
Acta Cybernetica 15 (2001) 163-172.

An online scheduling algorithm for a two-layer
multiprocessor architecture *

Cs. Imreh*

Abstract

In this paper we give online algorithms and competitive ratio bounds for a
scheduling problem on the following two-layer architecture. The architecture
consists of two sets of processors; within each set the processors are identical
while both the processors themselves and their numbers may differ between
the sets. The scheduler has to make an online assigment of jobs to one of
the two processor sets. Jobs, assigned to a processor set, are then sceduled in
an optimal offline preemptive way within the processor set considered. The
scheduler's task is to minimize the maximum of the two makespans of the
processor sets.

1 Introduction
In the most fundamental parallel machine scheduling model, we have a sequence
of jobs, each of them has a processing time, and we have to process them on the
available uniform machines. A schedule specifies for each job a machine and a time
interval on the machine when the job is processed on it. The length of the time
interval must be the processing time, the starting and ending points of the time
interval are called the starting and finishing time of the job. A schedule is feasible if
for each machine the time intervals do not overlap. Our goal usually is to minimize
the maximal finishing time. Sometimes it is allowed to preempt the jobs. In this
case, we have to specify for each job a sequence of machines with not overlapping
time intervals (one machine can have more time intervals), and the total length
of the time intervals must be the processing time. For more details on scheduling
problems we refer to [6].

The most fundamental example of an online machine scheduling problem is the
online problem of jobs arriving one by one. In this problem we have a fixed number
m of identical machines. The jobs and their processing times are revealed to the
online algorithm one by one. When a job is revealed, the online algorithm must
irrevocably assign the job to a machine, without any information about the further

"This work has been supported by the Grant O T K A T030074
t Department of Informatics, University of Szeged, Árpád tér 2, H-6720 Szeged, Hungary e-mail:

cimrehflinf.u-szeged.hu

163

164 Cs. Imreh

jobs. The starting time of the job is the finishing time of the previous job assigned
to the machine considered. By the load of a machine, we mean the sum of the
processing times of all jobs assigned to the machine. Then, the maximal completion
time is the maximum load, thus the objective is to minimize the maximum load,
often called the makespan. The first result for this online scheduling model is due
to Graham [4], the best algorithm which is known for this problem can be found in
[1], but the best possible competitive ratio is still unknown for m > 3. For details
and results on other online scheduling problems we refer to the survey [8].

In this paper we consider a scheduling problem where the machines form a two-
layer multiprocessor architecture. In this problem we have two sets V and S of
identical machines containing k and m machines with k <m. The jobs arrive one
by one. Each job j has two different processing times Pj and sj, one for each set
of machines. We assign the jobs online to one of the two machine sets. Finally,
when the stream of jobs has come to an end, we schedule the jobs assigned to V
(respectively, the jobs assigned to S) on the machines of V (respectively, S) in an
offline way so as to minimize the preemptive makespan. Let Cp (respectively, Cs)
denote this optimal makespan. The cost of the schedule, which we want to minimize,
is the maximum of the makespans, max{Cp,Cs} - We denote this problem by
LS(k,m) (Layered Scheduling). The general problem without fixing the numbers
k and m is denoted by LS. It is worth noting that the LS(l, 1) problem is the
online two-machine scheduling problem with unrelated machines which problem is
investigated in [2].

A similar problem called classification with preemptive scheduling (or CPS for
short) is studied in [5]. Just as in the LS problem, in CPS an online scheduling to
one of two sets of identical processors is followed by an offline preemptive scheduling
within the processor sets. However in CPS the objective to be minimized is the
sum of the two makespans instead of their maximum. For the CPS problem two
algorithms are developed the first one is a greedy algorithm. The competitive ratio
of this greedy algorithm is linear in m/k, therefore this algorithm can be effective
only in the cases when m/k is small. A more difficult algorithm with constant
competitive ratio is also presented.

In this paper we study the algorithms which are presented in [5], and we de-
termine their competitive ratios for the LS problem. Moreover, we prove a general
lower bound, namely, we show that no online algorithm can have smaller competi-
tive ratio than 1.781.

The paper is organized as follows. In the following section we introduce some
basic notation for the LS problem. Then, in Section 3, we present two algorithms
for solving the problem and determine the competitive ratios of these algorithms. In
Section 4 we present two lower bounds for LS. First, we construct input sequences
for each fixed pair of values (k, m) to show that no online algorithm for the fixed
(k,m) can be better than (1 + \/5)/2-competitive. Then we construct a single
input sequence to show that for all online algorithms there exists a pair (k, m) such
that the algorithm cannot be better than (3 + \/l7)/4-competitive. Finally, we
summarize the results and present some open questions regarding the problem in
Section 5.

Ail online scheduling algorithm for a two-layer multiprocessor architecture 165

2 Notation and preliminaries
In the problem considered we have two sets of machines, V is the set of k identical
machines and S is the set of m identical machines. In what follows we assume
that k < m. Furthermore, each job j has two processing times, pj if we schedule
it on the machines of V and Sj if we schedule it on the machines of S. Here we
allow oo processing time, which means that it is not possible to process the job
on the machines in the set. The vector (Pj,Sj) is called the size of the job. The
algorithm has to decide in an online fashion on the arrival of each job where to
assign it. When the sequence of jobs is finished, we schedule the jobs assigned to
V respectively S on the machines of V respectively <S, in the way that we minimize
the makespan preemptively in an offline way.

With preemption a job may be scheduled on multiple machines. In preemptive
scheduling we have to assign time intervals to each job on one or more machines.
The total length of the intervals must be the processing time of the job, and if time
intervals • • •, [Qi,U) are assigned to a job, then tj < qj+i must be valid for
j = 1, ... ,i — 1. Furthermore, no two jobs may have overlapping intervals on the
same machine. It is well-known and one can easily see that for any set of jobs, the
preemptive makespan of the optimal scheduling is the maximum of the maximal
processing time and the load of the jobs. By the load of a set of jobs we mean
the value obtained by dividing the sum of the processing times by the number of
machines.
For any subset I of the jobs, we use the following notation

Si = ^ Sj, Pi — ̂ p j , Smax/ = max j e /Sj , Pmaxj = maXj^ipj.
jei jei

Using these notation, the cost of a schedule SC can be written in the form

w(SC) = m a x { ^ , Pmaxfl, — , Smax^}, K TTl
where R and Q are the sets of jobs assigned to V and 5, respectively.

The optimal cost on a list L of jobs is denoted by OPT(L). This is the minimum
of the costs of the schedules which assign the jobs of L to the sets. We measure
the performance of the presented algorithms by the competitive analysis. For this
reason let A be an arbitrary online algorithm and let A(L) denote the cost of the
schedule produced by A on a list L of jobs. An algorithm A is called c-competitive if
for every list L of jobs A(L) is at most c times greater than OPT(L). The competitive
ratio of an algorithm on a problem is c if the algorithm is c-competitive and it is
not c-competitive for any c < c.

3 Upper bounds
There is a simple online algorithm for LS. The basic idea is to assign each job to
the set of machines where the job has a smaller load. This algorithm is called load

166 Cs. Imreh

greedy, (in short LG) and it is presented in [5] for the problem CPS. It has a similar
analysis in our case. Formally, the algorithm is given as follows:

Algorithm LG: When a job j arrives, then it is assigned to V if ^ <
otherwise, it is assigned to S.

We can prove the following statement.

Theorem 1 Algorithm LG has the competitive ratio max{2 ,m/k} on problem
LS(k,m).

Proof. Consider an arbitrary list L of jobs, and denote by a and b the makespans
obtained by LG on V and S, respectively. Suppose that a > b. If the makespan
is defined on V by the maximal completion time, then denote the job with this
maximal processing time by j. Then pj — a, and since our algorithm assigns this
job to V, we get that, Sj > Hence, the optimal cost is at least a, and this yields
that we have an optimal solution. Now, suppose that the makespan is defined by
the load of the jobs. Let P denote the set of the jobs assigned by LG to V, and
let R and Q denote the sets of the jobs from P which are assigned to V and S in
an optimal solution, respectively. Then, the optimal cost is at least m a x { ^ ,
Furthermore, by the definition of LG, we get that < This yields that the
cost of the optimal solution is at least m a x j ^ - , > a/2, and our statement
follows.

Let us assume that a < b. Now, consider two cases depending on the makespan
on <S. If the makespan is the load, then in the same way as above, we obtain that
the optimal cost is at least b/2, which yields that the algorithm is 2-competitive.
Suppose that the makespan is defined by a maximal processing time. Denote the
job with this maximal processing time by j. Then, sj = b and since our algorithm
assigns this job to <S, we obtain that pj > ^b. Hence, the optimal cost is at least
z~b, and our statement follows.
m 3

To prove that the above analysis is tight, consider one job of size (1, y — e).
Algorithm LG assigns this job to S with cost ^ — e, hence, since the optimal cost is
1, by choosing a sufficiently small e, the competitive ratio on this job is arbitrarily
close to y- To prove that the bound 2 is tight, we have to consider a sequence of
jobs where the load of each job is the same in the two sets.

•

Algorithm LG works well only in the cases when m / k is small. Here we study
an algorithm which is also efficient when m/k is large. This algorithm is defined
in [5] and can be considered as a generalization of the reject total penalty type
algorithms which are presented in [3] and [7]. The algorithm has two parameters
0 < a < 1 and 0 < 7 < 1.

Ail online scheduling algorithm for a two-layer multiprocessor architecture 167

Algorithm A(a, 7)

• 1. Initialization. Let R := 0.

• 2. When job j arrives:

— (i) If ^f < ^ • Sj, then assign j toV.

— (ii) Let r be the cost of the optimal offline preemptive scheduling of the p
set RU{j} on V. Formally, r = max{ , PmaxH U { j } } . If r < a-Sj,
then

* (a) Assign j to V,
* (b) Set R = RU{j}.

— (iii) Otherwise, assign j to S.

Theorem 2 The competitive ratio of algorithm A(a, 7) is c on problem LS, where

c = maxi l + 1 + a + 7 , 1 + - } .
a 7

Proof. We prove this statement in two parts. First, we show that the algorithm is
c-competitive, and later we prove that it is not better than c-competitive. Let us
consider an arbitrary sequence of jobs, and denote the list of the jobs by L. Fix an
optimal schedule of the jobs. Denote by Popt the set of jobs assigned to V in the
optimal schedule. Let P0 be the set of jobs with ^ < ^ • Sj, and P be the set of
jobs assigned to V by our algorithm. Let us observe that, by the definition of the
algorithm, we have Po C P. Define the following sets

X = L \ (Popt U P), Y = Popt\P,

Z = Poptn(P\P0), U = Popt fl Po;

V = P0\Popt, W = (P\Po)\P0pt-

Then, the algorithm gives the following cost on L:

A(T\ fPZ + Pu + Pv + Pw p p, A(L) = max{ , Pmaxz, Pmaxj/,
k

Pmaxy, Pmaxvv, , Smaxx, Smaxy}.
m

Furthermore, the optimal cost is

OPT(L) = max{ ^ , Pmaxy Pmaxz,

168 Cs. Imreh

Pmaxc/, ^ W , Smax*, Smaxy, Smaxw}.
m

To prove the first part of the theorem, we have to show that A(L) < c-OPT(L).
In the proof we will use the following lemma which is proved in [5]. For the reader's
convenience, we recall here this result and also sketch the proof of the statement.

Lemma 3 ([5]) The following inequalities are valid:

(1) —^ < a • Smaxjv,

(2) Pmaxw < Q • Smaxw,

(3) a • Smaxy < m a x { ^ > Pmaxzuwuv}-
k

Proof. We first prove (1). Let j be the last job from W. At the time when it was
assigned to V by the algorithm, we had r < a • Sj. On the other hand, j is the last
job in W, thus < r. Furthermore, obviously Sj < Smaxvy, and the validity of
(1) follows. We can prove (2) in the same way as (1). Indeed, let j be a job from
W with Pj = Pmaxw. When it was assigned to V, we had pj < r < a • Sj. This
inequality yields (2).

There exists a job j € Y with Sj = Smaxy. At the time when it was assigned
to <S, we had r > asj. On the other hand, R U { j } C Z U W U Y was valid for
the considered set R, thus r < max{Pz+p^+PY, Pmax^uwuy} was also valid by
definition. Therefore, the required inequality holds.

•

Using this lemma, we can prove the desired upper bound. For this reason
consider the following cases.

Case 1: Suppose that A(L) - max{ Pmax^, Pmaxc/, Smax^}. In this case
A(L) < OPT(L), and thus, the algorithm results in an optimal solution.

Case 2: Suppose that A(L) = pz+Pv+Py+Pw . i n this case the definition of the
set V yields that 7OPT(L). On the other hand < OPT(L).
Furthermore, by Lemma 3, we have that Pw/k < a Smaxw < aOPT(L). There-
fore, A(L) < (1 + a + j)OPT(L).

Case 3: Suppose that A(L) — Pmaxv. Then, by the definition of the set V,
P m a xy /k < 7 Smaxy /m. Since k < m, this yields that Pmaxy < 7 Smaxy <

7OPT(L). This is possible only when 7 = 1 , and in this case the algorithm results
in an optimal solution.

Case 4: Suppose A(L) - Pmaxvy. Then by Lemma 3, Pmaxw < a Smaxw <
a • OPT(L), therefore, this case is possible only if a = 1, and the algorithm gives
an optimal solution.

Ail online scheduling algorithm for a two-layer multiprocessor architecture 169

Case 5: Suppose that A(L) = Sx^Sr • In this case, by the definition of the
set Y we have that ^ < ^ < OPT(L)/7. Hence, we obtain that A(L) <
(1 + lh)OPT{L).

Case 6: Suppose that A(L) — Smaxy. By Lemma 3 this yields that

< — m a x { P z + ^ + P y , Pmax Z u ivuy} -
a k

Consider now three subcases. If A(L) < Pz+f^Py , then since ^f- < Smaxw <
OPT(L) (by Lemma 3), we get that A(L) < (1 + 1 /a)OPT(L). If A(L) <
1 /a Pmax^ur, then we obtain immediately that A(L) < OPT(L)/a. Finally,
if A(L) < 1 / a Pmaxn/, then by Case 4, we have that A(L) < OPT(L).

Since we considered all the possible cases, we proved that the algorithm is c-
competitive. We can prove that the bound c is tight by the following examples.

First, assume that k = 1 and m > 7 • (1 + a)/a. Consider the following
sequence of two jobs. The first job has size (a • M,M), the second job has size
(M + e , M (l + a)/a) for some large M and small e. By the definition of m, we
have that aM > 7 M / m , and thus, the first job is assigned to V in Step (ii). The
second job is assigned to S. Therefore, the cost of the algorithm is M (1 + a)/a
on this sequence. The optimal cost is M + s, we assign the first job to S and the
second to V. As M tends to 00 the ratio of these costs tends to 1 + 1 /a , hence we
proved that the first bound is tight.

To prove the tightness of the second bound, fix the value of k and let m be much
greater than k. Consider the following sequence of jobs. First consider M(m — k)
jobs of size (7 • k/m, 1). The second part of the sequence contains k jobs of size
(M, 00), finally, the third part contains k jobs of size (a • M, M) . Then the first
and second parts are assigned to V in Step (i), the third part is also assigned to V
in Step (i) or in Step (ii). Therefore, the cost of the algorithm is

M(m - k)jk/m + Mk + aMk
k '

The optimal solution assigns the first and the third parts to S, and the second part
to V and its cost is M. Asm tends to 00, the ratio of these costs tends to l + a + 7,
hence, we proved that the second bound is tight.

To prove that the third bound is tight, consider such k and m that satisfy
the inequality a/k > 7 / m and the following sequence of jobs. The first part of
the sequence is one job of size (a(m/(-yk) -I- 2e), (771/(7/0) + 2e)). The second part
contains Mk jobs of size (1, m/(7A;) + e) , and the third part contains m jobs of size
(00, M). Then the algorithm assigns the first job to V in Step (ii), and assigns the
other jobs to S. Therefore, its cost is

Mk(m/(jk) + e) + rnM
m

170 Cs. Imreh

There is a feasible schedule which assigns the second part of the jobs to V and the
third part to S, therefore, the optimal cost is no more than M + m/(jk) + 2e. As
M tends to oo and e tends to 0, the ratio of these costs tends to 1 + 1 / 7 , hence,
we proved that the third bound is tight.

•

To find the best values of a, 7 , we have to choose a = 7 = l /\/2. By substituting
these values into Theorem 2, we obtain the following result.

Corollary 4 Algorithm A(l/\/2, l /\/2) is 1 + \/2-competitive on LS.

4 Lower bounds
In this section we present the following lower bounds.

Theorem 5 Let (k,m) be an arbitrary pair of positive integers. If an online algo-
rithm is c-competitive for the LS(k,m) problem, then c> (1 + \/5)/2 ~ 1.618.

Proof. We prove this statement by contradiction. Suppose there is a pair (k, m)
and an algorithm A which is c < (1 -I- y/B)/2-competitive for the problem LS(k, m).
Consider the following list L of jobs. The first part contains k jobs of size ((\/5 —
l) /2 ,1) , and the next part contains k jobs of size (l ,oo) . In this case, the optimal
offline algorithm assigns the first k jobs to S, and the next k jobs to V, hence
OPT(L) = 1. On the other hand, since A is c-competitive it must assign the
first k jobs to V, otherwise, we omit the next k jobs, and the offline optimum is
(\/5 — l) /2 , while the cost of the algorithm is 1. Therefore, the online algorithm
must assign all jobs to V, and thus, it has a makespan (1 -I- y/E)/2. This yields that
A(L)/OPT(L) = (1 + y/5)/2, which is a contradiction.

•

We can obtain a sharper, general lower bound as follows.

Theorem 6 Let k be a fixed constant. If an online algorithm is c-competitive for
every m on the problem LS(k,m), then c > (3 4- \/ l7) /4 « 1.781

Proof. We prove this statement by contradiction. Suppose that there exist such
k and an online algorithm A, that A is c-competitive for every m on the problem
LS(m, k), where c < (3 + -v/17)/4. For the sake of simplicity, in the rest of the proof
we denote the number (3 + \/l7)/4 by b. Let to be greater than 5k and consider
the following sequence of jobs. The first part contains k jobs of size (1/6,1), and
the following to — k jobs have size (^ ¿ , 1) . Finally, depending on the decisions
made by A, we finish the sequence with k jobs of size (1,00), this is list L\, or we
finish the list with m — k jobs of size (00,1), this is list

Consider first the offline optimum. In the first case we can assign the first m
jobs to S and the last k jobs to V, this schedule has cost 1. In the second case,

Ail online scheduling algorithm for a two-layer multiprocessor architecture 171

we can assign the first k jobs and the last m — k jobs to <S, and the other m — k
jobs to V, and thus, we can obtain a makespan of 1. Therefore, OPT(Li) < 1, and
OPT(L2) <1.

Consider the algorithm A. Since A is an online algorithm, it cannot see any
difference between L\ and L2 before it gets the m + 1-th job, and thus, it has
the same behaviour in both cases. Furthermore, A is c-competitive with c < b,
therefore it must assign the first k jobs to V, otherwise we get a contradiction in
the same way as in the proof of Theorem 5. From the next m — k jobs A can
assign x to V and m — k — x to S. Therefore, in the case of list L\ we .have that
A(Li) > \ + ^ + 1 and in the case of list L2 we get that A(L2) > . The
algorithm can choose x to be any integer between 1 and m — k, and we can choose
the list which yields the greater makespan. Therefore, since the offline optimum is
at most 1 for both lists and A is c-competitive, we have that

, 1 x . , 2m — 2k — x.
c > mm m a x { - H + 1, } .

l <x<m-k b m — k m

Here we omitted the condition that x is an integer. This does not cause any
problem since it decreases the right side of the inequality. It can easily be seen that
the function of x, which is on the right side of the inequality, is minimal for

_m(m — k),m — 2k
2m — k . m 6

If we substitute this value into the bound for c, we obtain that

1 3m — 3 k m
c> r +

2m-k (2m-k)b'

Since this inequality is valid for arbitrary m, it is also valid if we let m to tend to
infinity. Therefore,

3 1
C 2 2b'

On the other hand, b = § + and thus, we obtain that c > b which is a
contradiction.

•

5 Conclusions
In this paper we investigated a particular scheduling problem on a two-layer mul-
tiprocessor architecture. We showed that the greedy approach works well only in
the cases where the layers contain around the same number of machines. We also
presented a better algorithm for the general case, which has a constant competitive
ratio for arbitrary number of machines. It was also proved that there exists no
online algorithm with smaller competitive ratio than 1.781.

In relation with the problem considered, some further questions arise.

172 Cs. Imreh

Concerning the LS problem there is a gap between our lower and upper bounds.
It would be nice to decrease this gap by finding more efficient algorithms or better
lower bounds.

In the problem considered the objective is the maximum of the two makespans,
which function is the norm of the vector constructed from the makespans. In [5]
the h norm is investigated. It would be also interesting to study other lp norms.

We considered the problem with two sets of machines. A straightforward gen-
eralization is to consider a problem with more sets of machines.

References
[1] S. Albers, Better Bounds for Online Scheduling, SIAM Journal of Computing,

29 (1999) 459-473.

[2] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, 0 . Waarts, On-line load balancing
with applications to machine scheduling and virtual circuit routing, J. of the
ACM, 44 (1997) 486-504.

[3] Y: Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall and L. Stougie, Mul-
tiprocessor scheduling with rejection, SIAM Journal of Discrete Mathematics,
13 (2000) 64-78.

[4] R. L. Graham, Bounds for certain multiprocessor anomalies, Bell System Tech-
nical Journal, 45 (1966) 1563-1581.

[5] Cs. Imreh, Online classification with offline scheduling, Algorítmica, submitted
for publication.

[6] S. A. Roosta, Parallel Processing and Parallel Algorithms, Springer-Verlag,
New York, 1999.

[7] S. S. Seiden, Preemptive Multiprocessor Scheduling with Rejection, Theoret.
Comput. Sci., to appear.

[8] Sgall J. On-line scheduling, In Online algorithms: The State of the Art, Lec-
ture Notes in Computer Science, Vol. 1442, G. Woeginger and A. Fiat (Eds.),
Springer-Verlag, 1998, 196-231.

