
Acta Cybernetica 15 (2001) 151-162.

Parallelization of an algorithm for the automatic
detection of deformable objects*

J.M. González-Linares1', N. Guilt, Zapata}
P.M. Ortigosa*, and I. Garcia*

Abstract

This work presents the parallelization of an algorithm for the detection
of deformable objects in digital images. The parallelization has been imple-
mented with the message passing paradigm, using a master-slave model. Two
versions have been developed, with synchronous and asynchronous communi-
cations.

1 Introduction
Numerous real life applications of image analysis need to detect the presence and
localization of certain objects, which suffer deformations due to several factors,
like sampling errors or the own flexibility of the material. Diverse methods that
allow to recover these objects exist, like free-form models based on "snakes" [1] or
the parametric models [2], [3]. Free-form models have the disadvantage that they
cannot be used reliably in an automatic environment, and parametric models need
an initial segmentation of the images.

In this work an algorithm has been selected that combines the Generalized
Hough Transform (GHT, [4], [5]) with a deformation model [6], to form an objective
function that is minimized by a stochastic global optimizer. The GHT provides an
automatic mechanism and is highly immune to occlusions, noise and cluttering,
thus solving the problems associated with other methods. The whole method can
be represented by the Bayesian rule, where the prior information is formed by a
template of the object to be detected and a group of deformations that are applied
on the template. The likelihood is obtained from the likeness measure that pro-
vides the GHT, while the a posteriori information is given by the application of the
Bayes rule. The inference on this bayesian model is carried out by a maximum a

"This work has been supported by the Ministry of Education of Spain (CICYT TIC99-0361).
^Departamento de Arquitectura de Computadores, Campus de Teatinos, Universidad de

Málaga, E-29080 Málaga (Spain). E-mail: gonzalez,nico.ezapataiac.uma.es.
í Departamento de Arquitectura de Computadores y Electrónica, Universidad de Almería, E-

04120 Almería (Spain). E-mail: pilar,inmafliron.ualm.es.

151

152 Gonzâlez-Linares J. M. et. al

posteriori estimator (MAP), therefore an optimization algorithm named UEGO (Uni-
versal Global Evolutionary Optimizer, [7]) have been selected. This optimization
algorithm allows to calculate the global maximum in an efficient way.

Figure 1: Outline of the method for the automatic detection of deformable objects

The computational complexity of this method is very high, since the evalua-
tion of the GHT requires a lot of computation. The GHT allows to calculate the
parameters that define the similarity Euclidean transformations (rotation, scale
and displacement), but these parameters are not necessary to be computed when
a good enough solution, below a given threshold, is found. To reduce the com-
putational requirements two objective functions are used; the first one evaluates
the GHT while the second not, so its computational complexity is much smaller.
This second objective function can be applied when the global minimum found is
below a threshold. The outline of operation of the method can be seen in Figure 1.
Even with this simplification, the computational complexity remains quite high,
therefore its parallelization is very interesting to obtain reasonable computational
times.

Figure 2 shows one of the test images used in the evaluation of the algorithm.
The top-left image presents a complex scene where the guitar is to be detected.

Paral. of an algorithm for the automatic detection of deformable objects 153

Figure 2: Test image and contour edges

The top-right image corresponds to the template used in the detection and the two
bottom images are the contour edges obtained with the Canny detector [8]. The
deformation model is applied over the template contour to obtain a deformed tem-
plate T .̂ Then, the GHT obtains the rotation, scale and displacement parameters
of JQ in the image. After applying these parameters over the deformed template, a
likeness measure can be computed:

^ - ^ (l + S f o f f J I c o s M * , »)) !) i 1)
nx —

where
$(*, y) = - exp (-Py[{8¡T^j) , (2)

and nj is the number of edge points in the template, Sx, 6y is the distance between
the contour points of the deformed template and image, (3(x,y) is the difference
between their gradient angles, and p is a parameter to control the smoothness of
the function. The value of £ is normalized between 0 and 1, with 0 corresponding
to a perfect match.

The energy value provided by (1) is used as an objective function that is min-
imized by UEGO. Experimental results show that near a minimum the similarity
transformation parameters remain equal, thus the GHT can be skipped to speed
up the process. Several intermediate results along with the final result obtained
are presented in Figure 3. In the bottom-right image the final result can be seen,

154 Gonzâlez-Linares J. M. et. al

Figure 3: Example of the results obtained with the algorithm

where the contour of the deformed, rotated, scaled and displaced template has been
superimposed on the original image.

2 UEGO

UEGO is a stochastic optimization algorithm that looks for groups of solutions to
optimize them by means of a particular method.

In the used implementation SASS (Single Agent Stochastic Search [9]) has been
selected as local optimizer. This method presents the advantage that the objective
function is not required to be continuous or differentiable. The operation consists
in generating a sequence of random paths. These paths start from a search point
that suffer a perturbation with a random variable. This random variable can have
different probability distributions, being the Gaussian distribution the most efficient
and the one that has been implemented. SASS is quite efficient to find local minima,
but it presents the disadvantage of being trapped in local minima. The introduction
of SASS inside an evolutionary algorithm as UEGO allows solving this problem.

The basic concept in UEGO is the one of species that is defined as a region
(window) in the search space. Its center and its radius determine this region, where
the center is a solution or point in the search space, and the radius is a positive
number that indicates the width of the region. This definition assumes that the

Paral. of an algorithm for the automatic detection of deformable objects 155

concept distance exists inside the search space. UEGO algorithm creates a list of
species, and each species is optimized by means of a certain method (SASS).

The role of this window is to 'localize' the optimizer that is called by a species
and can 'see' only its window, so every new sample is taken from here. This means
that the largest step made by the optimizer in a given species is not larger than
the radius of the given species. If the value of a new solution is better than that of
the old center, the new solution becomes the center and the window is moved.

The radius of a species is not arbitrary; it is taken from a list of decreasing radii,
the radius list. The radii decrease in a regular fashion in geometrical progression.
The first element of this list is always the diameter of the search space (ri) , which
will ensure that the largest species always contains the whole space independently
of its center. The diameter is given by the largest distance between any two possible
solutions according to the distance mentioned above, and it is an input parameter.
If the radius of a species is the ith element of the list, then we say that the level of
the species is i.

During the optimization process, a list of species is kept by UEGO. The algo-
rithm is in fact a method for managing this species-list (i.e. creating, deleting and
optimizing species).

The creation of the list of species consists in, initially, to calculate a random
point inside the search space. This point will be the center of a new species whose
radius comes determined by the diameter of the search space r\. The list of species
is finite and limited by the input parameter M that indicate the maximum number
of species. This initial list of species is optimized by SASS.

In the species list not only the species optimization is carried out, but also three
additional types of processes ([10]). The first process is a mutation process (species
creation mechanism), where a species can be divided in two or more species if more
than one local minimum exists inside the species.

The second process type is one of fusion. If the centers of two species are
separated by a smaller distance than the radius associated with the actual level
i, the two species combine into a single one. The center of the new species will
correspond to the best (minimal) center of both species, and its radius will be the
biggest one.

The third process carried out is elimination. It has already been indicated that
the maximum number of species is limited by a parameter. If the number of species,
as a consequence of the previous processes, overcomes this parameter, the species
that have been created more recently are eliminated.

All these processes, together with the optimization of the species, are carried
out in an iterative way like the one indicated in Figure 4. The number of iterations
I (levels) is another input parameter. Two further input parameters exist: the
allowed maximum number of objective function evaluations (N) and a threshold v
that controls the maximum distance a species can travel in the level i. Although five
input parameters exist, only four of them are necessary, since the fifth parameter
will be obtained by means of the application of some principles. In [10], all these
principles are described in detail.

156 Gonzâlez-Linares J. M. et. al

Initialize species

Optimize species

For i=2...1,

Create species

Fuse species

Eliminate species

Optimize species

Fuse species

Figure 4: The UEGO code

3 Parallelization of the method
The high computational requirements of the optimization algorithms have raised
the appearance of numerous parallelization strategies. One of the most common
strategies consists of carrying out global parallelization following a master-slave
model.. The master processor takes charge of making global decisions and dis-
tributing the populations of points that must be evaluated. On the other hand
the slave processors evaluate the objective function in those populations of points.
Another common strategy is the coarse grain parallelization, where the different
processors execute the same algorithm of optimization on different subpopulations
in an independent way. Though the executions are independent, intermediate re-
sults are sometimes exchanged. In the fine grain strategy the evaluations of the
objective function are distributed among the processors. This strategy is quite
common when working with massively parallel machines.

In this work, two parallelization strategies of UEGO based on a master-slave
model have been evaluated. The first one (PSUEGO, [11]) presents several synchro-
nism points so that the slaves processors send the evaluation of their lists of species
to the master processor. The second version (PAUEGO) eliminates the synchronism
points to avoid waiting times.

3.1 Parallel synchronous implementation (PSUEGO)

The slaves processors only need to receive the two own features of any species
(i.e. its center and its radius), from the master processor, to be able to run the
optimize and createspecies procedures, so the amount of information involved in
the communication procedures is quite small.

The optimize and createspecies procedures do not need any additional infor-
mation; each procedure only depends on a species and does not depend on another
parameters or species. For this reason, these procedures can be run independently
in several slaves processors at the same time.

In the initialization phase, the master processor forms the initial species list
containing not a single point, but NP random points, where NP is the number

Paral. of an algorithm for the automatic detection of deformable objects 157

MASTER SLAVES MASTER SLAVES MASTER

Synchronization point
Communications

Figure 5: Synchronous version of UEGO

of slave processors. These NP points will be the centers of the first NP species.
Then it distributes the species among the slave processors so all species can be
optimized simultaneously. When they finish, they send the results to the master
processor so that it forms the list of species that will be used in the following
level. Then an iterative process (Z levels) is carried out whose operation outline
for this synchronous version can be observed in Figure 5. The oval boxes represent
instructions that are executed in the master processor and the hexagonal boxes in
the slave processors. The vertical dotted lines indicate synchronism points and the
continuous lines indicate communications where the arrow shows the direction of
the communication.

Initially, the master processor distributes the list of species among the slave
processors. The slave processors pick up the species and evaluate them, trying to
create new species. Meanwhile, the master processor stays in a wait state until all
the slave processors finish creating species. Once the master processor has received
all the new species, it applies the fusion and elimination processes to them in order
to complete the final species list at this level. Later, it distributes this list among
the slave processors, which take charge of optimizing each of their assigned species.
When all species have been optimized, they are sent to the master processor that
applies a fusion process and forms the species list that will be used in the following
iteration.

When evaluating the objective function, the algorithm decides what objective
function type must be used depending on the value of the reached minimum. If
the slave processors act independently, there will be processors that evaluate more
often the objective function with GHT than others, which will evaluate the objective

158 Gonzâlez-Linares J. M. et. al

function without GHT a bigger amount of times. To avoid this computational unbal-
ance, the slave processors send the rotation, scale and displacement parameters to
the master processor, computed for their best minimum, every time they communi-
cate with the master processor. The master processor will select the best minimum
so far and, if it is below the threshold, it will communicate to all slave processors
the parameters that should evaluate the objective function without GHT. Using
this technique all the slave processors approximately evaluate the same number of
times the objective functions with and without GHT.

Anyway, the distribution of the computational load is not well balanced. The
evaluation of the objective function is carried out in the species creation and op-
timization processes, which are only executed in the slave processors. Therefore,
the master processor is most of the time waiting results from the slave processors.
Due to the fact that the performance of this synchronous version is very low, the
elimination of some synchronism points is necessary. In this way the master pro-
cessor can also work in the creation and optimization processes and the processors
can distribute the computational load in a more dynamic way.

3.2 Parallel asynchronous implementation (PAUEGO)

The second parallel strategy (PAUEGO) is intended to solve some of the previous
problems. In this new implementation the load has been balanced forcing the mas-
ter processor to optimize and create species while the slave processors are working.
Another change consists of the reduction of several points of synchronization. Now
the master processor can start to carry out the synchronous operations over the
species before it has received all the information, so the idle time can be reduced
considerably.

The first modification that has been carried out with regard to the synchronous
version is located in the initialization phase. Now every slave processor has a
species initialization procedure; in particular, every slave processor chooses two or
more points as centers of new species and later on, it optimizes them. Once the
species is optimized, the slave processor creates and sends a new sublist of species
for each of the optimized species to the master processor. On the other hand, the
master processor only initializes a single species (not NP species like in the case
of PSUEGO), and later it optimizes the species and creates new species from the
optimized one. Once this new sublist has been created, the master processor is
prepared to receive any information (sublists of species) from any slave processor.
If at some time the master processor does not receive any sublist, then it begins
to fuse the lists of species. This fusion process stops when the master processor
receives any sublist from any slave processor, and goes on when no more reception
of information from any slave processor is produced at that time.

Once the master processor has received all the sublists created by the slave
processors and the fuse procedure has been applied, it starts the iterative loop.
Figure 6 shows how the work is distributed among the processors. The meaning of
the used symbols is the same as in Figure 5.

The iterative part of PAUEGO for the slave processors does not have any modifi-

Paral. of an algorithm for the automatic detection of deformable objects 159

MASTER SLAVES MASTER 8LAVE8 MASTER

Synchronization point
•» Communications

Figure 6: Asynchronous version of UEGO

cation with respect to the iterative part of PSUEGO, but there are some changes for
the master processor. In this version, the master processor always checks the arrival
of information (a new created sublist of species or an optimized species) from the
slave processors and if any information has arrived it sends a new species. Oth-
erwise the master processor contributes to the optimization process in such a way
that when the algorithm is in the species creation stage, the master processor fuses
the received species, and when the algorithm is in the optimization phase, then
the master processor optimizes a species. These species must be species that have
not been sent to any slave processor in this optimization phase. These processes
executed by the master processor are always interrupted when new information
arrives to the master processor, and later they are resumed.

As in the previous version, all the processors communicate the rotation, scale
and displacement parameters, obtained for the best minimum, so that all processors
do a similar number of evaluations of the GHT.

4 Results
The two versions of the algorithm have been tested on a SGI/CRAY T3E machine,
with 32 DEC 21164 (Alpha EV-5) processors at 300 MHz and 128 MB of RAM
memory each. The implementation has been carried out using the PVM message
passing library [12]. To obtain the speedup, both versions have been executed 20
times on a group of five different images, being carried out a total of 100 executions.
Each of these tests has been made for 2, 4, 8 and 16 processors. In addition, the
sequential algorithm has been executed on the same machine to be able to compare
it with the results obtained by the parallel versions. The DEC 21164 processors
have two cache levels. The first level has a cache of 8 KB for the data and another
of 8 KB for the instructions, and the second level has a cache of 96 KB for data
and instructions. This relatively small size of the cache penalizes the performance
of the algorithm in comparison with a processor like the Pentium II whose second

160 Gonzâlez-Linares J. M. et. al

level cache has a size of 512 KB. The spatial locality of the data takes advantage
of the cache of 512 KB. For this reason, the sequential algorithm executed on the
Pentium II can be up to three or four times quicker than on the Alpha 21164.

The selected group of images presents different characteristics, in the sense that
there axe images where the objective function with GHT is applied few times and
in others the opposite happens. This is because for some images a good optimum
better than the threshold is reached very quickly and in others it is not possible
to reach it. Due to these differences, the computation times are very disparate,
varying from few seconds to several minutes. Nevertheless, the obtained speedup
remains approximately constant independent of the computational complexity.

12

-o <D a>

3

1 2 4 8 16
Number of processors

Figure 7: Speedup for PSUEGO and PAUEGO

In Figure 7 the average results obtained for both parallelizations are presented.
The results with one processor correspond to the sequential version. From these
results the following considerations are made:

• The distribution of the computational load is made at the species level, then
it is convenient that the number of species is a multiple of the number of
processors to obtain a good balance. Although the concrete number of species
depends on the input data (the image and the template), the parameter M
can be used to limit the number of species.

• The objective functions for this concrete application present numerous local
optima [13], therefore the number of evaluations of the objective function for
each species has a high variation. Typically, the total number of function
evaluations is between 2000 and 3000. Then, although the distribution of
species is well balanced, the computational load for each processor is not
necessarily such.

- • • PSUEGO
• • PAUEGO

p .

/ /•
- M ,

/ y

/
/

. . .

i

Paral. of an algorithm for the automatic detection of deformable objects 161

• The selection of the objective function type that is evaluated depends on
the best approximate global optimum. If several species are evaluated in
parallel, it is possible to find global optima that are better than the given
threshold before the sequential version. For this reason the average number
of evaluations of the objective function with GHT in the parallel versions can
be smaller to that of the sequential version.

The results obtained for PSUEGO show a low speedup because the master pro-
cessor does not collaborate in the evaluation of the objective function. In addition,
the distribution of the load is not well balanced, so the processors are waiting to
each other most of the time (30%—40% of the total time). With PAUEGO the results
improve because of the dynamic distribution of the load and because the master
processor also works in the species creation and optimization processes. Although
the distribution of the species is well balanced, the processors spend a 10% — 20%
of the total time in waits and communications. The reason for this unbalance
is that the evaluation of different species can have quite different computational
complexities.

5 Conclusions
The parallelization of an algorithm for the automatic detection of deformable ob-
jects has been presented. A master-slave model has been selected and two versions,
a synchronous one and an asynchronous one, have been implemented. The asyn-
chronous version obtains a better speedup thanks to the dynamic distribution of
the load and the participation of the master processor in the tasks with more com-
putational complexity. The obtained speedup does not come closer to .the ideal
one due to the granularity of the problem. A distribution of the computational
load with a finer grain would imply that the granularity is at thè level of function
evaluations instead of species. It would allow a better computational balance, but
the number of communications would be much higher and the speedup would not
improve. • ,' ,

References
[1] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active contour models",

International Journal of Computer Vision, 1(4), 1988, 321-331.

[2] L.H. Staib and J.S. Duncan, "Boundary finding with parametrically de-
formable models", IEEE Transactions on Pattern Analysis and Machine In-
telligence, 14(11), 1992, 1061-1075.

[3] A.L. Yuille, P.W. Hallinan, and D.S. Cohen, "Feature extraction from faces
using deformable templates", International Journal of Computer Vision, 8(2),
1992, 133-144.

162 Gonzâlez-Linares J. M. et. al

[4] D.H. Ballard, "Generalizing the Hough Transform to Detect Arbitrary
Shapes", Pattern Recognition, 14(2), 1981, 111-122.

[5] N. Guil, J.M. González-Linares, and E.L. Zapata, "Bidimensional shape de-
tection using an invariant approach", Pattern Recognition, 32(6), 1999, 1025-
1038.

[6] Y. Amit, U. Grenander, and M. Piccioni, "Structural image restoration
through deformable template", Journal of the American Statistical Associ-
ation, 86(414), 1991, 376-387.

[7] M. Jelasity, P.M. Ortigosa, and I. Garcia, "UEGO, an Abstract Clustering
Technique for Multimodal Global Optimization", Accepted for publication in
the Journal of Heuristics.

[8] John Canny, "A computational approach to edge detection", IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 8(6), 1986, 679-698.

[9] D.C. Karnopp, "Random search techniques for optimization problems", Au-
tomática, 1, 1963, 111-121.

[10] Pilar M. Ortigosa, Stochastic Global Optimization Methods. Parallel Process-
ing., PhD Thesis, University of Málaga, 1999.

[11] P.M. Ortigosa, I. Garcia, and M. Jelasity, "Two Approaches for Parallelizing
the UEGO Algorithm", Accepted for publication in Mátraháza Optimization
Days, Kluwer Academic Publishers, 2001.

[12] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam,
PVM 3 Users guide and reference manual, Technical Report, Oak Ridge Na-
tional Laboratory, 1993.

[13] J.M. González-Linares, N. Guil, E.L. Zapata, P.M. Ortigosa, and I. Garcia,
"Deformable Shapes Detection by Stochastic Optimization", in Proceedings
of the IEEE Int'l Conf. on Image Processing (ICIP'2000), Vancouver, Canada,
September 10-13, 2000.

