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Learning Decision Trees in Continuous Space 

J. Dombi* and Á. Zsiros* 

Abstract 
Two problems of the ID3 and C4.5 decision tree building methods will be 

mentioned and solutions will be suggested on them. First, in both methods 
a Gain-type criteria is used to compare the applicability of possible tests, 
which derives from the entropy function. We Eire going to propose a new 
measure instead of the entropy function, which comes from the measure of 
fuzziness using a monotone fuzzy operator. It is more natural and much 
simpler to compute in case of concept learning (when elements belong to only 
two classes: positive and negative). 

Second, the well-known extension of the ID3 method for handling con-
tinuous attributes (C4.5) is based on discretization of attribute values and 
in it the decision space is separated with axis-parallel hyperplanes. In our 
proposed new method (CDT) continuous attributes are handled without dis-
cretization, and arbitrary geometric figures are used for separation of decision 
space, like hyperplanes in general position, spheres and ellipsoids. The power 
of our new method is going to be demonstrated oh a few examples. 

1 Introduction 
A lot of applications on the area of artificial intelligence and data mining lead 
to a similar task: constructing a classification model based on our knowledge. 
Classification models help us to understand the underlying structure of a given 
problem and later they can be used to predict classes of unseen elements. 

Classification models could be grouped by the way of construction: they are 
made by human experts or obtained from a set of examples, inductively. The built 
up model may be a non-hierarchical one (like a instance-based classifier, or a model 
obtained from a neural network, a genetic algorithm and a statistical method) or 
a hierarchical one like a decision tree (for a short overview and further references 
see [1]). We will deal with hierarchical classifiers built up inductively. 

Throughout this article T denotes the given set of elements with their class 
information (training set) from which we would like to build up a decision tree: 

T = { ( x , c ( x ) ) | x e X } , 
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where x is an element of X , described by a sequence of attribute values: x = 
( o i , . . . , a n ) , aj is the value of the ith attribute, n is the number of attributes, and 
c(x) gives the class of element x. Finally denote C\,..., Ck the possible classes of 
elements of T. 

Usually two different types of attributes are distinguished: an attribute is dis-
crete (categorical), if its value comes from a predefined finite set; and continuous 
(numerical), if it may be any element of a (real) interval. 

Now, we are ready to give the definition of decision tree: 

Definit ion 1 Decision tree is a special rooted tree, in which a class identifier is 
associated to each leaf node (that determinates the class of elements reached that 
node), and each internal (or decision) node specifies some test, with one branch 
and subtree for each outcome of the test. 

Decision tree building methods might be grouped by the variety of tests used 
in their inner nodes. In some methods only single attribute selection is allowed 
as a test, for example in Quinlan's ID3 and in its extension to handle continuous 
attributes C4.5[l]. In other methods some mixture of attributes are also possible 
as tests, for instance in Cios's CID3[5] and in our new CDT method. 

Thus, the final task is to make a decision tree from a given training set, where 
elements are described by some (discrete or continuous) attributes. Of course it 
is trivial to build up a tree consistent with the training set[4] (imagine a decision 
tree in which all leaf nodes contain only one element of the training set). But 
this tree does not tell us anything about the structure of the original problem. As 
Occam's razor tells us, we should look for one of the smallest decision trees. This 
philosopher idea says that a simple decision tree might perform better on unseen 
elements than a more complex one (see [10, 11]). Unfortunately, the problem of 
finding the smallest decision tree consistent with a training set is NP-Complete[3] 
as Hyafil and Rivest have already shown that. 

To cope with this computational problem, a greedy, divide-and-conquer algo-
rithm is used to build up a decision tree consistent with the training set (which, 
of course, usually leads not the smallest one). First, the one-node decision tree 
is taken (containing all elements of the training set). Later, in each step a test 
is selected and applied on the examples reached the current node. Then the test 
is assigned to the node and branches are made according to the outcomes of the 
selected test. Finally, the same method is applied on these newly created branches. 
It may be seen, that the critical point of this algorithm is the test selection criteria. 
The following methods (ID3, C4.5, CDT) differ only at this point. 

In our CDT method a new function is used to measure the homogeneity of 
examples instead of the entropy function (which is used in ID3 and C4.5). It 
is similar to the entropy function in case of concept learning (which means that 
examples belong to only two classes). Unfortunately CDT can handle only such 
problems. On the other hand the decision space, described by a set of continuous 
attributes, is partitioned by arbitrary geometric figures in the CDT method, while 
in C4.5 only axis-parallel hyperplanes are used. These tests finally lead to a binary 
decision tree that correctly classifies all elements of the training set. 
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In the next section the test selection criteria of the ID3 and the C4.5 methods 
are introduced. Section 3 mentions some results from fuzzy theory that will be 
used later to introduce the new test selection criteria in section 4. Its work is 
demonstrated on an example. Finally the new decision tree building method is 
described in section 5 and its power is demonstrated on a few examples in section 6 
followed by conclusions in section 7. 

2 The ID3 and the C4.5 methods 
In this section we are going to give a short description of the ID3 method, of its 
extension to handle continuous attributes (C4.5) and we are going to demonstrate 
their work through an example. 

As it has been mentioned earlier, the crucial points of the tree-building algorithm 
are the variety of possible tests and the test selection criteria. In the ID3 and C4.5 
methods tests are based on single attribute selection, so the possible tests are about 
the possible attributes. 

The idea of test selection is to examine training examples and to find the at-
tribute that separates the examples most perfectly considering their class mem-
bership (as the greedy approach suggests it). The ID3 algorithm uses a function 
coming from the field of information theory to measure the entropy in the origi-
nal training set and in the subsets after partitioning. Formally the criteria is the 
following (where \Cj\r denotes the number of elements of T belong to class Cj): 

max{Gain(A)} 
A 

where 
Gain{A) = I(T) - E(A,T) 

f"-(ff) 
is the entropy function and 

m

 IT-1 

is the weighted sum of the entropies of subsets. It is important to remark, that 
the application of entropy function and the Gain criteria, which is just the simple 
difference of I(T) and E(A, T), has no theoretical background, it is just a heuristic! 

Unfortunately, the Gain criteria is biased towards discrete attributes with more 
outcomes, thus it has a modification, the Gain ratio test selection criteria (see [1]) 
which reduces the value of Gain in case of many valued discrete attributes. 

The ID3 method can be used only on problems described by discrete attributes. 
Although it has an extension to handle continuous attributes (C4.5), in this method 
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Figure 1: Decision tree built up from the training set on table 1 

outlook Temp(F) Humidity(%) Windy? Class 
sunny 75 70 true Play 
sunny 80 90 true Don't Play 
sunny 85 85 false Don't Play 
sunny 72 95 false Don't Play 
sunny 69 70 false Play 

overcast 72 90 true Play 
overcast 83 78 false Play 
overcast 64 65 true Play 
overcast 81 75 false Play 

rain 71 80 true Don't Play 
rain 65 70 true Don't Play 
rain 75 80 false Play 
rain 68 80 false Play 
rain 70 96 false Play 

Table 1: The training set 

the attributes are discretizated, handled like discrete ones with two outcomes. Dif-
ferent values of the candidate continuous attribute are ordered: v\ <v2 < ... <vn 

and all "i+2i~1"11 i — 1 , . . . ,n — 1 midpoints are checked as possible thresholds to 
divide the training set into two partition. 

The test selection criteria in C4.5 is biased towards continuous attributes with 
numerous distinct values. Its examination and a modified criteria are found in [2]. 

There is a decision tree, built up from a 12 element training set on figure 1. 
This example is well-known from the literature [1, 11] and shows when to play a 
specific game. The test selection criteria is maximization of Gain, so first we choose 
attribute 'outlook'. Then the algorithm is called recursively to the first and third 
branches of the tree. Finally, we get a decision tree which classifies all training 
elements correctly. 
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Figure 2: Membership functions with different sharpness 

3 Measure of fuzziness 
In this section a few basic results are mentioned about the general class of fuzzy 
operators and the measure of fuzziness. 

There are two main classes of associative, subidempotence conjunction op-
erators in the fuzzy theory: the class of strictly monotone and the class of 
nilpotens operators[6]. Monotone conjunction operators may be written in form 
c(x,y) = / _ 1 ( / ( ® ) + f(v)) w h e r e / (®) : (0,1] lim,_K) = oo., / ( 1 ) = 0 and 
f(x) is a strictly decreasing function; and nilpotens operators in form c(x,y) = 
/-1([/(x) + f(y)}) where [a;] is the cut function 

{ 0 if x < 0 
X if 0 < £ < 1 
1 otherwise 

and f(x) : [0,1] - » [0,1], / ( 0 ) = 1, / (1 ) = 0 is a strictly decreasing function. These 
general forms give us a lot of fuzzy conjunction operators: one for each suitable 
generator function f(x). Disjunction operators could be characterized in the same 
manner with a bit different assumptions for generator function f(x). 

By the help of conjunction operators we are able to derive a function that 
measures the fuzziness of a (membership) function. For example in figure 2 some 
different membership functions are shown. The first one makes a very sharp switch 
from 0 to 1, so it is not fuzzy, on the second picture the dotted one is a less fuzzy 
while the other one is a more fuzzy function. On the third picture a total fuzzy 
function is shown. This property is measured with the following formula (in discrete 
case) [6]: 

¿=i 
where c(x, y) is a conjunction operator (as above) and 

F(x) = ¡I in c{x,l-x). 
C

 V 2 > 2 / 

This function will be useful in the next section to measure how separated the 
elements of the training set are.. It is also interesting to note that the entropy 
function, used in the ID3 method, may be obtained from this measure of fuzziness 
in a special case. 
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Figure 3: Geometric interpretation of classification 

4 The new test selection criteria 
Throughout the following sections we assume that elements of the training set 
belong to only two classes: ' + ' and '—'! 

First, we will mention the geometric interpretation of classification. Consider a 
set of elements described by two continuous attributes as shown in figure 3. In the 
C4.5 method the training set is separated at a threshold of a continuous attribute. 
The effect of such a decision might be interpreted as an axis-parallel line in Sft2 

(see figure 3). Quite a lot of C4.5-type decisions are needed for correct separation 
of all training elements, although one line in general position would be enough as 
well. Our goal is to allow arbitrary figures like hyperplane, sphere and ellipsoid to 
separate elements of the training set. 

In our new method the starting point is the pliant operator, which is a monotone 
weighted fuzzy operator from Dombi[6]: 

It is derived from the generalized form of mean values [7], which is closely related 
to the general form of fuzzy operators: 

1 

The above mentioned operator is obtained from this general form when 
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Figure 4: Entropy function for two classes and the new 4x(l — x) measure 

We use the pliant operator when u = v = | and A = 1. In this special case it is 
easy to get the following measure of fuzziness: 

I*(x) = /\ \\ ' c(x,n(x)) = 4x(l — x). 
C \ 2 ' 2 ) 

This formula is much simpler than the entropy function and it behaves very sim-
ilarly. The graph of the original and the new measure is shown on figure 4. It is 
easy to prove, that these two functions lead to the same result (in case of concept 
learning), since on interval [0,1] both functions have maxima at minima at 0 and 
1, they are strictly monotone on [0, and on 1] and they never intersect each 
other. We are going to demonstrate their work on the following example, where the 
value of entropy function and the value of this new measure is calculated parallel. 

This example, where the 14 elements of the training set is described by four 
attributes (two discrete and two continuous ones) and the examples belong to two 
classes, is taken from [1] (see table 1). First we have to calculate the entropy of the 
whole training set, that is 

7 ( 5 ) = - n l o g n - A l o s n = 0 - 9 4 0 3 -

With the new I* (x) measure we get 

r ( S ) = 4 ' S " i r 0 - 9 1 8 4 -
Then we try to separate the training set using the attribute 'outlook', so 

first we have to calculate the entropy of the three subsets (sunny, overcast, 
rain) I(Ssunny) = - f l o g | - | log f = 0.9709, I(Sovercast) = - f l o g f - 0 = 
0, I(Srain) = — | log | — | log | = 0.9709 then the weighted sum of these values 
E(outlook, S) = j^O.9709 + + n 0 9 7 0 9 = 0.6935. Therefore Gain(autlook) = 
0.9403-0.6935 = 0.2468. It says that we gain 0.2468 if we select attribute 'outlook' 
as a test. 

If we apply the new measure we get the following: J*(S s u n n y ) = 4 • | • | = 
0.96, I* (S0VeTca.st) = 4 • \ • \ = 0, I*(Srain) = 4 • § • f = 0.96 and the weighted 
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Figure 5: Test selection criteria 

sum of these values is E*(outlook, S) = ^0.96 + ^ 0 + ^0.96 = 0.6857. Therefore 
Gain* {outlook) = 0.9184 - 0.6857 = 0.2327. It is close to the previous result. 

Now, we have to calculate the gain of discrete attribute 'windy' and the gain of 
continuous attributes 'temp' and 'humidity'. The selection criteria is maximization 
of gain, so finally we choose attribute 'outlook'. It is fairly a good choice, because 
nearly third of the training set is classified correctly. If we continue the algorithm 
on the first and third branch of the tree, we get the decision tree shown in figure 1. 

5 The CDT method 
In the previous section we introduced a hew I*(x) measure instead of information 
entropy on the special case, if elements of training set belong to only two classes. 
Using this measure we are able to build up formulas similar to the ones in the ID3 
method to compare the gain of possible tests. The result of our calculations for 
E*(t,S) is shown in figure 5. This works only for tests with two outcomes but 
decisions with geometric figures behave in this manner. 

Our next problem is to describe the required geometric figures such as hyper-
plane, sphere and ellipsoid with bounded parameters. The geometric interpretation 
of classification shows that, if the training examples are described by n continuous 
attributes, the elements might be represented by points in the 3?" space. So we can 
calculate the bounding box of training examples as shown in figure 6. Denote Rmax 
the distance of the farthest points of this bounding box from the center of it. Each 
point P in the sphere (with origin O and radius Rmax) determines a hyperplane, 
with normal vector oP and one point P, that separates points of the training set: 

/ s (p,o ,x) = n(x - p) = TT ~ — ( x - p) = 0 
HP - °llis 
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A 

Figure 6: Description of hyperplane 

where pi € (Oi — Rmax, 0{ + Rmax)- Other geometric figures may be described 
similarly. 

Our last task is to count examples on one side of a geometric figure. Instead of 
taking strict bounds we use the well-known sigmoid function: 

where / ( x , a) = 0 describes the geometric figure (hyperplane, sphere or ellipsoid), 
vector a contains the parameters of the figure and A gives the sharpness of the 
bound. This o\ (x, a) function helps us counting examples belong to class C in one 
side of function / ( x , a): 

Now, we are ready to separate elements of the continuous space with arbitrary 
geometric figures, counting elements of the training set continuously (using the 
sigmoid function) and compare figures with different parameters (and compare 
different figures) using the Gain-type decision criteria. Finally, we should note 
that the parameters of the searched figures are found by global maximization of 
the Gain function, using stochastic global optimization technique with a specific 
local optimization method. 

< 7 i ( x , a ) 
1 

1 g-A/(x,a) 

1 

6 Examples 
In this section we consider some two-dimensional examples to demonstrate the work 
of our new method introduced in the previous section. First, take the training set 
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Figure 7: The extended triangle problem 

shown in figure 7. This is the triangle problem extended with a few extra points. 
In this example we use only lines to separate elements of training set. The most 
interesting part of this example is the separation of the triangle. It is solved by 
three lines correctly, while in the C4.5 method (where only axis-parallel lines are 
allowed) about ten decisions are needed. (This example is also examined in [5]). 

Another well-known hard task is the problem of two spirals on figure 8. The 
decision tree on the right side of the figure shows only the first few steps of the 
tree building method because this problem gives a large decision tree. As it can 
be seen, the elements of the training set have been quite well separated and the 
structure of the problem has already been realized in these very first steps. It is 
easy to imagine that the C4.5 method gives a very complex decision tree to solve 
this problem. 

A further example could be a training set where most of the points are class 
' + ' and only a few points are class '—' in a small group. Then the ' - ' elements 
are taken out by a circle decision in our CDT method, while in C4.5 minimum four 
decisions are required to solve this problem. 

7 Conclusions 
Our new method is the generalization of the C4.5 algorithm in the following sense: 

In C4.5 the continuous decision space is separated only with hypercubes whose 
edges are parallel with the coordinate axes, while in our new method arbitrary 
geometric figures like hyperplane, sphere and ellipsoid are allowed. The advantage 
of this improvement has been demonstrated on the previous examples. Of course 
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Figure 8: The problem of two spirals 

it increases the computational complexity of the algorithm, but it also enlarges the 
variety of possible tests. 

The entropy function is replaced with a simpler fuzzy measure (coming from a 
monotone fuzzy operator) and the test selection criteria is derived from this simpler 
measure. This simplification reduces the running time of the algorithm. 

In our new method the elements of the training set are counted continuously, 
which means that the elements close to the bound of the figure belong to both 
regions (with different weights). Therefore, the decision criteria is a continuous 
function of the parameters of figure. This property makes the global optimization 
problem (finding parameters of geometric figure) simpler. 

There are some restrictions in the current version of our new method: first, 
we use only continuous attributes. It is also possible to handle ordered discrete 
attributes but obviously it is impossible to handle unordered ones in this way. 
Second, we assumed, that all elements of the training set belong to two classes, so 
only concept learning is examined. Third, all the tests we use separate the training 
set into two smaller groups. Multivalued tests are impossible. 

Finally, a few more improvements are going to be mentioned. First, it is worth 
to replace the general purpose global optimizer used in this method with a problem 
specific one, because it will enlarge the efficiency of the algorithm. Second, the 
running time on large datasets might be rather long, so in this case a sample of the 
training examples should be used to build up a tree. Our experiments shows that 
the algorithm is quite quick on a few hundred or thousand examples, but rather 
slow on larger (more hundred thousand elements) dataset. Third, sometimes the 
built up decision trees are too complex, so it is worth to apply some pre- or post-
pruning[8, 9] method to simplify the result tree. 
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