices in r ( x ) fl Vi get the same color and that all 
vertices in T(x) fl Vj get the same color. 

• Consider a connected component C in V4 that contains at least two vertices. 
If the neighbors of C in Vi U V2 U V3 do not form an independent set, then we 
stop the construction since G is not 3-colorable by Lemma 2.2. And if they 
do form an independent set, then we introduce several clauses (each with two 
literals) that enforce that all these vertices get the same color. 

The resulting instance of TWO-SATISFIABILITY can be solved in polynomial 
time; see e.g. Garey & Johnson [1]. If this TWO-SATISFIABILITY does not 
have a satisfying truth assignment, then by Lemmas 2.1 and 2.2 the graph G 
cannot be 3-colorable. On the other hand, if this TWO-SATISFIABILITY does 
have a satisfying truth assignment, then we can translate it into a 3-coloring for 
Vo U Vi U V2 U V3 and we can use Lemmas 2.1 and 2.2 to extend this coloring to a 
3-coloring for V4. Since all this can clearly be done in polynomial time', -the proof 
of Theorem 1.1 is complete. 

3 The first NP-hardness proof 
In this section we prove Theorem 1.2(a). The reduction is from the NP-hard 
THREE-SATISFIABILITY problem (Garey & Johnson [1]): Given a set X = 
{xi,..., xn} of logical variables, and a set C = { c i , . . . , c m } of three-literal clauses 
over X, does there exist a truth assignment for X that simultaneously satisfies all 
clauses in C? . . 

Now consider an arbitrary instance I of THREE-SATISFIABILITY. We define 
a iV f ree graph G\ = (Vi, Ei) that is 5-colorable if and only if this instance I has 
answer YES: 

• For every variable x £ X, there is a vertex a(x) that corresponds to the 
unnegated literal x, and a vertex a(x) that corresponds to the negated literal 
x. These vertices are connected to each other by an edge. " 

• For every clause c 6 C that consists of the literals iti, u2, U3, there are 
seven corresponding vertices 61(c), 62(c), 63(c), 64(c) and 6(c,«1), b(c,u2), 
6(c, U3). The three vertices 61(c), 62(c), 63(c) form a triangle. Moreover., 61(c) 
is connected to b(c,u2) and 6(c, u3), b2(c) is connected to b(c,u{) and 6(0,1x3), 
and 63(c) is connected to 6(c,ui) and 6(c,u2). Vertex 64(c) is connected to 
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b(c,ui), b(c,u2), b(c,u3). For i = 1 ,2 ,3 vertex b(c,ui) is connected to the 
vertex a(u{). See Figure 2 for an illustration. 

• All vertices a(x) and a(x) with x £ X are connected to all vertices &i(c), 
62(c), 63(c), 64(c) with c G C . 

• Finally, there is a single dummy vertex d that is connected to all clause vertices 
bi(c), 62(c), 63(c), 64(c) and b(c,ui), b{c,u2), b(c,u3) with c = u\ Vu 2 V u 3 in 
C. 

This completes the description of the graph G\. Note that G\ may contain an 
induced P7 that runs through a(xT), a(a;i), b(c2,xi), d, b(c3, x 4 ) , a(x4), a(x¡"). 

b(c,u2) 

Figure 2: The seven vertex gadget for a clause in graph Gi . 

Lemma 3.1 The graph G1 is P&-Jree. 

Proof. Suppose that to the contrary G1 would contain an induced path P on eight 
vertices. Denote by A the set of all vertices a(ui) on P, denote by B\ the set of 
vertices bh(c) on P, and denote by B2 the set of vertices b(c,uj) on P. We start 
with three observations. 

(1) First, suppose that P contains the dummy vertex d. Since d is adjacent to 
all vertices in B\ and in B2, this yields ¡BI U B2\ < 2 and hence |A| > 5. 
Since { d } U B 1 U B 2 is a connected set, removing it from P decomposes this 
(induced) path into at most two (induced) subpaths that both are spanned 
by A. Since |A| > 5, one of these two subpaths must contain at least three 
vertices. But the longest induced paths in A have only two vertices. This 
contradiction yields d £ P. 
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(2) Next suppose that A — 0. Then P only contains vertices from Bi and B2. 
But the longest induced path in B\ U B2 has only four vertices; cf. Figure 2. 
This contradiction shows > 1. 

(3) Next suppose that > 3. Since all vertices in B\ are adjacent to all vertices 
in A, this would imply Bi = 0. Then P only contains vertices from A and 
B2. But the longest induced path in A U B2 has only four vertices, and this 
shows < 2. 

The observations in (2) and (3) yield 1 < \A\ < 2. Since all vertices in B\ are 
adjacent to all vertices in A, \A\ = 1 implies |Bi| < 2, and = 2 implies |Z?i| < 1. 
Therefore \A U Bi| < 3 and IB2I > 5. But B2 is an independent set of at least five 
vertices and cannot be connected to an induced path by adding the at most three 
vertices from l U B i . • 

Lemma 3.2 If the THREE-SATISFIABILITY instance I has a satisfying truth 
assignment, then the graph G1 is 5-colorable. 

Proof. We define a coloring from the truth assignment. If x £ X is TRUE then 
color a(x) by 4 and a(x) by 5, and if x is FALSE then color a(x) by 5, and a(x) 
by 4. The dummy vertex d receives color 4. Now consider the seven vertices 
61(c), 62(c), 63(c), 64(c) and b(c,ui), b(c,u2), b(c,u3), that correspond to a clause 
c = u\ V u2 V u3 in C. One of the three literals ui,u2,u3 must be true, and so we 
may assume without loss of generality that U\ is a true literal, and that hence a ( « i ) 
is colored 4. In this case we color 6(c, u\) by 5, b(c,u2) by 2, b(c,u3) by 3, and 61(c) 
by 1, 62(c) by 2, 63(c) by 3, 64(c) by 1. This coloring is legal: the edges among 
the seven clause vertices are verified easily, and besides them b(c,ui) is adjacent 
only to vertices already colored by 4 and the other six vertices are adjacent only to 
vertices already colored by 4 and 5. The cases where u2 or «3 are true literals are 
handled analogously. • 

Lemma 3.3 If the graph Gi is 5-colorable, then the THREE-SATISFIABILITY 
instance I has a satisfying truth assignment. 

Proof. Consider an arbitrary triangle 61(c), 62(c), 63(c) in a clause gadget. With-
out loss of generality, these three vertices are colored by colors 1, 2, and 3. Since 
the triangle vertices are adjacent to the dummy vertex d and to all literal vertices 
a(x) and a(x), all these adjacent vertices must be colored by 4 or by 5. Without 
loss of generality assume that the dummy vertex has color 4. Furthermore, if a(x) 
has color 4, then a(x) has color 5, and if a(x) has color 5, then a(x) has color 4. 
Define a truth assignment for X that sets variable x to TRUE if and only if a(x) 
has color 4. 

Suppose that some clause c = u\ V u2 V 1x3 in C is not satisfied under this truth 
assignment. Then the three vertices a(ui), a(u2), a(u3) all are colored 5. Then the 
three clause vertices b(c,ui), b(c,u2), b(c,u3) have a neighbor of color 5, and the 
dummy vertex as neighbor of color 4, and hence they must be colored by colors 1, 
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2, 3. The four clause vertices b\(c), b2(c), b3(c), b4(c) are adjacent to a(ui) and 
a(ui ) of colors 4 and 5, and hence they must be colored by colors 1, 2, 3. This 
implies that the seven vertices of the clause gadget are legally colored by the three 
colors 1, 2, 3, which clearly is impossible. This contradicts our assumption that the 
coloring is legal, and therefore the constructed truth assignment indeed satisfies all 
clauses. • 

The three Lemmas 3.1, 3.2, and 3.3 together prove Theorem 1.2(a). 

4 The second NP-hardness proof 
\ 

In this section we prove Theorem 1.2(b). Again, the reduction is from the NP-
hard THREE-SATISFIABILITY problem; cf. the first paragraph of the preceding 
section. Consider an arbitrary instance I of THREE-SATISFIABILITY that con-
sists of a set X = {x\,..., xn] of logical variables, and a set C = { c i , . . . , c m } of 
three-literal clauses over X. We will define a Pi2-free graph G2 = (V2,E2) that is 
4-colorable if and only if this instance I of THREE-SATISFIABILITY has answer 
YES. 

• For every variable x £ X, there is a vertex a(x) that corresponds to the 
unnegated literal x, and a vertex a(x) that corresponds to the negated literal 
x. These vertices are connected to each other by an edge. 

• For every clause c € C that consists of the literals ui, u2, u3, there are nine 
corresponding vertices b\(c,ui), b\(c,u2), b\(c,u3), and b2(c,ux), b2(c,u2), 
b2{c,u3), and b3(c,u\), b3(c,u2), b3(c,u3). The three vertices bi(c,u\), 
bi(c, u2), &i (c, u3) form a triangle. Moreover, for ¿ = 1 ,2 ,3 the vertex b\ (c, Ui) 
is connected to b2(c,Ui), the vertex b2(c,Ui) is connected to b3(c, ui), and the 
vertex b3(c,Ui) is connected to a{ui). See Figure 3 for an illustration. 

• All vertices b2(c,Ui) are connected to all vertices a(x) and a(x). 

• Finally, there are two dummy vertices di and d2 that are connected to each 
other by an edge. The dummy vertex di is connected to all vertices bj(c, ui) 
that belong to the clause gadgets. The dummy vertex d2 is connected to all 
vertices a(x) and a(x) with x € X, and to all vertices b3(c,Ui). 

This completes the description of the graph G2. Note that G2 may contain an 
induced P n that runs through b2(c,Ui), i>i(c,u4), bi(c,u5), b2(c,u5), b3(c,u5), d2, 
b3(c',u6), i> 2 ( c ' ,u 6 ) , bi{c',u6), bi(c',u7), b2{c',u7). 

Lemma 4.1 The graph G2 is Pi2-free. 

Proof. Suppose that to the contrary G2 would contain an induced path P on 
twelve vertices. Denote by A the set of all vertices a(ui) on P , denote by D the 
set of dummy vertices on P , and for h = 1,2,3 denote by Bh the set of all vertices 
bh(c,Ui) on P . We start with four simple observations. 
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Figure 3: The nine vertex gadget for a clause in graph G2. 

(1) First, suppose that |A| > 3. Since all vertices in B2 are adjacent to all vertices 
in A, this would imply B2 = 0. Moreover, d2 £ D. Then the only connection 
from B\ to the rest of P is via the dummy vertex d\, and therefore the vertices 
in £?3 U A must induce a path. But there clearly cannot be an induced path 
in £?3 U A that contains three or more vertices from A. This contradiction 
shows \A\ < 2. 

(2) Next suppose that d\ G D. Since d\ is adjacent to all vertices in B\ \JB2 UB3, 
this union B1UB2UB3 contains at most two elements. But then |DU.A| > 10 
which contradicts (1). Hence, di £ D. 

(3) Suppose that d2 € D. Since d2 is adjacent to all vertices in B3 U A, we have 
\B3 U A\ < 2 and |Bi U B2\ > 9 . Every induced path in £1 U B2 has at most 
four vertices, and thus B\ U B2 must induce at least three subpaths of P. 
Each of these subpaths needs one adjacent vertex in B3, which contradicts 
|B3| < I-B3 U A\ < 2. Hence, d2 £ D. 

(4) Next suppose that A = 0. Then P only contains vertices from B\, B2, and 
B3. But the longest induced path in Bi U B2 U B3 has only six vertices; cf. 
Figure 3. Therefore, \A\ > 1. 

The observations in (1) and (4) yield 1 < < 2. Since all vertices in B2 are 
adjacent to all vertices in A, \A\ = 1 implies \B2\ < 2, and = 2 implies \B2\ < 1. 
Therefore |^4UjB2| < 3, and I ^ U S s ! > 9. But the longest induced paths in 5 i U S 3 

have only two vertices, and thus B1UB 3 induce at least five connected components. 
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There is no way of glueing these at least five components together via the at most 
three vertices in A U B2 • • 

Lemma 4.2 If the THREE-SATISFIABILITY instance I has a satisfying truth 
assignment, then the graph G2 is 4-colorable. 

Proof. We define a coloring from the truth assignment. Dummy vertex d\ is 
colored 1, and dummy vertex d2 is colored 2. All vertices a (it,) will be colored 1 
or 4; all vertices b3(c,Ui) will be colored 3 or 4; all vertices b2(c,ui) will be colored 
2 or 3; all vertices bi(c,Ui) will be colored 2, 3, or 4. Clearly, by doing so we will 
avoid all color conflicts with the two dummy vertices. Moreover, vertices b2(c,Ui) 
will receive other colors than vertices a(x) and a(x). 

If x € X is TRUE then color a(x) by 1 and a(x) by 4, and if x is FALSE then 
color a(x) by 4, and a(x) by 1. Now consider the vertices of some clause gadget for 
c = u\ V u2 V u3 in C. Without loss of generality we assume that the literal ui is 
true, and that hence a(u\) is colored 1. Then we color 

bi(c, ui) by 2 b2(c, ui ) by 3 b3(c,ui) by 4 a(ui) is 1 
bi(c,u2) by 3 b2{c,u2) by 2 b3(c,u2) by 3 a(u2) is 1 or 4 
b\(c,u3) by 4 b2(c,u3) by 2 b3(c,u3) by 3 a(u3) is 1 or 4 

It is easy to verify that we indeed end up with a legal 4-coloring for the graph G2. 
• 

Lemma 4.3 If the graph G2 is A-colorable, then the THREE-SATISFIABILITY 
instance I has a satisfying truth assignment. 

Proof. Without loss of generality we assume that in the 4-coloring dummy vertex 
d\ is colored 1 and that dummy vertex d2 is colored 2. The set of literal vertices 
a(x) and a(x) uses at least two different colors. We claim that also the set of clause 
vertices b2(c,Ui) uses at least two different colors: Suppose that to the contrary all 
vertices b2(c,Ui) are colored by a single color, say, by color 3. Then the triangles 
bi(c, ui) , b\(c, u2), h(c,u3) cannot use this color 3, nor can they use the color 1 of 
dummy vertex di. But it is impossible to color the triangle legally by colors 2 and 4 
only, which proves our claim. Now since the literal vertices use at least two colors, 
since the vertices b2(c, Ui) use at least two colors, and since these two vertex classes 
form a complete bipartite graph, one of these classes must use exactly two colors, 
and the other class must use the remaining two colors. Without loss of generality 
we assume that the literal vertices use the colors 1 and 4, and that the vertices 
b2(c,Ui) use the co lors 2 and 3. 

We define a truth assignment from the 4-coloring by setting variable x to TRUE 
if and only if vertex a(x) has color 1. Suppose that some clause c = u\ Vu2 Vu3 in C 
is not satisfied under this truth assignment. Then the three vertices a(ui), a(u2), 
a(u3) all are colored 4. The three adjacent vertices b3(c,u\), b3(c,u2), b3(c,u3) 
cannot use color 4, and they also cannot use colors 1 or 2 since they are adjacent to 
both dummy vertices; therefore, b3(c, ui), b3(c, u2), b3(c, u3) all are colored 3. Then 
the three adjacent vertices b2(c,ui), b2(c,u2), b2(c,u3) cannot use this color 3; by 
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the above discussion all three vertices 62(c, ^i) , 62(0,1x2), 62(0,1x3) must be colored 2. 
Then the three adjacent vertices 61 (c, U\), b\ [c, «2), b\ (c, «3) cannot use this color 2, 
and they also cannot use the color 1 of the adjacent dummy vertex d\. This implies 
that the triangle 6 j ( c , 1 x 1 ) , 6 1 ( 0 , 1 x 2 ) , 61 (c, ix3) is legally colored by the two colors 3 
and 4, which is impossible. Consequently, the constructed truth assignment satisfies 
all clauses in C. • 

The three Lemmas 4.1, 4.2, and 4.3 together prove Theorem 1.2(b). 
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