
Acta Cybernetica 15 (2002) 339-351. 

Factorizations of Languages and 
Conditions * 

Alexandra Mateescuf Arto Salomaa* and Sheng Yu§ 

Abstract 

Representat ions of languages as a p roduc t (catenat ion) of languages axe 
investigated, where t he factor languages are "prime", t h a t is, cannot be de-
composed fu r the r in a nontrivial manner . In general, such prime decomposi-
tions do not necessarily exist. If they exist, they axe not necessarily unique 
- the number of factors can vary even exponentially. T h e paper investigates 
pr ime decomposit ions, as well as the commut ing of the factors, especially for 
the case of finite languages. In par t icular , a technique about commut ing is 
developed in Section 4, where t he factorization of languages L\ and L2 is 
discussed under the assumpt ion L1L2 = L i L \ . 

Keywords: finite language, catenation, commutativity of languages, prime 
decomposition 

1 Introduction 
Prime factorizations of natural numbers and their uniqueness constitute one of the 
really fundamental issues in all mathematical sciences. On the other hand, in the 
theory of formal languages, the operation of product or catenation was introduced 
already at a very early stage. Clearly, any language L can be expressed as a 
product of itself and the language {A} consisting of the empty word A.. We refer 
to such decompositions of L as trivial, and say that L {A} is prime if it has only 
trivial decompositions. In a prime decomposition for a language L every factor is 
a prime. Although questions dealing with primality can be viewed as fundamental 
in language theory, rather little work in this area has been done so far, see, for 
instance, [10, 6]. [2] is an early reference dealing with finite languages. [7] develops 
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a method according to which one may construct, with the maximal use of the 
distributive law, for every finite language F an expression from which the number 
of states and final states in the minimal deterministic automaton for F can be 
immediately seen. [10] contains results about the commuting of two languages in 
some special cases. 

The following remarks about related papers are in order. A systematic study 
about decompositions was initiated in the technical report [5]. This paper is the 
"journal version" of the report [5], while [9] is the "conference version" of it. The 
report [5] has given impetus to further research, for instance, [3, 4]. We have 
included in this paper material from [9] only insofar it increases readability. In 
particular, our main technical contribution in this paper, Section 4, is disjoint from 
[9]. 

We begin with the following basic observation about finite languages. Whenever 
a nonempty finite language F can be written as a product 

F = F1F2...Fk, 

where none of the factors Fi, 1 < i < k, is trivial, then k cannot be larger than the 
length of the longest word in F. Consequently, we have always a complete control 
of all possible decompositions, at least in principle. This does not hold true for 
infinite regular languages, where there is no bound for the number of factors. Still 
decompositions such as 

£* = LIL2 = (A + E + E 2 + . . . E n - 1 ) ( E n ) * , n > 2; 

convey definite information about E*. (Here, as frequently in the sequel, "+" stands 
for union.) Indeed, they were instrumental in the proof for the fact that equations 
between regular expressions possess no finite basis, see [7] for details. 

Every finite language (different from {A}) possesses a prime decomposition. This 
follows by an obvious induction on the length of the longest word in the language. 
This is not true for infinite languages. For instance, no star language L (L = K*, 
for some K) can possess a prime decomposition. Indeed, for infinite languages, 
decompositions other than prime decompositions can sometimes be quite useful. 
For instance consider the language L over the one-letter alphabet {a}, 

L = {a* | i = 10,13,16,17,19,20 or i > 22}. 

L possesses a decomposition L = L1L2, where L\ = (a3)+ and L2 — (a7)+ . Here 
we definitely have a simplification of the original language, presented as a product 
of languages, although the factors are not prime. For instance, the total number 
of states in the minimal automata for L\ and L2 is much smaller than the number 
of states in the minimal automaton of L. Using the same idea and allowing an 
arbitrary number of factors, one can show that the number of states may grow 
exponentially in the transition from the decomposition to the original language. 
Somewhat similar matters are discussed also in Section 3. We hope to return to 
the discussion of this and other similar problems (which lie outside the scope of the 
present paper) in another context. 
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A brief description of the contents of the present paper follows. The reader is 
expected to be familiar with the very basics of formal languages and finite automata. 
One of the references [6, 7, 8] may be consulted if need arises. 

Basic decidability results are presented in Section 2. They lead also to a notion 
very central in the study of regular languages, that of a decomposition set, originally 
introduced in [9]. Sections 3-5 deal exclusively with finite languages. In Section 3, 
we discuss decompositions of different lengths, as well as the testing of the primality 
of a finite language, also from the point of view of complexity. The two final sections 
deal with the commuting of two finite languages Ft and F2, that is, the validity of 
the equation FIF2 = F2Fi. While this is a tricky problem in the general case, some 
special cases can be handled. 

Our main results are contained in Section 4, where factorization of languages 
Fi and F2 is discussed under the assumption F\F2 = F2F\. Also a very efficient 
construction is presented in the case where one of the two languages involved is 
a singleton. The construction could be applicable also in other similar situations. 
The final Section 5 discusses some recent results and open problems. 

It has not escaped our notice, especially in view of the many possible interpre-
tations of finite languages and the central theoretical role of thé problems studied 
in this paper, that the problems might turn out to be significant in certain applica-
tions. For instance, succinct representations of DNA nucleotide sequences certainly 
fall within this category. However, we have had no specific applications in mind. 

2 Decomposition sets and decision problems 
The notions of a prime language and a prime decomposition of a language were 
already defined in the Introduction. According to the definition, the language {A} 
consisting of the empty word is not prime. Thus, all factor languages in a prime 
decomposition are nontrivial. Depending on the language, the prime decomposition 
may be unique or there may be several prime decompositions for the same language. 
It is also possible that a language has no prime decompositions. However, every 
finite language possesses a prime decomposition. 

Typical problems concerning the decomposition of finite languages are the fol-
lowing: 

1. Is a given finite language prime? 

2. Find all prime decompositions of a given finite language. 

3. Find, for a given finite language, a prime decomposition possessing a specific 
property. (We might require, for instance, that the total number of states in 
the automata accepting the prime factors is minimal.) 

It is obvious that all problems of this nature are decidable for finite languages. 
The complexity issues lie mainly outside the scope of this paper. In many cases, 
an exhaustive search is the only algorithm we know for a specific problem. 
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We now present some simple examples, due to [9], of prime and nonprime finite 
langauges. Consider the languages over the alphabet {a}, defined by 

Fn,k = A + ak + a2k + • • • + ank, n > 2, k > 1, 

= A + a2 + a3 + a4 + • • • + a" ,n > 4. 

Let, further, F„,n > 4, denote any language consisting of A and an and, in addition, 
of arbitrarily many words a1 with n/2 < i <n. Then no language FUtk is prime, 
whereas all languages Fare prime. The language.F^ is prime iff n = 4. 

Sometimes a slight change in a prime language induces a possibility for a de-
composition. Consider the following two languages: 

F = adba + acbb.+ bcaa + bdab, 

F' = adba + adbb + bdaa + bdab. 

Thus F' results from F by replacing the two occurrences of the letter c by the 
letter d. Then the language F is prime, whereas F' possesses the decomposition 
F' = (adb + bda)(a + b). See [9] for details, as well as for the proof of the following 
theorem and for related references. 

Theorem 1 There is no algorithm, for deciding whether or not a given linear lan-
guage is prime. Consequently, the problem of primality is undecidable for context-
free languages. 

The proof of Theorem 1 does not work for regular languages. Indeed, as Theo-
rem 2.2 below shows, the primality problem is decidable for regular languages. We 
now recall from [9] a notion very suitable for the study of decompositions of regu-
lar languages. It is closely related to left quotients of regular languages. It shows 
how an arbitrary decomposition can be extended to one of finitely many specific 
decompositions, obtainable in a standard way. 

Let R be a regular language over an alphabet E, and let A = (Q, S, QO, QF) 
be the minimal finite deterministic automaton for R. (Here Q is the set of states, 
qo the initial state, QF the set of final states, and S the transition function. We 
extend <5 to words over E. Thus, 6(q,w) = q' means that the word w takes A 
from the state q to the state q'.) For a nonempty subset P C Q, we consider the 
following two languages: 

.Jif = | % , ,« ; ) GP}, 
i?2

p = p | {W | 6(p,w) e QF}. 
pep 

Lemma 1 Let R and A be defined as above. Assume that R = L1L2, where L\ 
and ¿2 are arbitrary languages. Define P CQ by 

P = {p E Q | S(qo,w) = p, for some w € Li}. 

Then R — R1R2 and, moreover, Li C Rf for i = 1,2. 
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Lemma 1 was established in [9]. Observe that the languages L\ and L2 above 
are quite arbitrary; they need not even be recursively enumerable. They can always 
be extended, without losing the validity of the decomposition, to regular languages 
obtainable from the minimal automaton for A. These resulting "standard" decom-
positions can always be expressed in terms of a decomposition set. 

By definition, a nonempty subset P C Q is a decomposition set (for a regular 
language R) if R = J? fJ i f . The decomposition R = flfflf referred to as the 
decomposition of R induced by the decomposition set P. We say that the decom-
position L = LyL-2 of a language L is included in the decomposition L = L[L'2 if 
Li C L\, i = 1,2. See [9] for the proof of the following result. 

Theorem 2 Every decomposition of a regular language R is included in a decom-
position of R induced by a decomposition set. The problem of primality is decidable 
for regular languages. 

The algorithm obtained by checking through all possible decomposition sets is 
clearly exponential. It is likely that primality testing is NP-complete even for finite 
languages. Observe also that the decomposition induced by a decomposition set 
may be trivial. Indeed, we have i i f = {A} iff P = {qo} and qo has no incoming 
arrows. Similarly, — {A} exactly in case P = QF and A is the only word taking 
A from each of the final states to a final state. Also the following result is an 
immediate corollary of Lemma 1. 

Theorem 3 Whenever a regular language has a nontrivial decomposition, it has a 
nontrivial decomposition where the factors are regular languages. 

We conclude this section with two open problems. 
Open problem. Instead of catenation, we may take the shuffle operation to be 

the product operation for languages. Decompositions and primality can be defined 
for this product as well. Is the last sentence of Theorem 2 valid also now? In other 
words, is the primality of regular languages with respect to the shuffle product 
decidable? Although we have been able to settle some special cases, the case of an 
arbitrary regular language seems to be very tricky. 

Open problem. Does Theorem 3 hold with "regular" replaced by "context-
free"? It would be very strange to have an example of a context-free language L 
having nontrivial decompositions L = L1L2, in all of which at least one of the 
languages L\ and L2 is non-context-free. 

3 Primality testing 
In the remainder of this paper we discuss only finite languages. A given finite 
language may possess several prime decompositions. It may even happen that two 
prime decompositions of the same language have no common factors. For instance, 

(A + a2) (A + a2 + a3 + a4) = (A + a2 + a3)2, 
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where all factors are prime languages. Even the number of factors may vary dras-
tically in different prime decompositions of the same language. The following con-
tribution to Problem 2 of thé preceding section was established in [9]. 

Theorem 4 There are finite languages Ln having two prime decompositions with 
0(n) and 0(logn) factors. 

Theorem 4 was established in [9] using the following example. Consider numbers 
n = 2k, k > 1, and languages 

Ln = X + a + a2 + h a" - 1 . 

Then 
Ln = (A + a)""1 = (A + a)(A + a2)(A + a 4 ) . . . (A + a2"^). 

, The most straightforward examples about factorizations not unique are obtained 
in terms of languages over one-letter alphabet {a}. Other examples are easy to 
construct. For instance, 

F' = A + a + b + ab + b2 + ab2 +b3 +ab3 + b4 + ab4 = (X + a + b + b2+ ab2)(X + b)2 = 

= (X + a + ab + b2+ ab2)(X + b)2 = (A + a)(A + b2){X + b)2, 

where all languages within parentheses are primes. 

Consider primality testing, Problem 1 mentioned in Section 2. There seems to 
be no other general method than trying all possible factors. Of course, in special 
instances, ad hoc arguments can be used to exclude factors of certain types. A 
special case consists of testing the primality of languages of the form 

A + ah+ah+--- + ai", (1) 

where the i's are distinct positive integers. In this case primality testing can be 
reduced to a problem concerning sets of nonnegative integers as follows. 

Let N be a set of nonnegative integers. We say that N has the decomposition 
property if there are nonempty subsets N\ and _/V2 of N, maybe overlapping or 
identical but both containing at least two elements, such that 

N = {ni + n2 | ni £ Ni and n2 € iV2}-

We also say that N decomposes into and iV2. (Recall here also the one-letter 
language L presented in the Introduction.) 

Clearly, N can have the decomposition property only if 0 £ iV, in which case 0 
belongs also to both Ni and iV2. The following result is now obvious. 

Lemma 2 The language L/v = SigAra® is prime iff the set N contains 0 and has 
not the decomposition property. More specifically, if N decomposes into Ni and N2 
then 

Ln = (a + y , ai)(A + E 
ieNi iew2 
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Although the problem of N possessing the decomposition property bears some 
resemblance to the subset sum problems, we have not been able to establish its 
./VP-completeness. Of course, testing the primality of the languages (1) is only a 
special case of the general problem. 

If c is a letter not in the alphabet of F, then F + c is always prime. One can 
affect the same change also without introducing new letters. 

Theorem 5 Let F be a finite language whose minimal alphabet E contains at least 
two letters. Then for some w £ E+ , F + w is prime. 

Proof. Let k be the length of the longest word in F. Let w be any word of length 
2k + 1 such that there is a word in F whose first (resp. last) letter differs from the 
first (resp. last) letter of w. This requirement can be satisfied since E contains at 
least two letters. We claim that F + w is prime. Assume the contrary: F + w has a 
nontrivial decomposition F + w = F\F2. We can write Pi = F{ + w\, F2 = F2+w2, 
w = w\vj2. (Possibly P/ is empty or Wi — X.) One of the words wi and w2 is of 
length greater than k. Assume that \w2\ > k. Then F[ — 0 because, if a; £ F{, the 
word xw2 is not in F + w. Thus, F + w = W\F2. But this is not possible because P 
contains a word whose first letter differs from the first letter of w\. (vj\ = A would 
yield a trivial decomposition.) If |u>i| > k, we obtain similarly a contradiction, 
using the fact that P contains a word whose last letter differs from the last letter 
of w2. This completes the proof. q 

Theorem 5 can be extended to concern languages P over {a} containing the 
empty word. 

4 Factorization versus commutativity conditions 
It was one of the very early results on combinatorics on words that two words 
u and v commute, uv = vu, iff both u and v are powers of the same word. No 
similar result is known for finite languages. When do two finite languages Pi and 
F2 commute, P1P2 = P2P1? We begin with the special case, where one of the 
languages is a singleton. The technique presented in this section, interesting also 
on its own right, shows in detail the structure of the two languages. 

The following results are well known and can be found in, e.g., [6] or [10]. 

Lemma 3 If uv = vz, u,v,z £ E*, and « / A, then u = xy, v = (xy)kx, and 
z = yx for some x, y £ E* and k > 0. 

Lemma 4 If uv = vu, then there exists such that u = xs and v = xl for 
some s,t > 0. 

Lemma 5 If um = vn and m,n> 1, then u = xs and v = xl for some x £ E* and 
s,t> 1. 

Theorem 6 Let x € E* and L C E* be a finite language. If xL = Lx, then there 
exists w £ E* such that x = ws and L — Ul=i{wii}< for s,n,t\,... ,tn > 0. 
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Proof. The theorem holds trivially if L — 0. If L = {?/}, then xy = yx. By 
Lemma 4, we have x = ws and y = w* for some s, t > 0. Thus, the theorem holds. 

Assume that the theorem holds for L = {yi,..., yt}, t < n. 
Now we consider the case when t = n, i.e., L = {yi, •. • ,yn}- We have the 

following three cases: 
Case I. xyn ' ynx. Then, by Lemma 4, x = WQ° and yn = WQ° for some WQ £ E* 
and so, to > 0. Let L' = {j/i, . . . ,i/n_i}. Then xL' = L'x since xL = Lx, xyn = 
ynx, and xyn g xL' and ynx & L'x. By the induction hypothesis, x = iu®1 and 
L' = U £ i V i ' } s o m e ^ and S\,ti > 0. Since x = Wq0 = to*1, w0 and wi 
are powers of a common word w, i.e., v>o = wl and W\ = wm. Then x = wls° and 
L = {wmt\... ,wmt"-1,wlt°}. The theorem holds. 
Case II. xyn ^ ynx. Then xyn = y^x for some ii £ {1, . . . ,n - 1}. If xy^ = ynx, 
then let Li = {yiltyn} and L2 = L — L\. Otherwise, xy^ = y^x for some i2 £ 
{1,. . . ,n — 1} — {¿i}. We continue this way until we get xyim = ynx, i.e. 

xyn=yhx, xyh=yi2x, , xyim=ynx. 

Consider the case m < n — 1. Let L\ = {y^ , . . . , j/jm, yn} and L2 = L - L\. Then 
xLi = L\x and xL2 = L2x. By the induction hypothesis, we have 

m n 
x=uSl, Li = (^{it^}, and x = v32, L2=[j{vt'}. 

i=l j=1 

Since it®1 = vS2 = x, we have u = wk and v = wl for w £ E* and k,l > 0. 
Therefore, 

m n 
x = wk°\ ¿-(UK^iudJW4'})-

i=l j=l 

Case III. This case is the same as Case II except that m = n — 1, i.e, we have 
xyn ± ynx and 

xyn — 2/ijX, xyii = yi2x, , xyin_1 = ynx. 

Since xyn = i/i,x and xy^ = y^x, we have, by Lemma 3, 

X = (uiVi)klU1: yn=V1U1, 2/ti — UiVi 

x - (u2v2)k2u2, yh = v2u2, yi2 = u2v2. 

So, we have 
(uiWi)4^!«!^! = u2v2(uivi)klui. 

Then, U\V\ = v\Ui. Thus, u\ and Hi are powers of the same word w\ £ E*. So, 
x = u/®1 and yi - u)'1 for si, t\ > 0. Similarly, we can show that, for 1 < i < n, 

x = w*' and yi = wf. 
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Since wl1 = ... = w„n — x, we know that w\, . . . , wn are powers of a common 
word w, i.e., wi = wtl, . . . , wn = wln by Lemma 5. Thus, L = UlLii10'^'} 
x = wllSl. • 

Let p and q be two natural numbers such that (p, q) = 1 and p < q. Define 
Np = { l , . . . , p } and Nq = Also define a function a : Nq —• Nq by 
a(i) = ((i+p-l) mod q) +1. Thus, a(i) — i+p where the least positive remainder 
of the sum modulo q is taken. Since (p, q) = 1, it is clear that, for any i € Nq, we 
have {i,a(i),... ,cr i _1(i)} = Nq and crq(i) = i. 

Let w 6 £<m, t,m > 0, i.e., w = xix2 • • -xt and Xj 6 E m , 1 < i < t. Denote by 
(w)lm\ 1 < i < t, the substring Xi of w. When m is understood, we simply write 
M i -

Let Li C S p m , L2 C S«m, p,q,m > 0, (p,q) = 1, p < q, and L j L 2 = L2LX. 
Then we have the following results. 

Lemma 6 Let N'q = {¿ i , . . . , in}, 1 < n < q, be a subset of Nq and x\,..., xn 6 
Sm. If there exists w G L2 such that (w)ix = xi, ..., (w)in — xn, then there exists 
u £ L\ such that (u)ij = Xj for all ij £ N^ fl Np. 

Proof. The lemma holds due to the facts that L\L2 = L2L\ and p < q. • 

We explain this lemma by the following example. 

Example 1 Let p = 3 and q = 7. Then Np = {1,2,3} and Nq = {1,2, . . . ,7}. 
Given N^ = {1,3,4,7} and xi,x2,x3,x4 G X = S m , there is w £ L2 such that 
(w)i = xi, (w)3 = x2, (w)4 = X3, and (w)7 — X4. Then, clearly, there is u £ Li 
such that (u)i = X\ and (11)3 = x2, which is illustrated in the diagram below. 

w 

f 

I i-J 1 ^ ' ' —' 1 1 in I^Lj 
X J X 2 X 3 

H in LJL2 

Lemma 7 Let N'q = {¿1,... ,in}, 1 < n < q, be a subset of Nq and x\,... ,xn € 
Sm. If there exists w € L2 such that = x\, ..., ¿n) = xn, then there 
exists W' £ L2 such that (W')^ = Xi, ..., (UJ1)^ = xn. 
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Proof. Let w 6 L2 such that {ui)a^}) = Xj, ij £ Then there exists u £ Li 
such that = xj for all <r(ij) £ n Np by Lemma 6. Since wu £ L2LX 

and L2L\ = L\L2, we have wu = vw1 for v £ L\ and w' £ L2. Notice that 
(w')i = (ui)CT(i) for 1 < i < (q - p) and (w')i = (u)a(¿) for (q - p + 1) < i < q due 
to the fact that |u| = p and the definition of a. Therefore, (u/),,- = (w)<7(ij) — Xj, 
1 < j < n. D 

We explain the above lemma and its proof by the following example. 

Example 2 As in the previous example, let p = 3 and q = 7. Then Np = {1,2,3} 
and Nq = {1,2, . . . , 7} . We are given N'q = {1,3,4,7} and xx, x2, x3 , x4 € X = £m, 
and we kno\y that there is w £ L2 such that (u>)CT(x) = xi, (10)0(3) = x2, (w)ct(4) = 
X3, and (w)CT(7) = x4 (i.e., (wj4 = xi, (w)6 - x2, (w)7 = x3, and (w;)3 = x4). Then, 
there is u £ Li such that (u)3 = x4 by Lemma 6. Since wu £ L2Lt — L\L2, we 
have wu — vw' for v 6 L\ and w' £ L2. We can see from the diagram below that 
(u/)i = xi, (w')3 = x2, {w')4 = x3, and (w')7 = x4. 

w u 

w' 

Corollary 1 Let = {ii,... ,in), 1 < n < q, be a subset of Nq and xi,..., xn £ 
£m. If there exists w £ L2 such that (w)<7fc(i1) = Xi, • • •, (if)CT

fc(in) = xn, for some 
k, 0 < k < q — 1, then there exists w' £ L2 such that (w1)^ — x\,..., (w')in — xn. 

Proof. Apply Lemma 7 k times. • 

Theorem 7 Let Lx C £Pm , L2 C S i m , p,q,m> 0, (p,q) = 1, and LXL2 = L2L1. 
Furthermore, let X = {w £ £m | wu £ L\ for some u € £*}. Then L\ = Xp and 
L2=X". 

Proof. First, we prove that Lx C Xp and L2C Xq. Define Yi - {w £ S m | uwv £ 
Li for u £ i;^-1)"1 and v € E<*-i>m}I 1 < i < p, 

and Zj = {w € E m | uwv £ L2 for u £ E^ - 1 '™ and v £ 1 < j < q. 
Then,- clearly, L\ CYi---Yp and L2 C Z\ • • • Zq. We know that Yi = X and it is 
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obvious that Z\ = X. Let x £ Zi for some i, 1 < i < q. Then there is a word 
w £ L2 such that (w)i = x. It is clear that i — ak(l) for some k, 0 < k < q — 1. 
Then, by Corollary 1, we know that there is w' £ L2 such that (w')i = x. So, 
x £ Zi = X. Since x is chosen arbitrarily, we have shown that Zi C X. Similarly, 
we can show that Zi C X for each i, 1 <i < q. Therefore, we have Z\ • • • Zq C Xq 

and, thus, L2 C Xq. As a consequence we have that Li C Xp. 
Second, we prove that Xp C Li and Xq C L2. In order to do so, we prove by 

induction on n, the cardinality of N'q, 1 < n < q, that for any Nq = {¿i , . . . , i n } C 
Nq and x\,..., xn £ X, there exists w £ L2 such that (w)ik = xk, for 1 < k < n. 
For n = 1, let N^ = {«} and x be an arbitrary word in X. If i = 1, it is clear that 
there exists w £ L2 such that (w)i = x. Otherwise, there a k( i ) = 1 for some k, 
1 < k < q — 1. So, by Corollary 1, we have w £ L2 and (w)i = x. 
For the induction step, let N'q = { ¿ i , . . . , i n } and xi,...,xn £ X. Denote Np = 
N'q n Np. If iv; / 0 and N'q-N'plL 0, then both #N'p < n and #(N'q - A^) < n. 
Then there exist u £ L\ such that (u)ik — xk for ik £ Np and v £ L2 such that 

= xi for ii £ N'q - Np by the induction hypothesis. Since L\L2 = L2Li, 
we have uv = wz for w £ L2 and z £ L\. Clearly, (w)ik = xk for all ik £ Nq. 
Otherwise (Np = 0 or Nq - Np = 0), there is an integer A; > 0 such that ak(N'q) 
satisfies the condition. Then by Corollary 1 and the above arguments, we have 
w £ L2 such that (w)ik = xk. 

Let n = q, i.e., N' = Nq. Then we have proved that Xq C L2. Using Lemma 6, 
we get Xp C L\. Therefore, we have L\ = Xp and L2 = Xq. • 

5 Further results and open problems 
One might be tempted to conjecture that two finite languages F\ and F2 commute, 
FiF2 = F2F\, iff there is a finite language F such that both F\ and F2 are unions 
of powers of F. (Indeed, such a conjecture was presented in [9].) Clearly, if both 
Fi and F2 are of the form 

Fh + Fi2 + ... + F , 

where also F° = {A} can appear among the terms of the union, then F\F2 = F2F\. 
However, the converse is not true: F\ and F2 may commute without being 

unions of powers of the same set. The examples used in connection with Theorem 4 
can be applied to provide counterexamples. For instance, denote 

Li=a + a2 + a3, L2 = a + a3, L3 = A + a. 

Then 
LXLZ = L2Lz(= L3L1 = L 3 L 2 ) . 

If we now denote F, = Li + L3{b}L3, i = 1, 2, it follows that FIF2 = F2FI- It is 
also clear that Fi and F2 cannot be represented as unions of powers of the same 
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set. (First examples to this effect were given in [3], where it is also shown that the 
converse holds in case the cardinality of one of the sets F\ and F2 is at most 2.) 

The validity of the converse, as well as the unique decomposition, can be directly 
established in some special cases. 

For instance, let £ consist of all nonempty finite languages F, where all words 
of F are of equal length. Then we get immediately the following result. 

Lemma 8 Assume that F is a language in £ and that F = FIF2, for some Fi and 
F2. Then both and F2 are in £. 

Lemma 8 shows that the languages in £ possess a unique prime decomposition 
and that £ is a free monoid with respect to catenation. Observe that £ is not 
finitely generated. See [9] for a more detailed discussion. 

Thus, the equation FjF2 = F2F\ holds for languages in £ only in case both Fi 
and F2 are powers of the same language X . Moreover, if one of the languages, say 
F2, is an arbitrary finite language, we may present it as a (finite) union of languages 
in £ and use the same argument to show the existence of a language X such that 
Fi is a power of X and F2 is a (finite) union of powers of X. This and other similar 
results have been established in [10]. 

The technique in the preceding section was based on more detailed arguments 
and yields a direct construction of the set X. 

In conclusion, we present some general remarks and open problems concerning 
the converse mentioned above. What can be said, in general, about two commuting 
finite languages F\ and F21 

Open problem. Assume that F\F2 = F2F\ holds for two finite languages F\ 
and F2. Characterize the cases, where and F2 are not unions of powers of the 
same language. In the sequel we refer to such cases as exceptional. 

One possible approach to this problem is to consider positive decompositions, 
[9]. As seen above, the ambiguities caused by the presence of A seem to be the 
reason behind exceptional cases. 

Another approach is is to have an upper bound for the cardinality of one of the 
two finite languages, say Fx. We already mentioned that if F\ is of cardinality at 
most 2 then, independently of F2, the case is not exceptional, [3]. On the other 
hand, the example 

F! - a + ab + ba + bb, F2 = Fx + F? + bab + bbb 

given in [4] shows that the upper bound 4 for the cardinality of F\ is not sufficient. 
It is an open problem whether or not the upper bound 3 is sufficient. 

In our few final remEurks about commuting, the languages considered are not 
necessarily finite. Following [4], we say that a finite language F C S* possesses 
the Bergman type characterization, BTC if, for any language L C S* satisfying 
FL = LF, there exists a language K C £+ and sets I, J of nonnegative integers 
such that 

F={jK\ L={jKi. 
iei j€J 
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(The terminology refers to [1], where the commutation of two polynomials over 
noncommuting variables is investigated.) It is shown in [4] that every three-word 
code possesses BTC. We conclude with the following open problems from [4]. 

Open problem. Does every code possess BTC? 
Open problem. Does every three-word language possess BTC? 
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