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Abstract 

The propagation of the spiral waves in excitable media is governed by the 
non-linear reaction-diffusion equations. In order to solve these equations in 
the three-dimensional space, two methods have been implemented and para-
llelized on both shared- and distributed- memory computers. These implicit 
methods linearize the equations in time, following alternate directions in the 
first case (ADI), and using the Crank-Nicolson discretization in the second 
case. A linear system of algebraic equations has been obtained and it has 
been solved using direct methods in the ADI technique, while in the second 
case has been used the conjugated gradient (CG) method. An optimized ver-
sion of the CG algorithm is presented here, in which the largest efficiency has 
been obtained. 

1 Introduction 
Reaction-diffusion equations are ubiquitous in biology, combustion, ecology, etc., 
because of their relevance in pattern formation, ignition and extinction phenomena, 
etc. [1-3]. Many studies of these equations are related with equations for activators 
and inhibitors in one or two spatial dimensions, e.g. the Belousov-Zhabotinskii, 
Brusselator and Oregonator models, with and without extinction [3]. Of special in-
terest to the study presented in this paper are the analytical and numerical analyses 
of the propagation of spiral waves in two-dimensional domains, where it has been 
observed that these waves have a periodic pattern in the absence of heterogeneities. 
They may exhibit breathing motions in the presence of obstacles or may simply be 
extinguished by means of the activation of a control parameter in a sufficiently large 
region of the computational domain. In non-homogeneous media, spiral waves are 
characterized by steep gradients in space and relaxation-type oscillations whose 
accurate simulation demands small spatial and temporal steps. 

In three dimensions, there have been very few analytical and numerical studies 
of spiral waves, presumably because of both the large difficulties in examining wave 
propagation in three-dimensional space and the cost of such simulations [4]. As a 
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consequence, filament models based on Frechet formulae and differential geometry 
have been developed; these models are analogous to those of vortex filaments in 
theoretical fluid mechanics. 

In this work, three-dimensional simulations of the propagation of spiral waves 
in a cubic volume, without obstacles, and in the presence and absence of extinction 
sources are presented. These numerical simulations have been carried out by means 
of both time linearized and non-linearized techniques with and without operator 
splitting, i.e., with and without approximate factorization of the three-dimensional 
operator into one-dimensional ones. The numerical methods employed in the dis-
cretization of the governing partial differential equations have been implemented 
in a parallel fashion in both shared- and distributed-memory computers, and their 
performance is reported in this paper. 

2 Governing equations 
Consider the following system of reaction-diffusion equations (Belousov-
Zhabotinskii model): 

where D is a diagonal diffusivity tensor, U = (u, v)T, t is time, x, y and z denote 
spatial coordinates, S is a non-linear term, 

T denotes transpose, f , q and e axe constants,, and <t> is a control parameter which 
can be a function of the space and/or time. The equation (1) has been solved in a 
cube of side equal to 15 non-dimensional units. Unless otherwise stated, / = 1.4, q 
= 0.002, e = 0.01, (j) = 0 and the diagonal terms of the diffusivity tensor are du = 1 
and dv = 0.6. 

Discretizing the time variable in equation (1) by means of a Crank-Nicolson 
method, one can obtain a non-linear elliptic equation, which can be solved at each 
time step. The second-order spatial derivatives were discretized by means of three-
point, second order accurate finite difference methods that provide a large system of 
algebraic equations at each time step. The Newton-Raphson method was employed 
to solve the resulting non-linear system of algebraic equations. If a single iteration 
of Newton-Raphson method is used, this method is known as Time-Linearization 
method. 

In addition to these techniques, an approximate factorization of the three-
dimensional operator into a sequence of one-dimensional ones (here referred to 
as ADI) was also used. This technique reduces the solution of the linear elliptic 
equation in three dimensions to the solution of one-dimensional, linear, two-point 
boundary value problems in each spatial dimension, but introduces second-order 

( 1 ) 
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(in time) approximate factorization errors which can be eliminated in an iterative 
way. On the other hand, the approximate factorization errors are of the same order 
of magnitude as those introduced by the time discretization but may be large where 
the norm of the Jacobian matrix of the source terms is large, i.e., at the edges of 
the spiral wave. 

In the next section some details about these methods are presented. 

2.1 ADI method 
The discrete operators corresponding to equation (1) can be written as 

+ + <3> 

where the approximate factorization errors have been neglected, k is the time step, 
Ax is the spatial step size in the x direction, 0 < in < 1, i = 1,2,3, +/X2+M3 = 1, 
the superscript n denotes the n-th time level, J denotes the Jacobian matrix of the 
mapping U S(U), 6%Vi = vi+1 - 2Vi + Uj-i, and A U = U n + 1 - U n . 

2.2 Crank-Nicolson methods 
If the system of equations (1) is solved by means of a Crank-Nicolson method and 
a time linearization, one linear system of algebraic equations is obtained. 

( 4 ) 

A comparison between the numerical results obtained with equations (3) and 
(4), will indicate the magnitude of the approximate factorization errors of the ADI 
method. The (iterative) conjugate gradient method have been used for the resolu-
tion of the system (4), because of the magnitude and dispersion of the system. 

The choice of a good preconditioner for the coefficients matrix is the most im-
portant factor that influence on the speed of convergence of the CG. We have tested 
the Jacobi (J), block Jacobi (BJ), incomplete Cholesky (IC) and incomplete-block 
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Cholesky (IBC) preconditioners in our studies. In the first and third preconditio-
ners, two dependent variables per node have been used to form 2x2 blocks; calcula-
tions have also been performed without any preconditioner (NP), but the number 
of iterations of the CG method becomes extremely large and can be more expensive 
than a direct method. In Table 1, the average number of iterations required by each 
method to converge is presented as a function of the grid size; the values shown in 
this table correspond to k = 0.0004 and 20 time steps (n.a.: not available). 

Table 1: Average number of iterations of CG for convergence. 

Grid NP J BJ IC IBC 

51
a 

5.95 2.25 2.25 2.3 2.20 

101
3 

6.00 3.1 3.20 3.2 3.1 

201
3 

n.a. 5.05 5.15 5.2 n.a. 

The above table shows that the incomplete-block Cholesky factorization is the 
most efficient preconditioner; however, the cost associated with this incomplete 
factorization is larger than the associated with the decrease in the number of it-
erations1. For these reasons, a Jacobi preconditioner has been used in all the 
simulations presented below. 

Another main issue when solving linear systems of algebraic equations is the or-
dering of the equations. There are two criteria for ordering: the original differential 
order equation and the grid point where the discretization takes place. Depending 
on the approach selected, two different orderings are obtained, named blocking of 
the equations and blocking of the variables respectively. Blocking of the equations 
results in a small number (2 in our problem) of very large blocks, while blocking 
of the variables per node results in more small blocks (2x2). Here, we have tested 
both types of blocking and found that blocking of the variables results in faster 
simulations due mainly to a 3% and 5% reduction in primary and secondary cache 
misses respectively. 

3 Parallel implementation 

3.1 Parallelization of ADI 
This technique has been implemented on an Origin 2000, using a shared memory 
model (openMP libraries). The dynamic block cartesian decomposition (DBCD) 
has been used for parallel implementation. In this technique, each processor has 
a contiguous grid block, but the decomposition changes as the one-dimensional 

1 In order to decrease the factorization cost, calculations have been performed using a frozen 
preconditioner for several time steps. Results showed that the number of iterations of the CG 
method increase substantially due to the large relational speeds of the spiral wavers considered in 
this paper. 



Parallel Simulation of Spiral Waves in Reacting and Diffusing Media 177 

• 51x51x51 0101x101x101 0201x201x201 

r 
r 

1 1 
1 * 8 16 25 32 

NPES 

Figure 1: Efficiency of the ADI method as a function of the number of processors 
(NPES) and the grid size. 

operator is changed, i.e., it changes according to the spatial direction. As stated in 
[5], the optimal solution is reached when the data is partitioned in the ^-direction 
while solving the algebraic equations in the x- and ¿/-directions, whereas a partition 
in the x- or ¿/-directions may be employed when solving the algebraic equations in 
the z-direction. The main drawback of this technique is that a lot of accesses are 
required to remote data before the solution in the z direction is obtained. This 
produces a high number of cache misses. 

A possible alternative is the Bruno-Capello algorithm [5] that partitions the 
domain in blocks of yjn x y/n x ^fn in such a manner that there is no more than 
one block per processor in each plane coordinate; however, this algorithm imposes 
some limitations to the parallel system because of its requirements for a number of 
processors equal to the square of a natural number. 

Results in Figure 1 indicate that the parallel efficiency of DBCD is quite close 
to 1, even with a high number of processors. This ideal behavior is owed in great 
measure to the regularity of the data, and the consequent efficiency of the compiler 
in the inclusion of directives for the premature search of cache blocks (prefetching). 
Moreover, as will be illustrated bellow, the main drawback of the ADI method is 
its sequential execution time compared with that of the Crank-Nicolson method. 

3.2 Parallelization of Crank-Nicolson 

First, the implementation of Crank-Nicolson method combined with the CG (CN-
CG) method has been performed using a shared-memory model. In each time step 
it is necessary to generate the coefficients matrix and the independent term vector 
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Figure 2: Efficiency of the ADI and CG methods as a function of the number of 
processors and the grid size. 

(rhs), and to solve the system. In all these stages we have used a data-parallel model 
based on a grid partition along the z axis that coincides with a block partition of 
both the matrix and the vector rhs. 

The parallelization of the CG method is very simple since every vector operation 
of this algorithm can be parallelized separately, i.e., each processor executes scalar 
operations on a subset of the components of a vector, and a block partition of the 
vectors is sufficient to obtain a good performance. 

The CG method contains two inner products, three ax + y operations and one 
matrix vector product whose computations require at least three synchronization 
points, and a communication step in order to obtain the final result. It is not 
possible to merge messages and those operations imposes severe limitations to the 
parallel efficiency of the CG algorithm. However, an optimized rearrangement of 
CG for parallel computations can be found in [6]. Unfortunately, this optimized 
method is only useful when an incomplete factorization is employed as a precondi-
tioner. As it have been shown above, this kind of preconditioner does not result in 
any acceleration in the convergence of the problem considered here. 

On the other hand, another methods based on the CG not requiring the use of 
incomplete preconditioner have been described. In particular we have considered 
a model (Aykanat, Ozgiiner, F. and Scott, D.S. [7], also Chronopoulos and Gear 
[8]) that reduces the number of synchronization points and reduction messages to 
one per iteration, performing 2n additional floating operations. In this method we 
have introduced automatic prefetching, in order to reduce the cost produced by 
the accesses to remote memory. Experiments with this modified CG method have 
shown that there is only a small increase in the sequential computational time but 
its parallel performance is excellent. 
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Figure 2 shows the efficiency of ADI and CG as a function of both the number of 
processors and the grid size using a shared-memory model, and indicates that the 
efficiency of ADI is smaller than that of CG, although the differences decrease, as 
the grid is refined. However, the fact that the computational time for the sequential 
version is smaller for the CG method, has been critical in the decision to continue 
our work with the Crank-Nicolson-CG model. 

• MP / private • snared 

NPFS 

Figure 3: Efficiency of the CG methods as a function of the number of processors 
with shared-memory and message-passing models with private memory. 

4 Optimization of Crank-Nicolson method 

One of the main aims of this work is to perform a comparison between access-
ing in advance to cache blocks using prefetching and using asynchronous messa-
ges in the message-passing model (overlapped with computations) on shared- and 
distributed-memory computers. Therefore, we have implemented the conjugated 
gradient method on an 0rigin2000 computer, using both private memory and the 
shmem libraries for communications. 

In Figure 3 we compare the efficiency for the two parallel implementations of 
the CG, being better for the message passing model. In the best case, an efficiency 
of 130% was obtained using 16 processors in a 51 point grid. 

This result can be justified by the fact that the communication of large blocks 
of data is more efficient than having many cache misses in a shared memory model. 

This difference becomes noticeable in thick grids where the access to 
remote memories is more frequent, since the relationship communications 
(O(n2))/computations (0 (n 3 ) ) is higher. Figure 3 also shows that the efficiency 
of both implementations of the CG, for the 101 point'grid, in a shared memory 
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computer (0rigin2000) is degraded as the grid size increases, because in these cases 
the capacity of the cache memory is insufficient for all the data. 
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Figure 4: CPU times per processor for the non ordering and ordering codes. 

An important performance loss can be observed for the 101 x 101 x 101 grid 
when the number of processors is very high. Although this loss can be justified 
by the high cost of the remote accesses in proportion to the computations that 
each processors performs, we consider very important for our problem to obtain 
good performance under such conditions (very fine grids and higher number of 
processors). A detailed analysis (of the origin of this performance loss) shows 
that, for example, with a 101 point grid and 16 processors, almost the 30% of 
the execution time in message-passing the processors are waiting for the data. 
Therefore, the sending of asynchronous messages does not produce the expected 
results, because, in the most of cases, the sent data are required immediately in 
the following operation, and there are no intermediate computations that hide the 
latency of these messages. 

The conjugate gradient algorithm of Gear et al., has been modified based on a 
reordering heuristic of the computations and communications [9]. We have moved 
several calculations to those places where the latencies of the messages can be 
hidden and the delays have been almost eliminated. This algorithm is based mainly 
on delaying the calculation of the solution, A U (equation 4), from each iteration to 
the following one. When the convergence is reached, an update of A U (to obtain 
the solution of the system) is required. This update is performed directly on the 
solution U. After the conjugate gradient, a message with the bound values of U is 
sent to the neighbor processors and is overlapped with the update of AU. Figure 4 
shows the execution time for each processor for each conjugated gradient routines 
(non ordered and ordered codes), as well as the latency time (dotted area). The 
bottom part of the graphic corresponds to the initialization part of the iterative 
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Figure 5: Efficiency comparison between the non-ordering and ordering codes. 

algorithm, and the upper part corresponds to the inner loop (therefore it has to be 
repeated according to the number of iterations). In Figure 5 it can be seen how the 
reordering allows to reduce significantly the latency time, decreasing about a 15% 
the CPU time and increasing in an equivalent way the efficiency. This improvement 
is higher for a 101 point grid, where the communications cost is very important 
when the number of processors increases. 

5 Physical Results 
Calculations have been performed 1) without extinction, i.e., <f> = 0, 2) with an 
extinction barrier, i.e., <j> = 0.2 for —0.3 < y < 0.3 and <j) = 0 otherwise, and 3) 
with a localized extinction zone which is a cube with center located at (0,0,0) and 
length equal to 1.65 where (¡> = 0.2. In all cases, homogeneous Neumann boundary 
conditions were employed at the faces of the computational domain, k = 0.0004, 
and the calculations were performed until t = 60, starting from initial conditions 
corresponding to a wedge for u. In all the calculations considered in this paper, 
it has been observed that the solution became periodic at about t = 25,30, and 
28 for the first, second and third cases, respectively. In the first case, i.e., without 
extinction, it has been shown that the spiral wave rotates around an axis parallel 
to the 2-direction which passes through the center of the computational domain 
and remains anchored there, the u solution is symmetric "about the z = 0 plane, 
and the rotational speed of the spiral wave decreases as it approaches the planes 
z = - 7 . 5 and 2 = 7.5. Some sample results illustrating the u solution at t = 41.6 
are presented in Figure 6 which indicates that, at this time, the spiral wave is 
nearly absent near the bottom and top planes, whereas the influence of the initial 
conditions can still be observed near these planes. The u-solution also shows that at 
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Figure 6: u-solution for a 101x101x101 grid at t = 41.6. From left to right: a) 
top: k=100, 84, 68, 51, 34, 18, 2, b) middle: j=100,84, 68, 51, 34, 18, 2, c) bottom: 
i=100, 84, 68, 51, 34, 18, 2. 

t = 41.6, near to the top and bottom planar boundaries, the spiral wave is thicker 
and much shorter than that near z = 0. 

In the second case, the extinction barrier is a slab parallel to the x — z plane 
where the value of (¡> is different from zero; therefore, the source term for u decreases 
exponentially whenever u > q by an amount that is proportional to 4>, i.e., the spiral 
wave may be extinguished as indicated in Figure 7. The u- solution in x = constant 
planes indicates that almost planar fronts propagate initially from the left to the 
right boundaries but, on encountering the extinction barrier, they decelerate and 
emerge from this barrier until they reach the right boundary. 

In the third case, the results are similar to those of the first one except for the 
fact that the tip of the spiral wave rotates around the extinction source, and the 
wave is shorter and has a thicker tip. In the first case, the tip is anchored on the 
vertical axis passing through the center of the cube, while, in the third one, the 
anchoring point describes a trajectory which corresponds to the projection of the 
extinction cube into the x — y plane. 

6 Conclusions 
Two numerical methods (ADI and Crank-Nicolson) for the numerical solution of 
three-dimensional reaction-diffusion equations corresponding to spiral wave propa-
gation in excitable media have been parallelized in shared- and distributed-memory 
computer. The parallelization of the approximate factorization technique has been 
carried out with a dynamic block cartesian decomposition (DBCD) and its efficiency 
is quite close to one, even with a high number of processors. The parallelization 
of the Crank-Nicolson method has been performed by means of an optimization 
of the conjugate gradient method where the latency times have been almost elimi-
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Figure 7: u-solution for a 101x101x101 grid at t = 41.6. From left to right: a) 
top: k=100, 84, 68, 51, 34, 18, 2, b) middle: j = 100, 84, 68, 51, 34, 18, 2, c) bottom: 
i—100, 84, 68, 51, 34, 18, 2. 

nated in a message-passing programming model. As a result, we obtain efficiencies 
close to the ideal, even with a higher number of processors. The scalability of our 
model should allow maintenance of the efficiency with proportional increments of 
the problem size and the number of processors. 

This work has its natural continuation in the implementation of the mentioned 
optimization in a shared-memory environment, where the cost of remote accesses 
will decrease using the manual inclusion of prefetching directives. The objectives 
of a future work will be a comparison of both models and a extrapolation to the 
ADI method of these ideas. 

References 
[1] Murray, J.D. Mathematical Biology, Springer-Verlag: New York, 1989. 

[2] Williams, F.A. Combustion Theory, second edition, Addison-Wesley: New 
York, 1985. 

[3] Holden, A.V., Markus, M. and Othmer, H.G. (eds). Nonlinear Wave Propaga-
tion in Excitable Media, Plenum Press: New York, 1991. 

[4] Keener, J. and Sneyd, J. Mathematical Physiology, Springer-Verlag: New York, 
1998. 

[5] Van der Wijngaart, R.F. Efficient Implementation of a 3-Dimensional ADI 
Method on the iPSC/860, Supercomputing'93, pp. 102-111, 1993. 



184 E. M. Ortigosa, L. F. Romero and J. I. Ramos 

[6] Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., 
Eijkhout, V., Pozo, R., Romine, C. and Van de Vorst, H., Templates for 
the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM: 
Philadelphia, 1994. 

[7] Aykanat, C., Ozgiiner, F. and Scott, D.S. Vectorization and parallelization of 
the conjugate gradient algorithm on hypercube-connected vector processors, 
Microprocess. Microprogram., 29, pp. 67-82, 1990. 

[8] Chronopoulos, A. T. and Gear C. W. S-step iterative methods for symmetric 
linear systems, J. comput. Appl. Math., 25, pp. 153-168, 1989. 

[9] Romero, L.F., Ortigosa, E.M. and Ramos, J.I. Parallel Strategies for the 
VMEC Program, J. Parallel Computing, to appear. 


