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A form of the Zermelo—von Neumann theorem 
under minimal assumptions* 

B. Csákány t 

To the memory of L. Kalmár (1905-1976) 

Abstract 

A simple and general version of the classical result in the title is formulated 
and proved in the form of a proposition concerning formal languages. 

The fundamental game-theoretical theorem of von Neumann asserts that in a 
two-player zero-sum game both players have optimal (possibly mixed) strategies. 
A stronger statement is true for chesslike games, i.e. discrete finite games in which 
there are no chance moves, and there is complete information for both players. In 
such games, either one of the two players has a pure winning strategy or both players 
have pure safe strategies. We call this fact the Zermelo—von Neumann theorem, as 
Zermelo was the .first to state an equivalent claim in [15], although he did not use 
the notion of a strategy, which was introduced and developed later in works of such 
pioneers as Borel [4], Steinhaus [14], von Neumann [10], and Kalmár [7]. In this 
note we prove a simple and general version of the Zermelo—von Neumann theorem. 
Here it takes the form of an assertion on formal languages, with no assumption on 
chance moves or complete information. The proof utilizes an idea of Fremlin [5] 
which dates back to the solution of the game Nim by Bouton [2]. The title alludes 
to the title of an article of Kalmár ([8]) in which a simple and general form of 
Gödel's incompleteness theorem is proposed and proved. Note that a fine analysis 
of interconnections between [15], [7], and a closely related article [9] by D. König 
may be found in a recent survey paper of Schwalbe and Walker ([13]); in which 
the definitive formulation of the Zermelo—von Neumann theorem is convincingly 
credited to Kalmár. -\1 

As usual, generators, elements and subsets of free monoids F(P) will be called 
letters, words, and languages, respectively. A word w\ is a prefix of the word w if 
w = W\W2 for some word u>2; we write wi < w in this case. The prefix closure of a 
language L is the set of all prefixes of all words in L. We say that L is complete, if 
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every infinite chain wi < W2 < • • • of elements of the prefix closure of L stabilizes 
(i.e., there exists an i such that Wi = W{+\ = .. .). A prefix wi of w is proper if 
w\ ^ w. A language L is prefix-free if no proper prefix of w G L is in L (cf., e.g., [6], 
[12], where such languages are called prefix codes). Here by a game we shall mean a 
nonempty complete prefix-free language L C F(P) trisected into pairwise disjoint 
sets L/v, LMI and LT- For games L C F(P) we adopt the following terminology: 
the letters (i.e., the elements of P) are the positions, all nonempty prefixes of the 
words in L are the states, and all pairs (si,s2) of states such that there exist a 
position p with s2 = Sip are the moves of L. The words in L are the terminal 
states, the one-element prefixes of them are the initial states of the game L; finally, 
the words in L^r, LM, and LT are the normal, misère, and tie terminal states (cf. 
[1]), respectively. We also refer to terminal states of L as L-games. 

The rationale of this terminology is that whenever two persons (say, White and 
Black) play a common finite discrete game G (as Nim, Chess, Go, card games, etc.), 
the whole process of playing—i.e., the G-game—is fully determined by the sequence 
g = pi.. .pn of subsequent positions, and every move of G consists of choosing a 
further position pt+i to continue a prefix p\.. .pi (1 < i < n) of g, according, of 
course, to the rules of the considered game. For several simple games (e.g., for 
Nim) the set of options depends only upon pi. However, it may depend upon the 
parity of i, and, more generally, upon each position in p i . . .pi. This is the case, 
e.g., in Chess, in virtue of some special rules such as castling, en passant capturing, 
and the threefold repetition rule that prevents infinite games of Chess. Thus, we 
can consider every game L Ç F(P) as an abstract form of a concrete two-player 
discrete game £ with possible positions p £ P. The rule of moves of C is implicit in 
the set of all pairs of states of form {pi • • - Pi,P\ • • -PiPi+i)- As L is complete, this 
rule excludes the possibility of an infinite sequence of moves in C\ i.e., £ is a finite 
game. The idea of considering states rather than positions goes back to the article 
[7], in which Kalmár introduced the script form of a game (Schriftspiel). The result 
of C is encoded into the components L^,LM,LT of L: for g G L, g G Ljv means 
that the player unable to move loses (as in Nim), g G LM indicates that he/she 
wins (e.g., LM is empty if L stands for Chess), and g £ LT means that the L-game 
g ends in a tie. 

As White and Black move alternately, White always moves from a state of 
odd length. Hence we call such states White states, and states of even length will 
be called Black states (including terminal states in both cases). Let Sw and SB 
stands for the set of all White states, resp. Black states. Clearly, in an L-game g 
White wins iff g € LN n SB or g G Lm fi Sw, and Black wins iff g G LN H Sw 
or g G L m H SB- We define a strategy of White as a mapping W of the set of 
nonterminal White states into the set of Black states; similarly, a strategy of Black 
is a mapping b : SB \ L Sw• Given a one-element word pi which is an initial 
state of L, any pair (w, b) of strategies determines a sequence 

g{pi,w,b) =pi w(pi) b(w(pi)) w(b(ui(pi))) b{w(b{w(p!)))) ... 

which, due to the completeness of L, cannot be infinite. Thus, g(p\,w,b) is an 
L-game with initial state p\. A strategy wq of White is called a winning strat-
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egy at pi if, for any strategy b of Black, White wins the game g{p\,wo,b), and, 
correspondingly, a strategy bo of Black is winning at pi if, for any strategy w of 
White, Black wins the game g(pi,w, bo). Finally, we call a strategy w\ of White a 
safe strategy atp\ if, for any strategy b of Black, either White wins g{p\,wi,b) or 
g(pi,wi,b) ends in a tie; a safe strategy of Black is defined similarly. We prove the 
following: 

Given a game L and an initial state p\ of L, either one of Black and White has 
a winning strategy at p\ or both of them have safe strategies atp\. 

Consider a game L and let S be the set of all states of L. Call a triple 
(RUR2,RX), consisting of disjoint subsets of S, regular if it meets the following 
requirements: 
(1) If s 6 Ri and (s, s') is a move, then s' £ R2. 
(2) If s £ i?2 and s is not a terminal state, then there exists a move (s, s') with 

s' E i?i. 
(3) If s € Rx and (s, s') is a move, then s' £ R2U Rx. 
(4) If s £ Rx and s is not a terminal state, then there exists a move (s,s ' ) with 

s' eRx. 
E.g., (LN ,LM ,LT ) is regular. The set of all regular triples is partially ordered 

by the rule 

(RI,R2,RX) < (Ri', R2 , Rx') iff R\ C Ri', i?2 Q R2 1 Rx C Rx . 

Clearly, if , R%) is a chain of regular triples, then (U a R?, UQ
 R2> U a

 Rx) is 
regular, too. Hence there exists a maximal regular triple (Q1, Q2, Qx) > (N, M, T). 
We show that Q = Qi UQ2 UQX = S. Suppose not. No states in S\Q are terminal. 
Therefore, as L is complete, there is a state s € S\Q with the property that if (s, s') 
is a move, then s' € Q. If all such s' are in Q2, then (Qi U {s}, Q2, Qx) is regular; if 
there is such an s' in Q1, then (Qi, Q2 U {s}, Qx) is regular; and (Qi, Q2, Qx U {s}) 
is regular in the remaining case, contradicting the maximality of (Qi, Q2, Qx). 

Define a function u on the set S\L of nonterminal states by choosing for u(s) 

some s' g Q2 such that (s, s') is a move, if s € Qi, 
some s' 6 Qi such that (s, s') is a move, if s 6 Q2, 
some s' € Qx such that (s, s') is a move, if s £ Qx. 

Such a function exists by the axiom of choice and the definition of regular triples. 
Suppose that the initial state pi is in Q\. Denote the restriction of u to Sb \ L 
by ui. Then u\ is a strategy of Black. Consider an arbitrary strategy w of White. 
The L-game g\ = g(p±,w,ui) is either a White state in LN or a Black state in Lm, 
i.e., Black wins in gi. Thus, u\ is a winning strategy at pi for Black. If p\ € Q2, 
then similarly we obtain that the restriction of u to Sw \ L is a winning strategy 
at pi for White. Finally, if p\ 6 Qx, then these restrictions are safe strategies at pi 
for Black and White, respectively. 

Note that the standard proof (see, e.g., [11] and [3]) goes by induction on the 
maximal length n{p{) of games with initial state p\. The finiteness of a game 
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does not imply the existence of such an n(pi); this latter is a slight additional 
requirement on the game, whose fulfilment is usually guaranteed by postulating 
that the number of possible moves is finite in every state. This assumption is 
superfluous under our treatment. A simple example of a finite discrete game with 
no upper bound n(pi) on the number of possible consecutive moves from the initial 
state is the following. Two players place congruent coins onto a centrally symmetric 
table alternately; however, at most once during a game, instead of placing a coin, a 
player may choose to reduce arbitrarily but equally the size of all coins to be placed 
further on. The last player to move wins. 
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