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An online scheduling algorithm for a two-layer 
multiprocessor architecture * 

Cs. Imreh* 

Abstract 

In this paper we give online algorithms and competitive ratio bounds for a 
scheduling problem on the following two-layer architecture. The architecture 
consists of two sets of processors; within each set the processors are identical 
while both the processors themselves and their numbers may differ between 
the sets. The scheduler has to make an online assigment of jobs to one of 
the two processor sets. Jobs, assigned to a processor set, are then sceduled in 
an optimal offline preemptive way within the processor set considered. The 
scheduler's task is to minimize the maximum of the two makespans of the 
processor sets. 

1 Introduction 
In the most fundamental parallel machine scheduling model, we have a sequence 
of jobs, each of them has a processing time, and we have to process them on the 
available uniform machines. A schedule specifies for each job a machine and a time 
interval on the machine when the job is processed on it. The length of the time 
interval must be the processing time, the starting and ending points of the time 
interval are called the starting and finishing time of the job. A schedule is feasible if 
for each machine the time intervals do not overlap. Our goal usually is to minimize 
the maximal finishing time. Sometimes it is allowed to preempt the jobs. In this 
case, we have to specify for each job a sequence of machines with not overlapping 
time intervals (one machine can have more time intervals), and the total length 
of the time intervals must be the processing time. For more details on scheduling 
problems we refer to [6]. 

The most fundamental example of an online machine scheduling problem is the 
online problem of jobs arriving one by one. In this problem we have a fixed number 
m of identical machines. The jobs and their processing times are revealed to the 
online algorithm one by one. When a job is revealed, the online algorithm must 
irrevocably assign the job to a machine, without any information about the further 
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jobs. The starting time of the job is the finishing time of the previous job assigned 
to the machine considered. By the load of a machine, we mean the sum of the 
processing times of all jobs assigned to the machine. Then, the maximal completion 
time is the maximum load, thus the objective is to minimize the maximum load, 
often called the makespan. The first result for this online scheduling model is due 
to Graham [4], the best algorithm which is known for this problem can be found in 
[1], but the best possible competitive ratio is still unknown for m > 3. For details 
and results on other online scheduling problems we refer to the survey [8]. 

In this paper we consider a scheduling problem where the machines form a two-
layer multiprocessor architecture. In this problem we have two sets V and S of 
identical machines containing k and m machines with k <m. The jobs arrive one 
by one. Each job j has two different processing times Pj and sj, one for each set 
of machines. We assign the jobs online to one of the two machine sets. Finally, 
when the stream of jobs has come to an end, we schedule the jobs assigned to V 
(respectively, the jobs assigned to S) on the machines of V (respectively, S) in an 
offline way so as to minimize the preemptive makespan. Let Cp (respectively, Cs) 
denote this optimal makespan. The cost of the schedule, which we want to minimize, 
is the maximum of the makespans, max{Cp,Cs} - We denote this problem by 
LS(k,m) (Layered Scheduling). The general problem without fixing the numbers 
k and m is denoted by LS. It is worth noting that the LS(l, 1) problem is the 
online two-machine scheduling problem with unrelated machines which problem is 
investigated in [2]. 

A similar problem called classification with preemptive scheduling (or CPS for 
short) is studied in [5]. Just as in the LS problem, in CPS an online scheduling to 
one of two sets of identical processors is followed by an offline preemptive scheduling 
within the processor sets. However in CPS the objective to be minimized is the 
sum of the two makespans instead of their maximum. For the CPS problem two 
algorithms are developed the first one is a greedy algorithm. The competitive ratio 
of this greedy algorithm is linear in m/k, therefore this algorithm can be effective 
only in the cases when m/k is small. A more difficult algorithm with constant 
competitive ratio is also presented. 

In this paper we study the algorithms which are presented in [5], and we de-
termine their competitive ratios for the LS problem. Moreover, we prove a general 
lower bound, namely, we show that no online algorithm can have smaller competi-
tive ratio than 1.781. 

The paper is organized as follows. In the following section we introduce some 
basic notation for the LS problem. Then, in Section 3, we present two algorithms 
for solving the problem and determine the competitive ratios of these algorithms. In 
Section 4 we present two lower bounds for LS. First, we construct input sequences 
for each fixed pair of values (k, m) to show that no online algorithm for the fixed 
(k,m) can be better than (1 + \/5)/2-competitive. Then we construct a single 
input sequence to show that for all online algorithms there exists a pair (k, m) such 
that the algorithm cannot be better than (3 + \/l7)/4-competitive. Finally, we 
summarize the results and present some open questions regarding the problem in 
Section 5. 
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2 Notation and preliminaries 
In the problem considered we have two sets of machines, V is the set of k identical 
machines and S is the set of m identical machines. In what follows we assume 
that k < m. Furthermore, each job j has two processing times, pj if we schedule 
it on the machines of V and Sj if we schedule it on the machines of S. Here we 
allow oo processing time, which means that it is not possible to process the job 
on the machines in the set. The vector (Pj,Sj) is called the size of the job. The 
algorithm has to decide in an online fashion on the arrival of each job where to 
assign it. When the sequence of jobs is finished, we schedule the jobs assigned to 
V respectively S on the machines of V respectively <S, in the way that we minimize 
the makespan preemptively in an offline way. 

With preemption a job may be scheduled on multiple machines. In preemptive 
scheduling we have to assign time intervals to each job on one or more machines. 
The total length of the intervals must be the processing time of the job, and if time 
intervals • • •, [Qi,U) are assigned to a job, then tj < qj+i must be valid for 
j = 1, ... ,i — 1. Furthermore, no two jobs may have overlapping intervals on the 
same machine. It is well-known and one can easily see that for any set of jobs, the 
preemptive makespan of the optimal scheduling is the maximum of the maximal 
processing time and the load of the jobs. By the load of a set of jobs we mean 
the value obtained by dividing the sum of the processing times by the number of 
machines. 
For any subset I of the jobs, we use the following notation 

Si = ^ Sj, Pi — ̂ p j , Smax/ = max j e /Sj , Pmaxj = maXj^ipj. 
jei jei 

Using these notation, the cost of a schedule SC can be written in the form 

w(SC) = m a x { ^ , Pmaxfl, — , Smax^}, K TTl 
where R and Q are the sets of jobs assigned to V and 5, respectively. 

The optimal cost on a list L of jobs is denoted by OPT(L). This is the minimum 
of the costs of the schedules which assign the jobs of L to the sets. We measure 
the performance of the presented algorithms by the competitive analysis. For this 
reason let A be an arbitrary online algorithm and let A(L) denote the cost of the 
schedule produced by A on a list L of jobs. An algorithm A is called c-competitive if 
for every list L of jobs A(L) is at most c times greater than OPT(L). The competitive 
ratio of an algorithm on a problem is c if the algorithm is c-competitive and it is 
not c-competitive for any c < c. 

3 Upper bounds 
There is a simple online algorithm for LS. The basic idea is to assign each job to 
the set of machines where the job has a smaller load. This algorithm is called load 
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greedy, (in short LG) and it is presented in [5] for the problem CPS. It has a similar 
analysis in our case. Formally, the algorithm is given as follows: 

Algorithm LG: When a job j arrives, then it is assigned to V if ^ < 
otherwise, it is assigned to S. 

We can prove the following statement. 

Theorem 1 Algorithm LG has the competitive ratio max{2 ,m/k} on problem 
LS(k,m). 

Proof. Consider an arbitrary list L of jobs, and denote by a and b the makespans 
obtained by LG on V and S, respectively. Suppose that a > b. If the makespan 
is defined on V by the maximal completion time, then denote the job with this 
maximal processing time by j. Then pj — a, and since our algorithm assigns this 
job to V, we get that, Sj > Hence, the optimal cost is at least a, and this yields 
that we have an optimal solution. Now, suppose that the makespan is defined by 
the load of the jobs. Let P denote the set of the jobs assigned by LG to V, and 
let R and Q denote the sets of the jobs from P which are assigned to V and S in 
an optimal solution, respectively. Then, the optimal cost is at least m a x { ^ , 
Furthermore, by the definition of LG, we get that < This yields that the 
cost of the optimal solution is at least m a x j ^ - , > a/2, and our statement 
follows. 

Let us assume that a < b. Now, consider two cases depending on the makespan 
on <S. If the makespan is the load, then in the same way as above, we obtain that 
the optimal cost is at least b/2, which yields that the algorithm is 2-competitive. 
Suppose that the makespan is defined by a maximal processing time. Denote the 
job with this maximal processing time by j. Then, sj = b and since our algorithm 
assigns this job to <S, we obtain that pj > ^b. Hence, the optimal cost is at least 
z~b, and our statement follows. 
m 3 

To prove that the above analysis is tight, consider one job of size (1, y — e). 
Algorithm LG assigns this job to S with cost ^ — e, hence, since the optimal cost is 
1, by choosing a sufficiently small e, the competitive ratio on this job is arbitrarily 
close to y- To prove that the bound 2 is tight, we have to consider a sequence of 
jobs where the load of each job is the same in the two sets. 

• 

Algorithm LG works well only in the cases when m / k is small. Here we study 
an algorithm which is also efficient when m/k is large. This algorithm is defined 
in [5] and can be considered as a generalization of the reject total penalty type 
algorithms which are presented in [3] and [7]. The algorithm has two parameters 
0 < a < 1 and 0 < 7 < 1. 
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Algorithm A(a, 7 ) 

• 1. Initialization. Let R := 0. 

• 2. When job j arrives: 

— (i) If ^f < ^ • Sj, then assign j toV. 

— (ii) Let r be the cost of the optimal offline preemptive scheduling of the p 
set RU{j} on V. Formally, r = max{ , PmaxH U { j } } . If r < a-Sj, 
then 

* (a) Assign j to V, 
* (b) Set R = RU{j}. 

— (iii) Otherwise, assign j to S. 

Theorem 2 The competitive ratio of algorithm A(a, 7 ) is c on problem LS, where 

c = maxi l + 1 + a + 7 , 1 + - } . 
a 7 

Proof. We prove this statement in two parts. First, we show that the algorithm is 
c-competitive, and later we prove that it is not better than c-competitive. Let us 
consider an arbitrary sequence of jobs, and denote the list of the jobs by L. Fix an 
optimal schedule of the jobs. Denote by Popt the set of jobs assigned to V in the 
optimal schedule. Let P0 be the set of jobs with ^ < ^ • Sj, and P be the set of 
jobs assigned to V by our algorithm. Let us observe that, by the definition of the 
algorithm, we have Po C P. Define the following sets 

X = L \ (Popt U P), Y = Popt\P, 

Z = Poptn(P\P0), U = Popt fl Po; 

V = P0\Popt, W = (P\Po)\P0pt-

Then, the algorithm gives the following cost on L: 

A(T\ fPZ + Pu + Pv + Pw p p, A(L) = max{ , Pmaxz, Pmaxj/, 
k 

Pmaxy, Pmaxvv, , Smaxx, Smaxy}. 
m 

Furthermore, the optimal cost is 

OPT(L) = max{ ^ , Pmaxy Pmaxz, 



168 Cs. Imreh 

Pmaxc/, ^ W , Smax*, Smaxy, Smaxw}. 
m 

To prove the first part of the theorem, we have to show that A(L) < c-OPT(L). 
In the proof we will use the following lemma which is proved in [5]. For the reader's 
convenience, we recall here this result and also sketch the proof of the statement. 

Lemma 3 ([5]) The following inequalities are valid: 

(1) —^ < a • Smaxjv, 

(2) Pmaxw < Q • Smaxw, 

(3) a • Smaxy < m a x { ^ > Pmaxzuwuv}-
k 

Proof. We first prove (1). Let j be the last job from W. At the time when it was 
assigned to V by the algorithm, we had r < a • Sj. On the other hand, j is the last 
job in W, thus < r. Furthermore, obviously Sj < Smaxvy, and the validity of 
(1) follows. We can prove (2) in the same way as (1). Indeed, let j be a job from 
W with Pj = Pmaxw. When it was assigned to V, we had pj < r < a • Sj. This 
inequality yields (2). 

There exists a job j € Y with Sj = Smaxy. At the time when it was assigned 
to <S, we had r > asj. On the other hand, R U { j } C Z U W U Y was valid for 
the considered set R, thus r < max{Pz+p^+PY, Pmax^uwuy} was also valid by 
definition. Therefore, the required inequality holds. 

• 

Using this lemma, we can prove the desired upper bound. For this reason 
consider the following cases. 

Case 1: Suppose that A(L) - max{ Pmax^, Pmaxc/, Smax^}. In this case 
A(L) < OPT(L), and thus, the algorithm results in an optimal solution. 

Case 2: Suppose that A(L) = pz+Pv+Py+Pw . i n this case the definition of the 
set V yields that 7OPT(L). On the other hand < OPT(L). 
Furthermore, by Lemma 3, we have that Pw/k < a Smaxw < aOPT(L). There-
fore, A(L) < (1 + a + j)OPT(L). 

Case 3: Suppose that A(L) — Pmaxv. Then, by the definition of the set V, 
P m a xy /k < 7 Smaxy /m. Since k < m, this yields that Pmaxy < 7 Smaxy < 

7OPT(L). This is possible only when 7 = 1 , and in this case the algorithm results 
in an optimal solution. 

Case 4: Suppose A(L) - Pmaxvy. Then by Lemma 3, Pmaxw < a Smaxw < 
a • OPT(L), therefore, this case is possible only if a = 1, and the algorithm gives 
an optimal solution. 
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Case 5: Suppose that A(L) = Sx^Sr • In this case, by the definition of the 
set Y we have that ^ < ^ < OPT(L)/7. Hence, we obtain that A(L) < 
(1 + lh)OPT{L). 

Case 6: Suppose that A(L) — Smaxy. By Lemma 3 this yields that 

< — m a x { P z + ^ + P y , Pmax Z u ivuy} -
a k 

Consider now three subcases. If A(L) < Pz+f^Py , then since ^f- < Smaxw < 
OPT(L) (by Lemma 3), we get that A(L) < (1 + 1 /a)OPT(L). If A(L) < 
1 /a Pmax^ur, then we obtain immediately that A(L) < OPT(L)/a. Finally, 
if A(L) < 1 / a Pmaxn/, then by Case 4, we have that A(L) < OPT(L). 

Since we considered all the possible cases, we proved that the algorithm is c-
competitive. We can prove that the bound c is tight by the following examples. 

First, assume that k = 1 and m > 7 • (1 + a)/a. Consider the following 
sequence of two jobs. The first job has size (a • M,M), the second job has size 
( M + e , M ( l + a)/a) for some large M and small e. By the definition of m, we 
have that aM > 7 M / m , and thus, the first job is assigned to V in Step (ii). The 
second job is assigned to S. Therefore, the cost of the algorithm is M ( 1 + a)/a 
on this sequence. The optimal cost is M + s, we assign the first job to S and the 
second to V. As M tends to 00 the ratio of these costs tends to 1 + 1 /a , hence we 
proved that the first bound is tight. 

To prove the tightness of the second bound, fix the value of k and let m be much 
greater than k. Consider the following sequence of jobs. First consider M(m — k) 
jobs of size ( 7 • k/m, 1). The second part of the sequence contains k jobs of size 
(M, 00), finally, the third part contains k jobs of size (a • M, M) . Then the first 
and second parts are assigned to V in Step (i), the third part is also assigned to V 
in Step (i) or in Step (ii). Therefore, the cost of the algorithm is 

M(m - k)jk/m + Mk + aMk 
k ' 

The optimal solution assigns the first and the third parts to S, and the second part 
to V and its cost is M. Asm tends to 00, the ratio of these costs tends to l + a + 7, 
hence, we proved that the second bound is tight. 

To prove that the third bound is tight, consider such k and m that satisfy 
the inequality a/k > 7 / m and the following sequence of jobs. The first part of 
the sequence is one job of size (a(m/(-yk) -I- 2e), (771/(7/0) + 2e)). The second part 
contains Mk jobs of size (1, m/(7A;) + e ) , and the third part contains m jobs of size 
(00, M). Then the algorithm assigns the first job to V in Step (ii), and assigns the 
other jobs to S. Therefore, its cost is 

Mk(m/(jk) + e) + rnM 
m 
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There is a feasible schedule which assigns the second part of the jobs to V and the 
third part to S, therefore, the optimal cost is no more than M + m/(jk) + 2e. As 
M tends to oo and e tends to 0, the ratio of these costs tends to 1 + 1 / 7 , hence, 
we proved that the third bound is tight. 

• 

To find the best values of a, 7 , we have to choose a = 7 = l /\/2. By substituting 
these values into Theorem 2, we obtain the following result. 

Corollary 4 Algorithm A(l/\/2, l /\/2) is 1 + \/2-competitive on LS. 

4 Lower bounds 
In this section we present the following lower bounds. 

Theorem 5 Let (k,m) be an arbitrary pair of positive integers. If an online algo-
rithm is c-competitive for the LS(k,m) problem, then c> (1 + \/5)/2 ~ 1.618. 

Proof. We prove this statement by contradiction. Suppose there is a pair (k, m) 
and an algorithm A which is c < (1 -I- y/B)/2-competitive for the problem LS(k, m). 
Consider the following list L of jobs. The first part contains k jobs of size ((\/5 — 
l ) /2 ,1 ) , and the next part contains k jobs of size ( l ,oo ) . In this case, the optimal 
offline algorithm assigns the first k jobs to S, and the next k jobs to V, hence 
OPT(L) = 1. On the other hand, since A is c-competitive it must assign the 
first k jobs to V, otherwise, we omit the next k jobs, and the offline optimum is 
(\/5 — l ) /2 , while the cost of the algorithm is 1. Therefore, the online algorithm 
must assign all jobs to V, and thus, it has a makespan (1 -I- y/E)/2. This yields that 
A(L)/OPT(L) = (1 + y/5)/2, which is a contradiction. 

• 

We can obtain a sharper, general lower bound as follows. 

Theorem 6 Let k be a fixed constant. If an online algorithm is c-competitive for 
every m on the problem LS(k,m), then c > (3 4- \/ l7) /4 « 1.781 

Proof. We prove this statement by contradiction. Suppose that there exist such 
k and an online algorithm A, that A is c-competitive for every m on the problem 
LS(m, k), where c < (3 + -v/17)/4. For the sake of simplicity, in the rest of the proof 
we denote the number (3 + \/l7)/4 by b. Let to be greater than 5k and consider 
the following sequence of jobs. The first part contains k jobs of size (1/6,1), and 
the following to — k jobs have size ( ^ ¿ , 1 ) . Finally, depending on the decisions 
made by A, we finish the sequence with k jobs of size (1,00), this is list L\, or we 
finish the list with m — k jobs of size (00,1), this is list 

Consider first the offline optimum. In the first case we can assign the first m 
jobs to S and the last k jobs to V, this schedule has cost 1. In the second case, 
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we can assign the first k jobs and the last m — k jobs to <S, and the other m — k 
jobs to V, and thus, we can obtain a makespan of 1. Therefore, OPT(Li) < 1, and 
OPT(L2) <1. 

Consider the algorithm A. Since A is an online algorithm, it cannot see any 
difference between L\ and L2 before it gets the m + 1-th job, and thus, it has 
the same behaviour in both cases. Furthermore, A is c-competitive with c < b, 
therefore it must assign the first k jobs to V, otherwise we get a contradiction in 
the same way as in the proof of Theorem 5. From the next m — k jobs A can 
assign x to V and m — k — x to S. Therefore, in the case of list L\ we .have that 
A(Li) > \ + ^ + 1 and in the case of list L2 we get that A(L2) > . The 
algorithm can choose x to be any integer between 1 and m — k, and we can choose 
the list which yields the greater makespan. Therefore, since the offline optimum is 
at most 1 for both lists and A is c-competitive, we have that 

, 1 x . , 2m — 2k — x. 
c > mm m a x { - H + 1, } . 

l <x<m-k b m — k m 

Here we omitted the condition that x is an integer. This does not cause any 
problem since it decreases the right side of the inequality. It can easily be seen that 
the function of x, which is on the right side of the inequality, is minimal for 

_m(m — k),m — 2k 
2m — k . m 6 

If we substitute this value into the bound for c, we obtain that 

1 3m — 3 k m 
c> r + 

2m-k (2m-k)b' 

Since this inequality is valid for arbitrary m, it is also valid if we let m to tend to 
infinity. Therefore, 

3 1 
C 2 2b' 

On the other hand, b = § + and thus, we obtain that c > b which is a 
contradiction. 

• 

5 Conclusions 
In this paper we investigated a particular scheduling problem on a two-layer mul-
tiprocessor architecture. We showed that the greedy approach works well only in 
the cases where the layers contain around the same number of machines. We also 
presented a better algorithm for the general case, which has a constant competitive 
ratio for arbitrary number of machines. It was also proved that there exists no 
online algorithm with smaller competitive ratio than 1.781. 

In relation with the problem considered, some further questions arise. 
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Concerning the LS problem there is a gap between our lower and upper bounds. 
It would be nice to decrease this gap by finding more efficient algorithms or better 
lower bounds. 

In the problem considered the objective is the maximum of the two makespans, 
which function is the norm of the vector constructed from the makespans. In [5] 
the h norm is investigated. It would be also interesting to study other lp norms. 

We considered the problem with two sets of machines. A straightforward gen-
eralization is to consider a problem with more sets of machines. 
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