
Acta Cybernetica 15 (2002) 339-351.

Factorizations of Languages and
Conditions *

Alexandra Mateescuf Arto Salomaa* and Sheng Yu§

Abstract

Representat ions of languages as a p roduc t (catenat ion) of languages axe
investigated, where t he factor languages are "prime", t h a t is, cannot be de-
composed fu r the r in a nontrivial manner . In general, such prime decomposi-
tions do not necessarily exist. If they exist, they axe not necessarily unique
- the number of factors can vary even exponentially. T h e paper investigates
pr ime decomposit ions, as well as the commut ing of the factors, especially for
the case of finite languages. In par t icular , a technique about commut ing is
developed in Section 4, where t he factorization of languages L\ and L2 is
discussed under the assumpt ion L1L2 = L i L \ .

Keywords: finite language, catenation, commutativity of languages, prime
decomposition

1 Introduction
Prime factorizations of natural numbers and their uniqueness constitute one of the
really fundamental issues in all mathematical sciences. On the other hand, in the
theory of formal languages, the operation of product or catenation was introduced
already at a very early stage. Clearly, any language L can be expressed as a
product of itself and the language {A} consisting of the empty word A.. We refer
to such decompositions of L as trivial, and say that L {A} is prime if it has only
trivial decompositions. In a prime decomposition for a language L every factor is
a prime. Although questions dealing with primality can be viewed as fundamental
in language theory, rather little work in this area has been done so far, see, for
instance, [10, 6]. [2] is an early reference dealing with finite languages. [7] develops

"This work has been partially supported by the Project 137358 of the Academy of Finland1 and
by the Natural Sciences and Engineering Research Council of Canada grants OGP0041630. All
correspondence to Sheng Yu. '

^Faculty of Mathematics, University of Bucharest Academiei, 14, Bucharest, Romania E-mail:
alexmatefflpcnet.pcnet.ro

•••Turku Centre for Computer Science (TUCS) Lemminkaisenkatu 14A, 20520 Turku, Finland
E-mail: asalomaafflutu.fi

§ Department of Computer Science, University of Western Ontario London, Ontario, Canada
N6A 5B7 E-mail: syufflcsd.uwo.ca

Commutativity

339

340 Alexandru Mateescu, AT to Salomaa, and Sheng Yu

a method according to which one may construct, with the maximal use of the
distributive law, for every finite language F an expression from which the number
of states and final states in the minimal deterministic automaton for F can be
immediately seen. [10] contains results about the commuting of two languages in
some special cases.

The following remarks about related papers are in order. A systematic study
about decompositions was initiated in the technical report [5]. This paper is the
"journal version" of the report [5], while [9] is the "conference version" of it. The
report [5] has given impetus to further research, for instance, [3, 4]. We have
included in this paper material from [9] only insofar it increases readability. In
particular, our main technical contribution in this paper, Section 4, is disjoint from
[9].

We begin with the following basic observation about finite languages. Whenever
a nonempty finite language F can be written as a product

F = F1F2...Fk,

where none of the factors Fi, 1 < i < k, is trivial, then k cannot be larger than the
length of the longest word in F. Consequently, we have always a complete control
of all possible decompositions, at least in principle. This does not hold true for
infinite regular languages, where there is no bound for the number of factors. Still
decompositions such as

£* = LIL2 = (A + E + E 2 + . . . E n - 1) (E n) * , n > 2;

convey definite information about E*. (Here, as frequently in the sequel, "+" stands
for union.) Indeed, they were instrumental in the proof for the fact that equations
between regular expressions possess no finite basis, see [7] for details.

Every finite language (different from {A}) possesses a prime decomposition. This
follows by an obvious induction on the length of the longest word in the language.
This is not true for infinite languages. For instance, no star language L (L = K*,
for some K) can possess a prime decomposition. Indeed, for infinite languages,
decompositions other than prime decompositions can sometimes be quite useful.
For instance consider the language L over the one-letter alphabet {a},

L = {a* | i = 10,13,16,17,19,20 or i > 22}.

L possesses a decomposition L = L1L2, where L\ = (a3)+ and L2 — (a7)+ . Here
we definitely have a simplification of the original language, presented as a product
of languages, although the factors are not prime. For instance, the total number
of states in the minimal automata for L\ and L2 is much smaller than the number
of states in the minimal automaton of L. Using the same idea and allowing an
arbitrary number of factors, one can show that the number of states may grow
exponentially in the transition from the decomposition to the original language.
Somewhat similar matters are discussed also in Section 3. We hope to return to
the discussion of this and other similar problems (which lie outside the scope of the
present paper) in another context.

Factorizations of Languages and Commutativity Conditions 341

A brief description of the contents of the present paper follows. The reader is
expected to be familiar with the very basics of formal languages and finite automata.
One of the references [6, 7, 8] may be consulted if need arises.

Basic decidability results are presented in Section 2. They lead also to a notion
very central in the study of regular languages, that of a decomposition set, originally
introduced in [9]. Sections 3-5 deal exclusively with finite languages. In Section 3,
we discuss decompositions of different lengths, as well as the testing of the primality
of a finite language, also from the point of view of complexity. The two final sections
deal with the commuting of two finite languages Ft and F2, that is, the validity of
the equation FIF2 = F2Fi. While this is a tricky problem in the general case, some
special cases can be handled.

Our main results are contained in Section 4, where factorization of languages
Fi and F2 is discussed under the assumption F\F2 = F2F\. Also a very efficient
construction is presented in the case where one of the two languages involved is
a singleton. The construction could be applicable also in other similar situations.
The final Section 5 discusses some recent results and open problems.

It has not escaped our notice, especially in view of the many possible interpre-
tations of finite languages and the central theoretical role of thé problems studied
in this paper, that the problems might turn out to be significant in certain applica-
tions. For instance, succinct representations of DNA nucleotide sequences certainly
fall within this category. However, we have had no specific applications in mind.

2 Decomposition sets and decision problems
The notions of a prime language and a prime decomposition of a language were
already defined in the Introduction. According to the definition, the language {A}
consisting of the empty word is not prime. Thus, all factor languages in a prime
decomposition are nontrivial. Depending on the language, the prime decomposition
may be unique or there may be several prime decompositions for the same language.
It is also possible that a language has no prime decompositions. However, every
finite language possesses a prime decomposition.

Typical problems concerning the decomposition of finite languages are the fol-
lowing:

1. Is a given finite language prime?

2. Find all prime decompositions of a given finite language.

3. Find, for a given finite language, a prime decomposition possessing a specific
property. (We might require, for instance, that the total number of states in
the automata accepting the prime factors is minimal.)

It is obvious that all problems of this nature are decidable for finite languages.
The complexity issues lie mainly outside the scope of this paper. In many cases,
an exhaustive search is the only algorithm we know for a specific problem.

342 Alexandru Mateescu, At to Salomaa, and Sheng Yu

We now present some simple examples, due to [9], of prime and nonprime finite
langauges. Consider the languages over the alphabet {a}, defined by

Fn,k = A + ak + a2k + • • • + ank, n > 2, k > 1,

= A + a2 + a3 + a4 + • • • + a" ,n > 4.

Let, further, F„,n > 4, denote any language consisting of A and an and, in addition,
of arbitrarily many words a1 with n/2 < i <n. Then no language FUtk is prime,
whereas all languages Fare prime. The language.F^ is prime iff n = 4.

Sometimes a slight change in a prime language induces a possibility for a de-
composition. Consider the following two languages:

F = adba + acbb.+ bcaa + bdab,

F' = adba + adbb + bdaa + bdab.

Thus F' results from F by replacing the two occurrences of the letter c by the
letter d. Then the language F is prime, whereas F' possesses the decomposition
F' = (adb + bda)(a + b). See [9] for details, as well as for the proof of the following
theorem and for related references.

Theorem 1 There is no algorithm, for deciding whether or not a given linear lan-
guage is prime. Consequently, the problem of primality is undecidable for context-
free languages.

The proof of Theorem 1 does not work for regular languages. Indeed, as Theo-
rem 2.2 below shows, the primality problem is decidable for regular languages. We
now recall from [9] a notion very suitable for the study of decompositions of regu-
lar languages. It is closely related to left quotients of regular languages. It shows
how an arbitrary decomposition can be extended to one of finitely many specific
decompositions, obtainable in a standard way.

Let R be a regular language over an alphabet E, and let A = (Q, S, QO, QF)
be the minimal finite deterministic automaton for R. (Here Q is the set of states,
qo the initial state, QF the set of final states, and S the transition function. We
extend <5 to words over E. Thus, 6(q,w) = q' means that the word w takes A
from the state q to the state q'.) For a nonempty subset P C Q, we consider the
following two languages:

.Jif = | % , ,« ;) GP},
i?2

p = p | {W | 6(p,w) e QF}.
pep

Lemma 1 Let R and A be defined as above. Assume that R = L1L2, where L\
and ¿2 are arbitrary languages. Define P CQ by

P = {p E Q | S(qo,w) = p, for some w € Li}.

Then R — R1R2 and, moreover, Li C Rf for i = 1,2.

Factorizations of Languages and Commutativity Conditions 343

Lemma 1 was established in [9]. Observe that the languages L\ and L2 above
are quite arbitrary; they need not even be recursively enumerable. They can always
be extended, without losing the validity of the decomposition, to regular languages
obtainable from the minimal automaton for A. These resulting "standard" decom-
positions can always be expressed in terms of a decomposition set.

By definition, a nonempty subset P C Q is a decomposition set (for a regular
language R) if R = J? fJ i f . The decomposition R = flfflf referred to as the
decomposition of R induced by the decomposition set P. We say that the decom-
position L = LyL-2 of a language L is included in the decomposition L = L[L'2 if
Li C L\, i = 1,2. See [9] for the proof of the following result.

Theorem 2 Every decomposition of a regular language R is included in a decom-
position of R induced by a decomposition set. The problem of primality is decidable
for regular languages.

The algorithm obtained by checking through all possible decomposition sets is
clearly exponential. It is likely that primality testing is NP-complete even for finite
languages. Observe also that the decomposition induced by a decomposition set
may be trivial. Indeed, we have i i f = {A} iff P = {qo} and qo has no incoming
arrows. Similarly, — {A} exactly in case P = QF and A is the only word taking
A from each of the final states to a final state. Also the following result is an
immediate corollary of Lemma 1.

Theorem 3 Whenever a regular language has a nontrivial decomposition, it has a
nontrivial decomposition where the factors are regular languages.

We conclude this section with two open problems.
Open problem. Instead of catenation, we may take the shuffle operation to be

the product operation for languages. Decompositions and primality can be defined
for this product as well. Is the last sentence of Theorem 2 valid also now? In other
words, is the primality of regular languages with respect to the shuffle product
decidable? Although we have been able to settle some special cases, the case of an
arbitrary regular language seems to be very tricky.

Open problem. Does Theorem 3 hold with "regular" replaced by "context-
free"? It would be very strange to have an example of a context-free language L
having nontrivial decompositions L = L1L2, in all of which at least one of the
languages L\ and L2 is non-context-free.

3 Primality testing
In the remainder of this paper we discuss only finite languages. A given finite
language may possess several prime decompositions. It may even happen that two
prime decompositions of the same language have no common factors. For instance,

(A + a2) (A + a2 + a3 + a4) = (A + a2 + a3)2,

344 Alexandru Mateescu, At to Salomaa, and Sheng Yu

where all factors are prime languages. Even the number of factors may vary dras-
tically in different prime decompositions of the same language. The following con-
tribution to Problem 2 of thé preceding section was established in [9].

Theorem 4 There are finite languages Ln having two prime decompositions with
0(n) and 0(logn) factors.

Theorem 4 was established in [9] using the following example. Consider numbers
n = 2k, k > 1, and languages

Ln = X + a + a2 + h a" - 1 .

Then
Ln = (A + a)""1 = (A + a)(A + a2)(A + a 4) . . . (A + a2"^).

, The most straightforward examples about factorizations not unique are obtained
in terms of languages over one-letter alphabet {a}. Other examples are easy to
construct. For instance,

F' = A + a + b + ab + b2 + ab2 +b3 +ab3 + b4 + ab4 = (X + a + b + b2+ ab2)(X + b)2 =

= (X + a + ab + b2+ ab2)(X + b)2 = (A + a)(A + b2){X + b)2,

where all languages within parentheses are primes.

Consider primality testing, Problem 1 mentioned in Section 2. There seems to
be no other general method than trying all possible factors. Of course, in special
instances, ad hoc arguments can be used to exclude factors of certain types. A
special case consists of testing the primality of languages of the form

A + ah+ah+--- + ai", (1)

where the i's are distinct positive integers. In this case primality testing can be
reduced to a problem concerning sets of nonnegative integers as follows.

Let N be a set of nonnegative integers. We say that N has the decomposition
property if there are nonempty subsets N\ and _/V2 of N, maybe overlapping or
identical but both containing at least two elements, such that

N = {ni + n2 | ni £ Ni and n2 € iV2}-

We also say that N decomposes into and iV2. (Recall here also the one-letter
language L presented in the Introduction.)

Clearly, N can have the decomposition property only if 0 £ iV, in which case 0
belongs also to both Ni and iV2. The following result is now obvious.

Lemma 2 The language L/v = SigAra® is prime iff the set N contains 0 and has
not the decomposition property. More specifically, if N decomposes into Ni and N2
then

Ln = (a + y , ai)(A + E
ieNi iew2

Factorizations of Languages and Commutativity Conditions 345

Although the problem of N possessing the decomposition property bears some
resemblance to the subset sum problems, we have not been able to establish its
./VP-completeness. Of course, testing the primality of the languages (1) is only a
special case of the general problem.

If c is a letter not in the alphabet of F, then F + c is always prime. One can
affect the same change also without introducing new letters.

Theorem 5 Let F be a finite language whose minimal alphabet E contains at least
two letters. Then for some w £ E+ , F + w is prime.

Proof. Let k be the length of the longest word in F. Let w be any word of length
2k + 1 such that there is a word in F whose first (resp. last) letter differs from the
first (resp. last) letter of w. This requirement can be satisfied since E contains at
least two letters. We claim that F + w is prime. Assume the contrary: F + w has a
nontrivial decomposition F + w = F\F2. We can write Pi = F{ + w\, F2 = F2+w2,
w = w\vj2. (Possibly P/ is empty or Wi — X.) One of the words wi and w2 is of
length greater than k. Assume that \w2\ > k. Then F[— 0 because, if a; £ F{, the
word xw2 is not in F + w. Thus, F + w = W\F2. But this is not possible because P
contains a word whose first letter differs from the first letter of w\. (vj\ = A would
yield a trivial decomposition.) If |u>i| > k, we obtain similarly a contradiction,
using the fact that P contains a word whose last letter differs from the last letter
of w2. This completes the proof. q

Theorem 5 can be extended to concern languages P over {a} containing the
empty word.

4 Factorization versus commutativity conditions
It was one of the very early results on combinatorics on words that two words
u and v commute, uv = vu, iff both u and v are powers of the same word. No
similar result is known for finite languages. When do two finite languages Pi and
F2 commute, P1P2 = P2P1? We begin with the special case, where one of the
languages is a singleton. The technique presented in this section, interesting also
on its own right, shows in detail the structure of the two languages.

The following results are well known and can be found in, e.g., [6] or [10].

Lemma 3 If uv = vz, u,v,z £ E*, and « / A, then u = xy, v = (xy)kx, and
z = yx for some x, y £ E* and k > 0.

Lemma 4 If uv = vu, then there exists such that u = xs and v = xl for
some s,t > 0.

Lemma 5 If um = vn and m,n> 1, then u = xs and v = xl for some x £ E* and
s,t> 1.

Theorem 6 Let x € E* and L C E* be a finite language. If xL = Lx, then there
exists w £ E* such that x = ws and L — Ul=i{wii}< for s,n,t\,... ,tn > 0.

346 Alexandru Mateescu, At to Salomaa, and Sheng Yu

Proof. The theorem holds trivially if L — 0. If L = {?/}, then xy = yx. By
Lemma 4, we have x = ws and y = w* for some s, t > 0. Thus, the theorem holds.

Assume that the theorem holds for L = {yi,..., yt}, t < n.
Now we consider the case when t = n, i.e., L = {yi, •. • ,yn}- We have the

following three cases:
Case I. xyn ' ynx. Then, by Lemma 4, x = WQ° and yn = WQ° for some WQ £ E*
and so, to > 0. Let L' = {j/i, . . . ,i/n_i}. Then xL' = L'x since xL = Lx, xyn =
ynx, and xyn g xL' and ynx & L'x. By the induction hypothesis, x = iu®1 and
L' = U £ i V i ' } s o m e ^ and S\,ti > 0. Since x = Wq0 = to*1, w0 and wi
are powers of a common word w, i.e., v>o = wl and W\ = wm. Then x = wls° and
L = {wmt\... ,wmt"-1,wlt°}. The theorem holds.
Case II. xyn ^ ynx. Then xyn = y^x for some ii £ {1, . . . ,n - 1}. If xy^ = ynx,
then let Li = {yiltyn} and L2 = L — L\. Otherwise, xy^ = y^x for some i2 £
{1,. . . ,n — 1} — {¿i}. We continue this way until we get xyim = ynx, i.e.

xyn=yhx, xyh=yi2x, , xyim=ynx.

Consider the case m < n — 1. Let L\ = {y^ , . . . , j/jm, yn} and L2 = L - L\. Then
xLi = L\x and xL2 = L2x. By the induction hypothesis, we have

m n
x=uSl, Li = (^{it^}, and x = v32, L2=[j{vt'}.

i=l j=1

Since it®1 = vS2 = x, we have u = wk and v = wl for w £ E* and k,l > 0.
Therefore,

m n
x = wk°\ ¿-(UK^iudJW4'})-

i=l j=l

Case III. This case is the same as Case II except that m = n — 1, i.e, we have
xyn ± ynx and

xyn — 2/ijX, xyii = yi2x, , xyin_1 = ynx.

Since xyn = i/i,x and xy^ = y^x, we have, by Lemma 3,

X = (uiVi)klU1: yn=V1U1, 2/ti — UiVi

x - (u2v2)k2u2, yh = v2u2, yi2 = u2v2.

So, we have
(uiWi)4^!«!^! = u2v2(uivi)klui.

Then, U\V\ = v\Ui. Thus, u\ and Hi are powers of the same word w\ £ E*. So,
x = u/®1 and yi - u)'1 for si, t\ > 0. Similarly, we can show that, for 1 < i < n,

x = w*' and yi = wf.

Factorizations of Languages and Commutativity Conditions 347

Since wl1 = ... = w„n — x, we know that w\, . . . , wn are powers of a common
word w, i.e., wi = wtl, . . . , wn = wln by Lemma 5. Thus, L = UlLii10'^'}
x = wllSl. •

Let p and q be two natural numbers such that (p, q) = 1 and p < q. Define
Np = { l , . . . , p } and Nq = Also define a function a : Nq —• Nq by
a(i) = ((i+p-l) mod q) +1. Thus, a(i) — i+p where the least positive remainder
of the sum modulo q is taken. Since (p, q) = 1, it is clear that, for any i € Nq, we
have {i,a(i),... ,cr i _1(i)} = Nq and crq(i) = i.

Let w 6 £<m, t,m > 0, i.e., w = xix2 • • -xt and Xj 6 E m , 1 < i < t. Denote by
(w)lm\ 1 < i < t, the substring Xi of w. When m is understood, we simply write
M i -

Let Li C S p m , L2 C S«m, p,q,m > 0, (p,q) = 1, p < q, and L j L 2 = L2LX.
Then we have the following results.

Lemma 6 Let N'q = {¿ i , . . . , in}, 1 < n < q, be a subset of Nq and x\,..., xn 6
Sm. If there exists w G L2 such that (w)ix = xi, ..., (w)in — xn, then there exists
u £ L\ such that (u)ij = Xj for all ij £ N^ fl Np.

Proof. The lemma holds due to the facts that L\L2 = L2L\ and p < q. •

We explain this lemma by the following example.

Example 1 Let p = 3 and q = 7. Then Np = {1,2,3} and Nq = {1,2, . . . ,7}.
Given N^ = {1,3,4,7} and xi,x2,x3,x4 G X = S m , there is w £ L2 such that
(w)i = xi, (w)3 = x2, (w)4 = X3, and (w)7 — X4. Then, clearly, there is u £ Li
such that (u)i = X\ and (11)3 = x2, which is illustrated in the diagram below.

w

f

I i-J 1 ^ ' ' —' 1 1 in I^Lj
X J X 2 X 3

H in LJL2

Lemma 7 Let N'q = {¿1,... ,in}, 1 < n < q, be a subset of Nq and x\,... ,xn €
Sm. If there exists w € L2 such that = x\, ..., ¿n) = xn, then there
exists W' £ L2 such that (W')^ = Xi, ..., (UJ1)^ = xn.

348 Alexandru Mateescu, At to Salomaa, and Sheng Yu

Proof. Let w 6 L2 such that {ui)a^}) = Xj, ij £ Then there exists u £ Li
such that = xj for all <r(ij) £ n Np by Lemma 6. Since wu £ L2LX

and L2L\ = L\L2, we have wu = vw1 for v £ L\ and w' £ L2. Notice that
(w')i = (ui)CT(i) for 1 < i < (q - p) and (w')i = (u)a(¿) for (q - p + 1) < i < q due
to the fact that |u| = p and the definition of a. Therefore, (u/),,- = (w)<7(ij) — Xj,
1 < j < n. D

We explain the above lemma and its proof by the following example.

Example 2 As in the previous example, let p = 3 and q = 7. Then Np = {1,2,3}
and Nq = {1,2, . . . , 7} . We are given N'q = {1,3,4,7} and xx, x2, x3 , x4 € X = £m,
and we kno\y that there is w £ L2 such that (u>)CT(x) = xi, (10)0(3) = x2, (w)ct(4) =
X3, and (w)CT(7) = x4 (i.e., (wj4 = xi, (w)6 - x2, (w)7 = x3, and (w;)3 = x4). Then,
there is u £ Li such that (u)3 = x4 by Lemma 6. Since wu £ L2Lt — L\L2, we
have wu — vw' for v 6 L\ and w' £ L2. We can see from the diagram below that
(u/)i = xi, (w')3 = x2, {w')4 = x3, and (w')7 = x4.

w u

w'

Corollary 1 Let = {ii,... ,in), 1 < n < q, be a subset of Nq and xi,..., xn £
£m. If there exists w £ L2 such that (w)<7fc(i1) = Xi, • • •, (if)CT

fc(in) = xn, for some
k, 0 < k < q — 1, then there exists w' £ L2 such that (w1)^ — x\,..., (w')in — xn.

Proof. Apply Lemma 7 k times. •

Theorem 7 Let Lx C £Pm , L2 C S i m , p,q,m> 0, (p,q) = 1, and LXL2 = L2L1.
Furthermore, let X = {w £ £m | wu £ L\ for some u € £*}. Then L\ = Xp and
L2=X".

Proof. First, we prove that Lx C Xp and L2C Xq. Define Yi - {w £ S m | uwv £
Li for u £ i;^-1)"1 and v € E<*-i>m}I 1 < i < p,

and Zj = {w € E m | uwv £ L2 for u £ E^ - 1 '™ and v £ 1 < j < q.
Then,- clearly, L\ CYi---Yp and L2 C Z\ • • • Zq. We know that Yi = X and it is

Factorizations of Languages and Commutativity Conditions 349

obvious that Z\ = X. Let x £ Zi for some i, 1 < i < q. Then there is a word
w £ L2 such that (w)i = x. It is clear that i — ak(l) for some k, 0 < k < q — 1.
Then, by Corollary 1, we know that there is w' £ L2 such that (w')i = x. So,
x £ Zi = X. Since x is chosen arbitrarily, we have shown that Zi C X. Similarly,
we can show that Zi C X for each i, 1 <i < q. Therefore, we have Z\ • • • Zq C Xq

and, thus, L2 C Xq. As a consequence we have that Li C Xp.
Second, we prove that Xp C Li and Xq C L2. In order to do so, we prove by

induction on n, the cardinality of N'q, 1 < n < q, that for any Nq = {¿i , . . . , i n } C
Nq and x\,..., xn £ X, there exists w £ L2 such that (w)ik = xk, for 1 < k < n.
For n = 1, let N^ = {«} and x be an arbitrary word in X. If i = 1, it is clear that
there exists w £ L2 such that (w)i = x. Otherwise, there a k(i) = 1 for some k,
1 < k < q — 1. So, by Corollary 1, we have w £ L2 and (w)i = x.
For the induction step, let N'q = { ¿ i , . . . , i n } and xi,...,xn £ X. Denote Np =
N'q n Np. If iv; / 0 and N'q-N'plL 0, then both #N'p < n and #(N'q - A^) < n.
Then there exist u £ L\ such that (u)ik — xk for ik £ Np and v £ L2 such that

= xi for ii £ N'q - Np by the induction hypothesis. Since L\L2 = L2Li,
we have uv = wz for w £ L2 and z £ L\. Clearly, (w)ik = xk for all ik £ Nq.
Otherwise (Np = 0 or Nq - Np = 0), there is an integer A; > 0 such that ak(N'q)
satisfies the condition. Then by Corollary 1 and the above arguments, we have
w £ L2 such that (w)ik = xk.

Let n = q, i.e., N' = Nq. Then we have proved that Xq C L2. Using Lemma 6,
we get Xp C L\. Therefore, we have L\ = Xp and L2 = Xq. •

5 Further results and open problems
One might be tempted to conjecture that two finite languages F\ and F2 commute,
FiF2 = F2F\, iff there is a finite language F such that both F\ and F2 are unions
of powers of F. (Indeed, such a conjecture was presented in [9].) Clearly, if both
Fi and F2 are of the form

Fh + Fi2 + ... + F ,

where also F° = {A} can appear among the terms of the union, then F\F2 = F2F\.
However, the converse is not true: F\ and F2 may commute without being

unions of powers of the same set. The examples used in connection with Theorem 4
can be applied to provide counterexamples. For instance, denote

Li=a + a2 + a3, L2 = a + a3, L3 = A + a.

Then
LXLZ = L2Lz(= L3L1 = L 3 L 2) .

If we now denote F, = Li + L3{b}L3, i = 1, 2, it follows that FIF2 = F2FI- It is
also clear that Fi and F2 cannot be represented as unions of powers of the same

350 Alexandru Mateescu, At to Salomaa, and Sheng Yu

set. (First examples to this effect were given in [3], where it is also shown that the
converse holds in case the cardinality of one of the sets F\ and F2 is at most 2.)

The validity of the converse, as well as the unique decomposition, can be directly
established in some special cases.

For instance, let £ consist of all nonempty finite languages F, where all words
of F are of equal length. Then we get immediately the following result.

Lemma 8 Assume that F is a language in £ and that F = FIF2, for some Fi and
F2. Then both and F2 are in £.

Lemma 8 shows that the languages in £ possess a unique prime decomposition
and that £ is a free monoid with respect to catenation. Observe that £ is not
finitely generated. See [9] for a more detailed discussion.

Thus, the equation FjF2 = F2F\ holds for languages in £ only in case both Fi
and F2 are powers of the same language X . Moreover, if one of the languages, say
F2, is an arbitrary finite language, we may present it as a (finite) union of languages
in £ and use the same argument to show the existence of a language X such that
Fi is a power of X and F2 is a (finite) union of powers of X. This and other similar
results have been established in [10].

The technique in the preceding section was based on more detailed arguments
and yields a direct construction of the set X.

In conclusion, we present some general remarks and open problems concerning
the converse mentioned above. What can be said, in general, about two commuting
finite languages F\ and F21

Open problem. Assume that F\F2 = F2F\ holds for two finite languages F\
and F2. Characterize the cases, where and F2 are not unions of powers of the
same language. In the sequel we refer to such cases as exceptional.

One possible approach to this problem is to consider positive decompositions,
[9]. As seen above, the ambiguities caused by the presence of A seem to be the
reason behind exceptional cases.

Another approach is is to have an upper bound for the cardinality of one of the
two finite languages, say Fx. We already mentioned that if F\ is of cardinality at
most 2 then, independently of F2, the case is not exceptional, [3]. On the other
hand, the example

F! - a + ab + ba + bb, F2 = Fx + F? + bab + bbb

given in [4] shows that the upper bound 4 for the cardinality of F\ is not sufficient.
It is an open problem whether or not the upper bound 3 is sufficient.

In our few final remEurks about commuting, the languages considered are not
necessarily finite. Following [4], we say that a finite language F C S* possesses
the Bergman type characterization, BTC if, for any language L C S* satisfying
FL = LF, there exists a language K C £+ and sets I, J of nonnegative integers
such that

F={jK\ L={jKi.
iei j€J

Factorizations of Languages and Commutativity Conditions 351

(The terminology refers to [1], where the commutation of two polynomials over
noncommuting variables is investigated.) It is shown in [4] that every three-word
code possesses BTC. We conclude with the following open problems from [4].

Open problem. Does every code possess BTC?
Open problem. Does every three-word language possess BTC?

Acknowledgements We are obliged to the referee for the careful reading of
the paper and many valuable suggestions. Discussions with Cezar Campeanu are
gratefully acknowledged.

References
[1] Bergman, G.; Centralizers in free associative algebras, Trans. Amer. Math.

Soc. 137 (1969) 327-344.

[2] Bucher, W., Maurer, H. A., Culik, K., II and Wotschke, D.; Concise descrip-
tion of finite languages,Theoret. Comput. Sci. 14 (1981), no. 3, 227-246.

[3] Choffrut, C., Karhumaki, J. and Ollinger, N.; The commutation of finite
sets: a challenging problem, TUCS Technical Report 303 (1999), to appear
in Theoret. Comput. Sci.

[4] Karhumaki, J. and Petre, I.; On the centralizer of a finite set, Springer LNCS
1853 (2000) 536-546.

[5] Mateescu, A., Salomaa, A. and Yu, S.; On the decomposition of finite lan-
guages, TUCS Technical Report 222 (1998).

[6] Rozenberg, G. and Salomaa, A.; (eds) Handbook of Formal Languages,
Springer, Berlin, New York, 1997.

[7] Salomaa, A.; Theory of Automata, International Series of Monographs in
Pure and Applied Mathematics, Vol. 100 Pergamon Press, Oxford-New York-
Toronto, 1969.

[8] Salomaa, A.; Formal Languages, Academic Press, New York, London, 1973.

[9] Salomaa, A. and Yu, S.; On the decomposition of finite languages, DLT 99
Preproceedings, Aachener Informatik-Berichte 99-5 (1999) 8-20. Appears also
in: Rozenberg, G. and Thomas, W.; (eds.) Developments in Language Theory,
World Scientific, 2000, 22-31.

[10] Shyr, H.J.; Free Monoids and Languages, Hon Min Book Company, Taichung,
Taiwan R.O.C., 1991.

Received October, 2000

