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Abstract 

In this article we propose a new distance-based clustering algorithm. 
Distance-based clustering methods operate on data sets that are in similarity 
space, where the similarities/dissimilarities between the objects are given by 
a matrix. These algorithms have at least 0(n2) time complexity, where n is 
the number of objects. One of the latest distance-based method is Chameleon 
which, according to experiences, works well only on larger data sets and fails 
on relatively smaller ones. This contraditcs the fact that the 0(n2) time com-
plexity makes the distance-based algorithms unsuitable for huge data sets. • 
Thus we developed a new distance-based method (SmallSteps), which can 
handle relatively small amount of objects too. In our solution we are looking 
for connected graphs which have edges with a maximum weight computed on 
the environments of the objects. The method is capable to detect clusters 
with different shapes, sizes or densities, it is able to automatically determine , 
the number of clusters and has a special ability to divide clusters into sub- ' 
clusters. 

1 Introduction 
Clustering is one of the most commonly used statistical methods. It caii be seen 
as an unsupervised machine learning process where the algorithm has to divide a 
set of objects (X = {xi,... ,xn}) into different classes (C = {CV,...., Ck}) such a 
way that similar objects should be in the same class while dissimilars should be in' 
different classes. These classes are called clusters. Clustering algorithms are used 
to determine the underlying structure of the object set. Often it is useful not to 
create statistical measures or perform tasks on the whole set of objects, but after 
a cluster analysing, doing it to the different clusters having similar objects which 
gives more accurate results. For example one can discover more proper connections 
between the features of cars if he/she first clusters the data and examines the cars 
with low top speed and low consumption (city cars) and cars with moderate top 
speed and very high consumption (luxury cars) separately, rather than handles all 
sorts of cars together. 
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This aim of clustering is usually described as maximizing the function [10] 

Q°(X,C) = Qs(X,C) + QD(X,C) 

where Qs(X,C) means the similarity between objects in the same cluster and 
QD(X, C) the dissimilarity between the objects in different clusters. There are no 
exact mathematical formulas for Qs(X,C) or QD(X,C) that could be acceptable 
for most of the cluster analysing tasks. 

Dividing objects into two groups by minimizing the maximum distance in the 
clusters, can be done by bicoloring a maximum spanning tree in 0(n2) steps. On 
the other hand dividing the objects into more than two clusters is an NP hard 
problem [1]. Although segmenting into more than two partitions can be done by 
sequentially dividing clusters into two, it often does not give optimal solutions and 
fails on very simple examples, for instance when we want to partition these objects 
into 3 groups (see Figure 1). 

Detecting the number of clusters is also a very difficult problem, most of the 
clustering algorithms can only divide the objects into a number of clusters given by 
the user. Even there are special cases when appropriate clustering does not exist or 
the only good clustering is to order all of the objects into one cluster (e.g. integer 
coordinate pairs of the 2-dimensional space). 

These are the main reasons why heuristical approaches are so popular among 
clustering techniques. 

1.1 Two Main Types of Clustering Methods 
Considering practical use there are two well-separable kinds of cluster analysing 
methods depending on the type of problems they have to solve. 

• In the first group there are the faster algorithms having 0(n) complexity. 
These methods usually take the objects as points in the (¿-dimensional space 
(if the objects have d attributes) so we will refer to this group as coordinate-
based methods. These methods can handle huge datasets with hundreds of 
thousands or even millions of records (e.g. calls of a telephone company, web 
log of an on-line store, shopping transactions of a supermarket, transfers of a 
bank,.. .etc.). Due to their quickness (note that clustering with these meth-
ods is faster than sorting the objects or finding the two closest/most similar 
objects) these algorithms give a rough segmentation and mostly recognize 
only spherical clusters. Using this group of clustering algorithms the user 
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usually has to give the number of clusters a priori. Most known represen-
tatives of this group are the Fuzzy C-Means [2], [11], [12] and the Kohonen 
Clustering Network [2]. 

• Methods in the second group have much lower speed, they have at least 0(n2) 
complexity. These algorithms work on the distances/dissimilarities between 
the objects, which explains their time complexity. Since they are much slower 
than the coordinate-based ones, they are only good for smaller tables and 
most of these algorithms have to store the distance matrix, so their memory 
consumption can be quite large. The advantage of these methods is that they 
produce much better results. They may detect clusters with arbitrary shapes 
or sizes and determine the exact number of clusters. These algorithms are 
very closely related to shape recognition. For example they can recognize the 
arcs of a detached double spiral. The first distance-based methods were the 
agglomerative and divisive methods [1], [4] and one of the latest is HCS [5] 
which is also a graph theoretic approach but instead of using weighted edges 
HCS concentrates on edge-connectivity. One of the best algorithms in this 
group of methods is Chameleon, which was published in 1999 [7]. Chameleon 
has a very powerful recognizing capabilities, it detects clusters with arbitrary 
shapes and determines the number of clusters needed, still it has some serious 
drawbacks in practical use. 

To emphasize the gap between the algorithms belonging to the two different 
groups let us show some calculations. Consider that a clustering algorithm segments 
1000 objects in the 10-dimensional space in one second. If this algorithm belongs to 
the first group of methods, clustering 1 million objects takes approximately 17 min-
utes and with single precision real number representation it requires approximately 
38 megabytes of memory while if the algorithm belongs to the distance-based group 
clustering 1 million records takes more than 1.5 weeks and the size of the distance 
matrix is 1.8 terabytes. 

In this paper we will propose a new cluster analysing algorithm for the sec-
ond group of methods. SmallSteps is a distance-based method and overcomes the 
difficulties of Chameleon while it keeps all the good features of it. 

2 The Way Chameleon Works 
Chameleon is one of the latest developed distance-based clustering method, which 
was published in 1999 by Karypis et al. [7]. It takes the objects as vertices of 
a graph with the weighted edges according to the k nearest neighbour graph on 
similarities between the objects. The weights of the edges are the similarity values. 
Chameleon has two main phases. In the first phase it creates small sub-clusters 
and merges them together into clusters in the second phase. 

The sub-cluster creating part is done by a hypergraph-partitioning algorithm. 
Since partitioning a graph into a large number of equally sized subgraphs is an 
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Figure 2: Situation when the hypergraph-partitioning phase in Chameleon fails. 

NP hard problem, Chameleon uses a heuristic technique called multilevel graph 
partitioning ;[8], [9]. 

To merge these sub-clusters Chameleon calculates special measures. The rela-
tive closeness .is responsible to merge only ¡clusters that have uniform density among 
the objects in the same.cluster and relative inter-connectivity is for maintaining the 
similar inter-connectivity in the clusters. 

Chameleon ¡can work .according to two different schemes. 

. •• In the first scheme Chameleon introduces two technical parameters as thresh-
olds. One for the relative closeness and one for the relative inter-connectivity. 
Pairs of clusters, whose calculated measures are above these thresholds, will be 
merged. Chameleon may terminate if there are no pairs of clusters whose rel-
ative closeness and relative inter-connectivity is above the thresholds or these 
parameters may be relaxed during the merging phase allowing Chameleon to 
create only one t ig cluster. 

• According to the second .scheme Chameleon uses a function to combine the 
relative ¡closeness and relative inter-connectivity. This function is usually has 
the form 

fiCi.Cj) = RT(Ci,Cj) * RC(Ci,Cj)a 

where RI(Ci,,Cj) and RC(Ci,Cj) are the relative inter-connectivity and rel-
ative closeness between clusters Ci ,Cj and a is a user specified parameter 
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to increase the importance of one of the two measures. After computing 
the goodness ( / ) of merging of all pairs of clusters, Chameleon combines 
the clusters with the best goodness value. Then the algorithm updates the 
RI(Ci, Cj) and RC(Ci,Cj) values and continues with the cluster pair selec-
tion. The result of this scheme is that we get one big cluster and the order 
of the mergings. 

o o 

Figure 3: The result of Chameleon starting from wrong division, like on Figure 2. 

The Chameleon method can handle nearly arbitrary shape of clusters and can 
detect quasi-automatically the number of clusters. 

Experiments show that if the number of records is low, Chameleon works not 
well. The problem is that, with the heuristical graph partitioning algorithm, 
Chameleon at first divides the objects into a large number of relatively small sub-
clusters which still have to be big enough to correctly compute their internal mea-
sures (e.g. the internal inter-connectivities which are used to compute the relative 
inter-connectivity between two clusters). If there are only small numbers of ele-
ments (i.e. less than 1000), very often one or more sub-clusters have intersections 
with more than one real cluster (see Figure 2). Since it has no error correction, 
this means that these clusters will be connected and the algorithm cannot separate 
them later (see Figure 3). Remember that methods in the distance-based group 
are best for relatively small tables. 

On Figure 2 two sub-clusters (marked with 1 and 2) have common part with two 
genuine cluster. Cluster marked with 3 consists of objects of two separate groups 
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which indicates that the random part of the hypergraph-partitioning phase tried 
only wrong partitions. This last one occurs rather rarely, but plays major role in 
getting the wrong clustering of Figure 3. 

Another problem with Chameleon is that it needs two technical parameters to 
detect the number of clusters, which axe very hard to interpret by the user and in 
practical use it is a serious disadvantage. 

Chameleon's graph partitioning algorithm is a non-deterministic procedure, 
which implies that the whole method is also non-deterministic. 

Mainly these problems above inspired us to develop a new distance-based clus-
tering method which is able to overcome these difficulties and gives a result of the 
same high quality as Chameleon does. 
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Figure 4: The result of SmallSteps on the object set of Figure 2 and Figure 3. 

The developed SmallSteps 

1. can be used for datasets of different size: from small to relatively large ones 
with up to 10000 records; 

2. it needs no parameters, still it automatically detects the number of clusters 
and can recognize clusters with any shape and; 

3. always gives the same result for a given set of objects. 
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3 SmallSteps: The New Procedure 

3.1 The Algorithm of SmallSteps 
The solution of SmallSteps, similarly to Chameleon's, comes from graph theory. 
The objects are considered as vertices of a graph and the distances between the 
objects are the weighted edges of the graph. The clusters are special connected 
graphs having edges with weights less than a cluster depended threshold called S. 
These thresholds are recalculated in every iteration (see below) and unique to every 
cluster. 

I (1) order all elements into one cluster and calculate its S 
(2) iterate t — 1 , . . . ? ¿MAX 

first phase < (3) sort the clusters according to their 5 
(4) form the new clusters with the <5's 

. ( 5 ) calculate the new <5's 

second phase { (6) check whether merging clusters is possible 

' ( 7 ) iteratively process the oulier elements according to 
the selected strategy 

third phase < (8) check whether a new cluster can be form with the 
current outlier element 

, ( 9 ) if not, order it to one of the existing clusters 

Table 1: The algorithm of SmallSteps. 

In the following part denote the number of clusters in the tih iteration step by 
|CO|. Denote the kth cluster in the tih iteration step by C ^ and denote its 6 
parameter by where 1 < k < Finally denote the number of objects in 
cluster C(kf) by |Cf}|. 

SmallSteps has three main phases. 

• The first phase is the initial cluster-forming phase. At the beginning of this 
phase (t = 0) all the elements belong to one cluster (C^\k = 1) and the 
initial 5 ( 6 ^ ) is calculated. Then in an iterative process the algorithm begins 
to search for special connected graphs with edge weights less than and 
the thresholds of the newly created clusters are recalculated. We repeat this 
process until a previously given number of iteration steps is reached (see 
Figure 5, Figure 6 and Figure 7). The <5's are responsible for creating clusters 
of upwardly bounded, nearly uniform densities, so it is very important to 
start every iteration with clusters having smaller <5's otherwise neighbouring 
clusters with smaller densities (higher <5's) would incorporate the denser ones. 
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The ¿j^ for the kth cluster in the tth iteration step is calculated based upon 
the average distance between the objects of the cluster C ^ and their closest 
neighbours from the same cluster. 

where X j ^ is the Ith closest element to Xj and d(x j ,x j^) ) is the dis-
tance/dissimilarity between Xj and Xj^y Here r is the degree of <5, i.e. the 
number of neighbours involved in the calculation and / is a monotone function 
which determines the way the average distance is taken into consideration. 
In Figure 4, 5, and 6 / was the same linear transformation. 

Figure 5: The clusters found after the 1st iteration step in the first phase. 

The degree of the ¿'s (r) controls the way SmallSteps works. If only one or a 
few neighbours are considered then the result of SmallSteps is very close to 
the result of a shape recognition algorithm. 

Clusters are not always segmented into sub-clusters during this first phase, 
but merging is also possible still it is done very rarely. 

The time complexity of this phase is 0(n2tmax), where n is the number of 
objects, tmax is the number of cluster forming iterations and it is independent 
of the number of objects. 
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Figure 6: The clusters found after the 2nd iteration step in the first phase. 

• The second phase is a merging phase. It makes decisions on merging some 
of the initially formed clusters based on their 6, size and distance- Although 
the first phase of SmallSteps is so powerful that usually there is no need 
to merge clusters in the second phase, our experiments showed that these 
merging calculations are worth to do. 
Merging objects has 0(|C^max+1)|2) time complexity, where |C,(i™<**+1)| is 
the number of clusters created during the first phase. 

• The handling of outlier or noisy objects is done in the third phase (see Fig-
ure 8). Often datasets have outlier or noisy objects, which does not belong 
essentially to any clusters and could be left uncategorized, but in most cases 
the user wants to order all of the objects into clusters. If the user accepts 
outlier objects then this third phase should be skipped. 
Depending on the structure of outlier elements, in SmallSteps the following 
two operations can be done with them: 

— Let them form new clusters. 
If there is a group of outlier objects that are far enough from the existing 
clusters and have enough elements which are close to each other to form 
a new connected subgraph with edge weights less than their special S 
then these objects are allowed to create a new cluster. 

— Order them to existing clusters. 



250 Gy. Koch and J. Dombi 

The order of outlier objects influence the result so we have developed different 
strategies: 

- The simplest is to choose always those outlier objects that are the nearest 
to an existing cluster. 

- We may follow a postponing strategy and choose those objects first 
whose classification are the easiest, i.e. which are close to a cluster 
but far from the other clusters. 

- According to the BestFit method those outlier objects are always classi-
fied first whose distance to a cluster best fit to the <5 of the cluster. This 
method tries to maintain the uniform density of the clusters. 

The time complexity of the last phase is O (noutiier * max{noutiier, "classified}), 
where noutiier and «classified 3 X 6 the numbers of outlier and classified elements 
at the beginning of the third phase, respectively. 

The overall time complexity of SmallSteps is 

O (n2tmax + |C ,(i'""+1)|2 + noutHer * maxjraoutlier, "classified}) = 0(jl2). 
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Figure 8: The clusters found after the outlier handling phase. 

3.2 Handling Bounding Objects 
If two clusters are in touch by only a few objects then by searching for connected 
graphs the algorithm will find that these clusters could form one cluster since 
there is a path between the elements of the two clusters with edges less than the 
S's of the clusters. To avoid such aggregation it is useful , to find the boundary 
objects of the clusters and if two clusters are connected with only bounding objects 
then the algorithm should not merge these clusters. The algorithm can recognize 
the bounding objects by counting their intra-cluster neighbourhood which is the 
number of objects from the given cluster that are closer to the object than the 5 of 
the cluster. The bounding objects have fewer neighbouring objects than the inner 
ones. 

3.3 Inner Analysis of a Cluster 
SmallSteps provides a useful additional feature. If the user wants to analyse a 
cluster in more detail, he/she can specialize this cluster by segmenting it into sub-
clusters. The segmentation is done by iteratively decreasing the original <5 of the 
cluster and searching for connected graphs with edge weights less than its new 
S. The specializing procedure terminates when the algorithm is able to segment 
the cluster into sub-clusters of acceptable size or when it turns out that such a 
segmentation is not possible (see Figure 9). 
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Figure 9: Segmenting a cluster into sub-clusters. 

4 Example 
On Figure 5, Figure 6, Figure 7 and Figure 8 the different stages of SmallSteps is 
shown during clustering. 

Figure 5 shows the situation after the first iteration step of the first phase. The 
beginning one big cluster fell into 3 sub-clusters framed with thin lines. The objects 
marked with " + " signs are considered as outlier objects in this step. Note that one 
of the sub-clusters, having objects marked with " - " signs, still contains two genuine 
cluster. 

After the second iteration step of the first phase (see Figure 6) the wrongly 
merged clusters broke up and the final clusters began to take form. 

The following iteration steps in the first phase only refine the borders of clusters 
found in the second step. In this example after the 8th step these refinements stop 
and no change is made in the subsequent iteration steps. On Figure 7 the division 
after the 5th iteration step is shown. 

The core of four of the five genuine cluster is detected in the first phase and 
there is no need to merge clusters in the second phase. 

The detection of the last cluster is done in the third phase during the outlier 
handling process (see Figure 8). In this phase the algorithm detected the possibility 
of forming a new cluster from the outlier objects and the objects not involved in 
this cluster were incorporated into one of the existing cluster. 
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5 Results 

We tested SmallSteps on numerous sample databases, four of them can be seen on 
Figure 8, Figure 10, Figure 11 and Figure 4. 

The test shown on Figure 8 was performed on 1000 objects from 5 clusters taken 
from 5 normal distribution. The clusters have different densities with 100 to 300 
objects. 

The test of Figure 10 contained 1024 objects in 6 clusters of highly different 
densities. The two clusters on the bottom of Figure 10 are dense clusters connected 
with a rarer zone, but this zone is still denser than the other clusters. 

On Figure 11 the result of a test on 2000 objects is shown. The nearly all of 
the clusters are only vertical lines with outlier objects on the endings. The objects 
were taken from the abalone database from the Repository of Machine Learning 
Databases and Domain Theories maintained by the University of California at 
Irvine. 

The sample database of Figure 4 contained 600 objects taken from 3 normal 
distribution, all of them having 200 objects. It is a very difficult problem because 
of the high noise and the elliptical clusters. We also tested 3 coordinate based 
methods on the sample sets and none of them could solve this problem adequately. 

In Table 2 the running times on the different tests are shown. The values are 
in milliseconds and measured on a 550MHz Intel Pentium III machine with 128MB 
RAM. Each test was performed 20 times. 

In the first column the measured time of the full SmallSteps algorithm are 
shown while in the second column we skipped the outlier handling phase. We 
implemented Chameleon and the running times of the implementation is shown 
in the third column. Testing Chameleon is done by creating 30 sub-clusters with 
the hypergraph-partitioning algorithm and merging them into the given number of 
clusters according to the second scheme. 

Test SmallSteps SmallSteps without 3rd phase Chameleon 
Figure 4 (avg) 152.023 142.467 422.554 
Figure 4 (a) 1.682 5.532 9.530 
Figure 8 (avg) 416.872 367.205 984.818 
Figure 8 (er) 0.985 4.772 16.762 
Figure 10 (avg) 356.773 338.504 1050.196 
Figure 10 (a) 1.619 0.941 27.605 

Table 2: Test results of SmallSteps and Chameleon. 
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6 Summary 
In SmallSteps, the number of clusters evolves automatically during the three phases 
(mainly during the first phase) hence no user interaction is needed for giving this 
number. Instead of relative inter-connectivity and relative closeness, SmallSteps 
calculates <5's to perform cluster forming. These <5's can be computed from only a 
few objects, which means that SmallSteps works well on smaller tables too. 
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Figure 10: Detecting elliptical clusters with different densities and sizes. 

SmallSteps can recognize clusters with different densities (see Figure 10) because 
every cluster has its own 5 and since SmallSteps searches for connected graphs it 
can recognize clusters with arbitrary shapes or sizes (see Figure 11). 

The algorithm of SmallSteps is deterministic so it will give always the same 
output for a given set of objects. 

Since the outlier or noisy objects are handled in the last phase and till then 
they axe eliminated from the processing by the first few iteration steps of the first 
phase SmallSteps is not too sensible to this kind of objects (see Figure 4). 

While Chameleon is a kind of greedy, agglomerative clustering procedure and 
never corrects the errors made during its merging process, SmallSteps rather re-
sembles to a divisive clustering method, but it has merging steps too and it has 
some error-correcting feature in all the three phases. Practical experiments showed 
that, among hierarchical algorithms without error correction, the divisive meth-
ods usually outperformed the agglomerative ones because divisive methods needed 
fewer steps to create the segmentation [4]. 
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Figure 11: SmallSteps is very close to shape detection. 
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