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Parallel implementation for large and sparse 
eigenproblems* 

E. M. Garzonf and I. Garcia t 

Abstract 

This paper analyses and evaluates the computational aspects of an efficient 
parallel implementation for the eigenproblem. This parallel implementation 
allows to solve the eigenproblem of symmetric, sparse and very large matrices. 
Mathematically, the algorithm is supported by the Lanczos and Divide and 
Conquer methods. The Lanczos method transforms the eigenproblem of a 
symmetric matrix into an eigenproblem of a tridiagonal matrix which is easier 
to be solved. The Divide and Conquer method provides the solution for the 
eigenproblem of a large tridiagonal matrix by decomposing it in a set of 
smaller subproblems. The method has been implemented for a distributed 
memory multiprocessor system with the PVM parallel interface. A Cray T3E 
system with up to 32 nodes has been used to evaluate the performance of our 
parallel implementation. Due to the super-lineal speed-up values obtained 
for all the studied matrices, a detailed analysis of the experimental results is 
carried out. It will be shown that the management of the memory hierarchy 
plays an important role in the performance of the parallel implementation. 

1 Introduction 
Eigenproblems arise in a large number of disciplines of sciences and engineering. 
For example, they are used in: designing buildings, bridges and turbines; modeling 
queuing networks; analyzing stability of electrical networks; studying the fluid flow 
and so on. The matrices of these problems have a high dimension, a very low 
percentage of non-zero elements and, in general, they are non-symmetric. However, 
the symmetric eigenproblem constitutes the key in a lot of strategies to solve non-
symmetric eigenproblems. 

The computational cost and the memory requirements of the algorithms which 
provide a solution for the symmetric eigenproblem are very high when the matrix 
has a high dimension. In this context, the development of parallel algorithms and 
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their efficient implementations on large scale supercomputer system are the only 
strategies which allow to solve this computationally expensive problem. 

This paper deals with the parallel implementation of a strategy which provides 
a solution to the symmetric eigenproblem on a distributed memory multicomputer 
system. This strategy belongs to the so called direct methods and includes a divide 
and conquer technique. 

The solution of the eigenproblem of a symmetric, large and sparse matrix A £ 
Rnxn can be obtained by the following transformations: 

A = QTQT = QMDMTQT = GDGT (1) 

where D is a diagonal matrix whose non-zero elements represent the eigenvalues of 
A and T, and the columns of G and M are the eigenvectors of A and T, respectively. 

The eigenproblem is solved by the following consecutive stages: 

1. Structuring the input matrix A. This stage generates the tridiagonal matrix 
T and the orthonormal matrix Q, such that A = QTQT. 

The Lanczos Method with complete reorthogonalization is used at this stage. 
The complete reorthogonalization stage ensures the orthogonality of Q so that 
the spectrum of T is also the spectrum of A. 

2. Solving the eigenproblem ofT. At this.stage the diagonal D and the orthogo-
nal M matrices that give T — MDMT are the results of applying the Divide 
and Conquer method (DC). A divide-and-conquer method, developed by 
Cuppen [4], has been implemented at this stage. This method is decomposed 
in the following process: 

(a) Decomposing the eigenproblem of T in a set of Spo — 2Nv subproblems 
(TUT2,... ,TsPo) of small dimension by rank-one transformations of T. 
Nv is the number of reconstruction levels. 

(b) Applying the QR method to every subproblem Tj. The corresponding 
eigenvalues and eigenvectors D{ and M{, respectively, are obtained. 

(c) Reconstruction: From the set of matrices Di and Ml (i = 1 , 2 , . . . , Spo), 
this procedure obtains the eigenvalue matrix D and the eigenvector ma-
trix M . The reconstruction stage consists of a binary tree-structure of 
Nv levels. 

3; Computing the eigenvectors of A. Let G be the orthonormal matrix whose 
columns gi are the eigenvectors of A; i.e. A = GDGT. This stage is solved 
by a matrix-matrix product, G = QM. 

From the above algorithmic description, it can be seen that the parallel imple-
mentation of the eigenproblem consists of three consecutive parallel stages. Each 
stage manages a different kind of data structure. The first stage (Lanczos method) 
deals with an irregular sparse matrix; the second stage involves computations on a 
set of tridiagonal sub-matrices (structured data) and a set of dense matrices; the 
third stage is simply a product of dense matrices. 
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The parallel implementation of the first stage (Lanczos) is based on a decom-
position in domains of the input sparse matrix which includes a computationally 
inexpensive pre-processing stage, namely Pivoting-Block [9]. This preprocessing 
stage guarantees that the input data partitions and its associated computations 
are balanced. 

The parallel implementation of the Divide and Conquer method is based on 
a decomposition in domains of the input and output data [13]. The binary tree 
of tasks is distributed among Processing Element (PE) so that the same number 
of branches of the tree is allocated to each PE. When the number of PEs of the 
multiprocessor system P verifies that P < Spo, each PE starts the reconstruction 
process independently until the number of sub-problems is equal to P. When 
P > Spo, a set of PEs collaborates for the solution of a pair of subproblems. As 
the reconstruction stages evolve, the dimension of the subproblems are greater and 
the number of PEs collaborating for the same pair of subproblems increases. 

The parallel product of matrices (G — QM) is carried out starting with a 
partition of Q and M by rows among PEs. We have implemented a strategy which 
reduces the memory requirements. 

The main contributions of this paper consists of: (a) providing a parallel imple-
mentation for large sparse eigenproblems by linking the above described stages; (b) 
evaluating the proposed parallel implementation using a wide variety of problems 
and (c) doing a computational analysis to determine which factors are responsible 
for the super-lineal speed up values obtained from our experimental results. 

This paper is organized as follows. In Section 2, the mathematical foundations of 
the applied method are briefly introduced. In Section 3, parallel implementations 
of every stage is described. Finally, in Section 4, new and non-standard perfor-
mance indicators for evaluating parallel implementations are defined. Moreover, 
experimental results of the performance evaluation of our parallel implementation 
are shown and discussed. Performance evaluations were carried out by a multicom-
puter (Cray T3E) using no more than 32 processing elements. 

2 Describing the Applied Methods 
The eigenproblem of large and sparse matrices is solved by a direct method which 
allows to determine the matrix decompositions described by (1). 

The Lanczos method, briefly described in Subsection 2.1, is applied to obtain T 
and Q (tridiagonal and orthogonal matrices, respectively). The eigenproblem of T 
is solved by the Divide and Conquer method [11] (Subsection 2.2), which obtains 
matrices D and M from T, where D is a diagonal matrix whose elements are the 
eigenvalues of T and A, and columns of G — QM are the eigenvectors of A. 

2.1 Structuring Sparse Matrix 
The Lanczos Method with Complete Reorthogonalization has been used for finding 
a structured matrix with the same spectrum as the input sparse matrix. The 
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Lanczos method is considered an effective method for obtaining, from a symmetric 
matrix A, a symmetric tridiagonal matrix T and a set of orthonormal vectors, 
Qj (0 < j < n). Given a symmetric matrix A € Rnxn and a vector qi with unit 
norm, the Lanczos method generates the orthonormal matrix Q and the tridiagonal 
matrix T, in n iterative steps. This method is discussed in [1, 3, 12, 14]. The outer 
loop of the Lanczos algorithm is an iterative procedure (index j) which at the j-th 
iterative step computes the ctj and /?_,• coefficients of the tridiagonal matrix T and 
the vector qj+1, where ctj and /?_, denote the elements of the main and secondary 
diagonals of T, respectively. This loop includes a sparse matrix-vector product 
and a reorthogonalization process. The reorthogonalization procedure used in this 
work is the so called complete reorthogonalization (CR). C R is computationally 
expensive but it allows to ensure that the eigenvalues of A and T are the same. 
The Lanczos algorithm is particularly appropriate for structuring sparse matrices 
of high dimension. 

2.2 Solving the eigenproblem of T 
A solution for the eigenproblem of a tridiagonal matrix based on the Divide and 
Conquer method (DC) was proposed by Golub [11] and, lately, developed by Bunch, 
Nielsen and Sorensen [2] and Cuppen [4]. 

The key of this method consists of dividing the input matrix of high dimension 
into several sub-matrices of lower dimension and solving the eigenproblem of high 
dimension from the solutions of eigenproblems of lower dimension. This strategy 
is very useful to solve the eigenproblem of very high dimensions. The DC method 
can be described as in Algorithm 1. 

Algorithm 1 Divide and Conquer Algorithm: £>C(T)-> D, M 
1 do i = 1,..., Sp0; i + 1 
2 Div (i) T{ # SubDivision # 
3 QR(Ti) D{,Mi # Solving Small Eigenproblems # 
4 Sp = Sp0-, 
5 do k = 1,..., Nv, k + 1 # Reconstruction Levels # 
6 do i = 1,..., Sp — 1] i+ 2 # Reconstructing Couples of SubMatrices # 
7 Reconstruction —> Di/2, Mi/2 
8 First Deflation 
9 Second Deflation 

10 Solve Secular Equation Di / 2 >V 

11 Mi j 2 = ^ ^ ^ V # Intermediate matrix-matrix Product# 

12 Sp = Sp/2 

The subdivision process by rank one modifications of T is associated with line 
2. This process generates the set of sub-matrices (Ti). Then, the eigenproblem of 



Parallel implementation for large and sparse eigenproblems 141 

every Tj is solved by the QR method [12] which generates the (eigenvalues) and 
Mi (eigenvectors) matrices. (Spo denotes the number of initial subproblems). 

The loop with index k is associated with the reconstruction process (lines 5-12), 
where k denotes the level of reconstruction. The total number of levels of recon-
struction is given by Nv = log2(Spo). The level of reconstruction k includes Sp/2 
reconstruction processes for a couple of sub-matrices (Tj, Tj+i) whose eigenvalues 
and eigenvectors are known (£>j, Mi and i, Mi + i ) . The outputs of this pro-
cess are Di/2,Mi/2- These matrices are the solution of the eigenproblem for the 
sub-matrix which is the result of the association of a couple of tridiagonal sub-
matrices (Ti, Tj-t-i). Details about the reconstruction process are described in [4]. 
This process may include deflations which reduce the computational cost of the 
secular equation solution and the dimensions of the matrices which are included in 
the so called Intermediate matrix-matrix Product (line 11). The number of sub-
problems at level k is denoted by Sp. When Sp=2 the eigenproblem of T is solved 
(Di/2 = D,Mi/2 = M). 

2.3 Computing the eigenvectors of A 
The matrix-matrix product G — QM is computed in order to obtain the eigen-
vectors of the input matrix A. This last stage, which completes the solution of 
the eigenproblem of A, is computationally very expensive and needs large memory 
requirements. However, if the goal were only to compute the spectrum of the input 
matrix, this stage could be omitted. 

3 Parallel Implementation 
The method for solving the eigenproblem of a symmetric sparse matrix, discussed 
in Section 2, has an extremely high computational cost. Furthermore, this method 
demands large memory requirements. Consequently, its implementation on a dis-
tributed memory multiprocessor is necessary, specially, when the input matrix A is 
of high dimension. 

The parallel implementation of the method has been carried out using a SPMD 
programming model and the PVM standard library. The whole solution of the 
eigenproblem (LDC ) has been divided into a set of procedures: Lanczos, DC and 
Final Product matrix-matrix. These procedures link their executions in a sequential 
way because the data dependences prevent several procedures from simultaneous 
execution. Thus, every procedure must be independently parallelized. 

3.1 The Lanczos Method 
In the solution of the eigenproblem, the Lanczos method is the only procedure 
which manages irregular data structures; i.e. a sparse input matrix A. Since 
the Lanczos algorithm works on mixed computations (dense-sparse), special care 
must be taken in the data distribution among processors in order to optimize the 
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work load balance for computations on both dense and sparse data structures. A 
data distribution called Pivoting Block [9] is used to balance the computational 
load of this procedure. Pivoting Block estimates a permutation of the rows of 
A obtaining an homogeneous density of the non-zero elements. Thus, the classical 
block partition applied to the permuted matrix is able to obtain a similar number of 
non-zero elements for the sparse sub-matrix allocated at every PE. Consequently, 
computations linked to dense and sparse structures are balanced. Details about 
parallel implementation of Lanczos algorithm can be found in [7, 8]. The outputs 
of this parallel algorithm are: the tridiagonal matrix T and the orthonormal matrix 
Q. The tridiagonal matrix T is stored at the local memory of every Processing 
Element (PE). When the parallel Lanczos procedure finishes, every PE stores 
rows of Q at its local memory, where P is the number of PEs in the multiprocessor 
system. 

3.2 The DC Method 

An efficient parallel implementation of DC method on share memory multiproces-
sors has been proposed by Dongarra and Sorensen [5]. Moreover, parallel imple-
mentations on a distributed memory multicomputer have been described by Ipsen 
and Jessup [13] and Tisseur and Dongarra [15]. In our implementation we have 
used most of the ideas described in [13]. 

The structure of the DC algorithm suggests a natural way to split and dis-
tribute the computational work among the set of PEs. The DC method can be 
represented by a binary tree of tasks which can be decomposed into P sets of tasks 
and distributed among PEs. 

As an illustration, the example in Figure 1 starts with T subdivided into SPo = 
16 sub-matrices and a multiprocessor system with P = 4 is considered. As it can 
be seen in Figure 1, for a problem which is subdivided into 16 subproblems, the 
DC method consists of 4 reconstruction levels. The reconstructions at levels k = 1 
and 2 are carried out by every isolated PE. When k = 3, two groups of two PEs 
are defined. Thus, every group of PEs cooperates in the reconstruction of a couple 
of sub-matrices. At the final level (k = 4), the four PEs cooperate in the last 
reconstruction. 

At the end of this stage, the non-zero elements of D and the rows of M are 
distributed among the set of PEs. 

3.3 The Final matrix-matrix product 

In order to complete the solution of the eigenproblem of the input matrix A, the 
matrix G is computed by the matrix-matrix product G = QM. The parallel im-
plementation of this matrix-matrix product is more difficult than the standard one 
because every processor allocates only a subset of rows of Q and M. However, 
the communication time and the memory requirements have been optimized by 
re-using data structures defined and used at previous stages. 
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Figure 1: Binary tree of tasks for the DC method, and task distribution among 
PEs for a multiprocessor system with P — 4. 

4 Evaluation 

The evaluation of the parallel implementation for the solution of the eigenproblem 
has been carried out on a multiprocessor system Cray T3E using a set of n dimen-
sional input matrices. Some of the matrices belong to the Harwell-Boeing collection 
of test matrices [6]. Moreover, a subset of the test matrices has been designed to 
analyze the parallel implementation of the DC method. These test matrices are 
obtained by permutating a set of tridiagonal matrices denoted by [l,£t,l] or [l,fc,l] 
[13], where ak — kfi or ak = k, respectively, and /3k — 1 (k = l . . . n ) . These 
matrices are denoted by " in" , where n is the dimension of the input matrix. The 
selection of the initial Lanczos vector (qi) allows us to control the number of de-
flations the DC method produces. Consequently, it is possible to generate test 
problems with a high or a low computational cost for the DC method.. 

In Table 1, three matrices of the set of test matrices used in the evaluation of 
our parallel implementation are characterized by parameters like the dimension of 
the matrix (n) and the percentage of non-zero elements ( 7 ) . The last two columns 
of Table 1 provide numerical results which specify the accuracy of the applied 
methods. Specifically, numerical results for the parameters ¿offio y and logwOrt 
are given; where R is the norm of the residual related to the eigenproblem solution 
(R =|| AG - GD ||F) and Ort =|| GTG — I ||F provides a measurement of the 
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orthogonality of the eigenvectors (|| . ||F denotes the Frobenius matrix norm). 

Table 1: Numerical results of the accuracy of LDC method for several test matrices. 

Matrix n 7 IUIIF logioOrt 
BFW782B 782 0.9 % -15 -12 
tl024 1024 0 .3% -14 -13 
t2048 2048 0.1 % -14 -12 

The parallel performance evaluation was carried out executing the algorithm 
with P = 1,2,4,8,16 and 32 PEs and subdividing the tridiagonal matrix T into P 
sub-matrices; i.e. Sp0 = P for the DC method. However, executions using only 
one or a few PEs were only possible for some of the test matrices (the smaller ones) 
because of the fact that the computer ran out of memory for large matrices; for ex-
ample for the matrix £7168 the multiprocessor system ran out of memory when less 
than 16 PEs were used, so execution times were only obtained for P = 16 and 32 
PEs. Under these circumstances it was not possible to compute the standard values 
of the speed-up for evaluating the performance of the parallel implementation. As 
an alternative to the speed-up, we have defined a new parallel performance estima-
tor called Incremental Speed-up (IncSpUp) which provides information about how 
much the computing time diminishes when the number of PEs increases. IncSpUp 
is defined as follows: 

T/p = o®-1") . 
IncSpUp(T) = ^ { p = 2 i ) , (2) 

where T(P) is the run time of the execution with P PEs. For ideal parallel imple-
mentations, the value of the Incremental Speed-up should be equal to IncSpUp — 2, 
which corresponds to a lineal speed-up [10]. 

The experimental values for the Incremental Speed-up obtained from executions 
of our parallel implementation have been plotted in Figure 2. A set of eight matrices 
whose dimension n ranges between 782 and 7168 was used as test matrices; two of 
the matrices belong to the Harwell-Boeing collection (BFW728B and BCSSTK27), 
the remaining test matrices belong to the above described kind of matrices (tn). For 
every tn matrix the parallel algorithm was run twice; one of them producing many 
deflations and the other few deflations. As it was previously described, many or 
few deflations may appear depending on the value of the initial Lanczos vector (qi). 
In Figure 2, tn and tn* graphs correspond to the same matrix but for execution 
with few and many deflations, respectively. 

From Figure 2 performance of the parallel implementation can be analyzed for 
every value of the number of PEs, P. For every tested matrix such that n > 2048, 
the values of the IncSpUp estimator were greater than 2 when 2 < P < 16 but for 
P — 32 only the largest matrices (£5120 and £7168) gave IncSpUp > 2. From the 
definition of the IncSpUp it is easy to see that from the values of the IncSpUp for 
2 , 4 , . . . , P PEs, it is possible to obtain the value of the Speed-up for P PEs because 
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Figure 2: Incremental Speed-up of the parallel execution of LDC against the num-
ber of processors (P) for several input matrices. 

SpUp{P) = IncSpUp(P) x IncSpUp(P/2) x ... x IncSpUp(2). The values of 
IncSpUp estimator obtained in our experimental results are equivalent to efficiency 
values higher than 1, it means that our implementation exhibits a super-lineal 
behavior. 

Notice that, as the number of PEs increases, the computational work load of 
every processor diminishes but the interprocessor communications and delays for 
synchronizing tasks do not decrease but even may increase. Values of the IncSpUp 
less than 2 can have been produced as a consequence of long delays for synchro-
nization, which are mainly due to work load unbalances among processors, or long 
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interprocessor communications. 
In an attempt to determine the causes for both the super-lineal Speed-up be-

havior as well as the decreasing of the IncSpUp when the number of PEs increases, 
a detailed analysis of the performance was carried out. This analysis was made 
through a pair of additional parameters: the number of cache faults and the exe-
cution profiles. Execution profiles provide measurements of the percentage of the 
computational work related to every procedure involved in the parallel algorithm. 
Experimental results will show that the management of the memory hierarchy plays 
an important role in algorithms with large memory requirements. 
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Figure 3: Cache faults versus the number of PEs for several dimensions of input 
matrices. (*) means many deflations. 

Figure 3 shows a log plot of the number of cache faults against P. It can be 
seen that the number of cache faults diminishes considerably as P increases and this 
fact is more relevant for small values of P. This is mainly due to the fact that the 
percentage of the total data that can be allocated at the cache memory is greater 
when more PEs are used. This means that the time spent on accessing to data 
memory decreases as the number of PEs increases. This justifies that super-lineal 
Speedrup values (IncSpUp > 2) have been obtained in our experimental results. 

Experimental results for execution profiles are shown in the Table 2. The proce-
dures included in the LCD algorithm that have stronger computational work load 
are:. Lanczos (Ic), QR method (QR), intermediate product of matrices (IP, line 11 
of DC) and final product of matrices (FP). The characters in brackets are referred 
to the notation of the column head in Table 2. Moreover, this table has two addi-
tional columns which specify the percentages of the run time related to the waiting 
time for synchronization (wt) and the interprocessor communication process (c). 
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Table 2: Execution profile of LDC for several test matrices, le, FP, IP, QR, wt and 
c denote the percentage of the work load associated to the Lanczos method, the 
Final Product of matrices, the Intermediate Product of matrices, the QR method, 
the wait for messages time and the interprocessor communications, respectively. 

Many Deflati ons Few Deflations 
p le FP QR wt c le FP IP QR wt c 

t2048 
2 39 55 2 3 - 24 33 25 2 14 -

4 30 66 - 1 - 32 25 33 - 6 -

8 46 45 - 4 1 33 32 21 - 9 -

16 42 42 - 2 10 33 33 18 - 4 6 
32 28 27 - 5 31 23 23 11 - 6 26 

t3072 
2 47 48 - 3 - 32 32 25 1 7 -

4 55 42 - 1 - 23 27 30 - 17 -

8 46 47 - 3 - 32 32 23 - 9 -

16 45 44 - 1 6 34 33 19 - 4 4 
32 33 33 - 4 14 27 27 14 - 5 18 

t5120 
8 49 47 - 1 - 28 26 36 - 6 -

16 47 46 - - 3 33 31 21 - 9 2 
32 38 38 - 3 15 30 30 17 - 5 11 

t7168 
16 50 45 - - 2 30 29 28 - 9 -

32 42 41 - 2 10 32 31 18 - 6 8 

On the left side of Table 2, the results are associated with executions of the 
DC procedure that include many deflations, so the reconstruction process and the 
intermediate products (IP) are not very hard from a computational point of view. 
On the right hand side, we can see the results associated with the DC procedure 
that includes few deflations. So, the intermediate products represent a relatively 
large percentage of the total computational work. 

From data in Table 2, it can be seen that the communication processes are 
computationally irrelevant except for execution with P = 16 and P = 32, but their 
importance decreases when n increases. 

Notice that the values of the wt parameter are also estimations of the work 
load balance among processors since a synchronization stage always precedes every 
communication among processors. For all the analyzed cases the value of wt is 
extremely small. Thus, the parallel implementation has a good work load balance. 
In [13], from the point of view of parallel implementation, deflations have been 
described as a serious drawback, as they can produce load unbalance. Nevertheless, 
the values of wt obtained in our experimental results show that deflations do not 
produce a relevant work load unbalance. 



148 E. M. Garzon and I. Garcia 

5 Conclusions 
In this paper a parallel implementation of the eigenproblem of symmetric sparse and 
large matrices is proposed and evaluated. The solution is based on a direct method 
which mainly consists of three consecutive stages. Parallel implementations of every 
isolated stage have been described in the bibliography [7, 8, 13, 15]. However, a 
parallel implementation for the whole eigenproblem solution which includes these 
methods has not been reported anywhere. Our proposal is able to provide a solution 
for very large matrices which can not be solved with a uniprocessor system due to 
both the high computational complexity and the large memory requirements. We 
have solved all the problems associated to the work load unbalance which frequently 
appear when sparse matrices are involved in parallel computations. 

A detailed analysis of the parallel implementation has been carried out through 
the experimental values of the Incremental Speed-up, the number of cache faults and 
the execution profiles. It has been proved that the designed parallel implementation 
is very efficient since it includes specific devices which allow: (a) distributing the 
computational work load associated with all the procedures in a balanced way; (b) 
establishing interprocessor communications that do not increase considerably the 
run time, and what is more, (c) improving the mamory data access time, especially 
for irregular data. 
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